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We developed a new variational method for tensor-optimized antisymmetrized molecular dynamics (TOAMD)
for nuclei. In TOAMD, the correlation functions for the tensor force and the short-range repulsion are introduced
and used in the power series form of the wave function, which is different from the Jastrow method. Here,
nucleon pairs are correlated in multisteps with different forms, while they are correlated only once including all
pairs in the Jastrow correlation method. Each correlation function in every term is independently optimized in
the variation of total energy in TOAMD. For s-shell nuclei using the nucleon-nucleon interaction, the energies in
TOAMD are better than those in the variational Monte Carlo method with the Jastrow correlation function. This
means that the power series expansion using the correlation functions in TOAMD describes the nuclei better than
the Jastrow correlation method.
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I. INTRODUCTION

The nucleon-nucleon (NN ) interaction has a strong re-
pulsion at a short distance and a strong tensor force at
long and intermediate distances [1,2]. In particular, the main
component of the tensor force arises from the one-pion-
exchange interaction and is the dominant force of attraction
in strongly interacting systems. These characteristics of NN
interaction induce short-range and tensor correlations in the
nuclei. The short-range repulsion reduces the amplitudes of
nucleon pairs at the short distances in the nuclei and the
tensor force produces strong S-D coupling, which leads to the
admixture of the spatially compact D-wave state of nucleon
pairs in the nuclei.

Jastrow introduced the method of correlation function in
many-body problems [3]. Since then, the Jastrow correlation
method was used in essentially all the microscopic many-body
calculations for the treatment of many-body problems in
any discipline. In nuclear physics, the Jastrow correlation
method has become the familiar method for treating the tensor
and short-range correlations in nuclei starting from the NN
interaction [4]. In this method, the Jastrow factor, which
has a product-type form of the pair correlation functions, is
multiplied to the uncorrelated nuclear wave function and as a
result the correlation acts only once in each particle pair. The
Jastrow correlation method is often used not only in nuclear
physics [4], but also the condensed matter [5], and atomic and
molecular physics [6,7] to describe the central correlations. In
numerical calculations, the Monte Carlo technique, which is
known as the variational Monte Carlo method (VMC), is often
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employed for the integration of the matrix elements. In this
method, one essentially assumes the common functional forms
of correlation functions for every pair with a state dependence.
These forms are often given a priori under the appropriate
asymptotic condition of pairs before the variation of the total
wave function. In the case of NN interaction of nuclei, one
must consider the tensor correlation as well as the short-range
correlation, which has a long-range nature and a characteristic
feature of nuclei resulting in large binding energy [1].

Recently, we developed a new variational method for
treating the characteristics of NN interaction directly [8–11].
We employed antisymmetrized molecular dynamics (AMD)
[12,13] as the basis state for nuclei, and introduced two
kinds of correlation functions: the tensor-operator type and
central-operator type. The AMD wave function is suitable for
describing nuclear clustering, which is one of the important
aspects of nuclear structure such as the triple-α Hoyle state
in 12C [14,15]. The correlation functions are multiplied to the
AMD wave function and these components are superposed
with the original AMD wave function. We named this
method tensor-optimized antisymmetrized molecular dynam-
ics (TOAMD) [8]. The concept of TOAMD originated from the
tensor-optimized shell model (TOSM) [16–18] in which the
two-particle two-hole (2p-2h) excitations are fully optimized
in treating the tensor and short-range correlations induced by
the NN interaction. In TOAMD, the 2p-2h excitations are
expressed by the tensor and short-range correlation functions
and as a natural extension we introduce multiple products of
the correlation functions for the improvement of the variational
wave function.

In TOAMD, the total wave function has the form of a power
series expansion using the tensor and short-range correlation
functions, where the functional forms of each correlation
function are determined independently in the energy variation
of the total system. On the other hand, the Jastrow correlation
function is expressed as a multiple of the pair correlation,
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which makes only a single correlation function in each pair in
the many-body wave function.

In TOAMD, there are multiple products consisting of the
Hamiltonian and correlation functions, which are expanded
into a series of many-body operators using the cluster expan-
sion [8]. All the resulting many-body operators are considered
in the calculation to establish the TOAMD variational method.
In our previous work [9], we described the s-shell nuclei in
TOAMD with up to the double products of the correlation
functions. It was shown that TOAMD satisfactorily reproduces
the results of Green’s function Monte Carlo (GFMC) using
the bare NN interaction [19]. The TOAMD scheme can be
extended by successively increasing the power series of the
multiple products of the correlation functions.

The objective of this paper is to compare TOAMD and the
Jastrow correlation method as the variational models using the
common NN interactions. As the NN interaction we used the
Malfliet-Tjon interaction with only short-range repulsion and
the Argonne V6 (AV6) bare NN interaction with tensor force,
for which the VMC results were reported using the Jastrow
correlation method with the central-type and tensor-type two-
body correlation functions. In addition, we discuss the effect
of successive and independent optimization of the correlation
functions on the solutions of TOAMD.

II. TENSOR-OPTIMIZED ANTISYMMETRIZED
MOLECULAR DYNAMICS (TOAMD)

The basic framework of TOAMD is as follows, while the
details of TOAMD are given in Refs. [8,11]. The AMD wave
function �AMD, which is a single Slater determinant of the
Gaussian wave packets of nucleons with mass number A, is
given as

�AMD = 1√
A!

det

{
A∏

i=1

φi

}
, (1)

φ(�r) =
(

2ν

π

)3/4

e−ν(�r− �D)2
χσχτ . (2)

The wave function of a single nucleon φ(�r) consists of a Gaus-
sian wave packet with a range parameter ν, centroid position
�D, spin part χσ , and isospin part χτ . In this work, χσ is the up

or down component and χτ is a proton or neutron. The range
parameter ν is common for all the nucleons. This condition
eliminates the center-of-mass excitation in both AMD and
TOAMD. The AMD wave function can be extended to include
multiconfigurations applying the generator coordinate method
using various centroid positions �D, although we employ the
single configuration of AMD in the present study.

We introduce two kinds of pair correlation functions: FD

for tensor force and FS for short-range central repulsion.
The explicit forms of the correlation functions including state
dependence are given as

FD =
1∑

t=0

A∑
i<j

f t
D(rij ) r2

ij S12(r̂ij ) (�τi · �τj )t , (3)

FS =
1∑

t=0

1∑
s=0

A∑
i<j

f
t,s
S (rij ) (�τi · �τj )t (�σi · �σj )s , (4)

with a relative distance rij = |�ri − �rj | and tensor operator
S12(r̂). The labels s and t are the spin and isospin channels of
the two nucleons, respectively. The pair functions f t

D(r) and
f

t,s
S (r) are the variational functions. The functions FD and FS

can excite two nucleons to the high-momentum state in nuclei,
which corresponds to the 2p-2h excitations. It should be noted
that FD and FS can also express the long-range correlation.

These correlation functions are multiplied to the AMD wave
function �AMD and the resulting components are superposed
with �AMD. We further take the power series expansion in
terms of the multiple correlations consisting of FD and FS . In
the present work, we consider up to the double products of
the correlation functions, which can represent up to the 4p-4h
excitations. The TOAMD wave function is defined as

�TOAMD = (1 + FS + FD + FSFS + FSFD

+FDFS + FDFD) × �AMD. (5)

It should be noted that FD and FS in each term of Eq. (5)
are independent. Hence, there are five kinds of each of FD

and FS , which are fully optimized for the energy variation.
For simplicity, we use the common symbols FD and FS . This
expression of the TOAMD wave function is commonly used
for all nuclei.

The relation between TOAMD and the Jastrow correlation
method [9] is briefly explained. In the Jastrow correlation
method, the product-type correlation function is assumed to
be

FJastrow =
A∏

i<j

fij (�rij ), (6)

where the symmetrization of the Jastrow factor FJastrow is
omitted to simplify the discussion. The pair function f(�r)
consists of the terms involving the state dependence of the
spin isospin as well as the operator dependence such as S12(r̂).
When we express the function f (�r) as 1 + f̃ (�r), the factor
FJastrow can be expanded into the power series form using f̃ (�r)
in an almost similar form as that of Eq. (5). The function
f̃ (�r) corresponds to the pair functions f t

D(r) and f
t,s
S (r) in

TOAMD. It should be noted that f̃ (�r) acts only once in
every pair, while in TOAMD the nucleon pairs are correlated
in multisteps with different pair functions. We should note,
however, that the TOAMD wave function does not fulfill
the cluster decomposition property; all the nucleon pairs are
not always correlated via the correlation functions, while the
Jastrow method possesses this property. In the TOAMD, we
can have this property by including more correlation functions.

We use the Hamiltonian with a two-body NN interaction
V for mass number A as

H = T + V =
A∑
i

ti − Tc.m. +
A∑

i<j

vij , (7)

vij = vC
ij + vT

ij . (8)

Here, ti and Tc.m. are the kinetic energies of each nucleon and
the center-of-mass, respectively. In the present study, we use a
two-body bare NN interaction AV6 consisting of central and
tensor forces originating from the bare AV14 potential [2],

034309-2



POWER SERIES EXPANSION METHOD IN TENSOR- . . . PHYSICAL REVIEW C 96, 034309 (2017)

which is used in the VMC, GFMC, and few-body calculations
[20,21] and then suitable for comparison of the TOAMD
results with other calculations.

The total energy E in TOAMD is given by

E = 〈�TOAMD|H |�TOAMD〉
〈�TOAMD|�TOAMD〉

= 〈�AMD|H̃ |�AMD〉
〈�AMD|Ñ |�AMD〉 . (9)

The operators H̃ and Ñ are the correlated Hamiltonian and
norm operators, respectively. The matrix elements of the
correlated operators are calculated using the AMD wave
function. The correlated operators H̃ and Ñ include various
products of correlation functions such as F †HF and F †F ,
where F stands for FD and FS . These operators are expanded
into the series of many-body operators in terms of the cluster
expansion [8]. For the two-body interaction V , the correlated
interaction F †V F gives up to a six-body operator. In the same
way, F †F †V FF induces up to 10-body operators.

We employ all the resulting many-body operators of H̃
and Ñ without any truncation, which is necessary to retain
the variational principle for TOAMD. In general, multiple
products of many correlation functions produce a large number
of many-body operators in the cluster expansion. Among these
operators, the higher-body terms require larger calculation
costs to obtain their matrix elements numerically, which occurs
often for larger mass nuclei.

The present TOAMD wave function has two kinds of
variational functions, �AMD, and FD and FS . They are
determined to minimize the total energy E as δE = 0. For
�AMD, the centroid positions { �Di} (i = 1, . . . ,A) in Eq. (2) are
determined by using the cooling method [12]. We optimize the
radial forms of the pair functions f t

D(r) in Eq. (3) and f
t,s
S (r)

in Eq. (4) using the Gaussian expansion method as

f t
D(r) =

NG∑
n=1

Ct
ne

−at
nr

2
, (10)

f
t,s
S (r) =

NG∑
n=1

Ct,s
n e−at,s

n r2
. (11)

We take the Gaussian number NG = 7 to obtain the converging
results. We search for the values of at

n, at,s
n in a wide

range to cover the spatial correlation. We determine the
expansion coefficients Ct

n and Ct,s
n by the diagonalization of

the Hamiltonian matrix.
In the calculation, we express the TOAMD wave function

in the form of the linear combination of the basis states using
the coefficients of the Gaussian functions in the correlation
functions.

�TOAMD =
∑
α=0

C̃α �TOAMD,α,

Hα,β = 〈�AMD|H̃α,β |�AMD〉, (12)

Nα,β = 〈�AMD|Ñα,β |�AMD〉,
where the labels α and β represent the set of the Gaussian
index n, quantum numbers of spin s and isospin t for two

nucleons in the correlation functions. The Hamiltonian and
norm matrix elements are given as Hα,β and Nα,β , respectively.
We assign the AMD wave function �AMD to the labels α =
β = 0, and then H̃0,0 = H and Ñ0,0 = 1. The corresponding
expansion coefficient is C̃0 in Eq. (12). For the basis states with
single correlation functions, C̃α becomes Ct

n and Ct,s
n given

in Eqs. (10) and (11), respectively. In the double products
of the correlation functions, the products of two Gaussian
functions in Eqs. (10) and (11) are treated as the basis
functions. Accordingly, the expansion coefficients C̃α can
be Ct

nC
t ′
n′ , Ct

nC
t ′,s
n′ and Ct,s

n C
t ′,s ′
n′ , where the label α includes

the information on two kinds of the correlation functions.
The coefficients C̃α cannot be decomposed into Ct

n and Ct,s
n

inversely. Finally, we solve the following eigenvalue problem
and obtain the total energy E and all the coefficients C̃α .∑

β=0

(Hα,β − ENα,β )C̃β = 0. (13)

The explicit forms of the pair functions f t
D(r) and f

t,s
S (r)

obtained in the calculations are shown in Ref. [11] for 3H
and 4He in the case of the AV8′ NN interaction. Their radial
behaviors are reasonable to describe the tensor and short-range
correlations.

We briefly explain the procedure to calculate the matrix
elements of the correlated Hamiltonian using the AMD wave
function in Eq. (9). We express the NN interaction V using a
sum of Gaussian functions in the same way as the correlation
function F . The correlated operators H̃ and Ñ become the
products of F and V . After the cluster expansion of H̃ and
Ñ into the independent many-body operators, the resulting
operators become the products of Gaussian functions and
involve various combinations of the interparticle coordinates.
This structure for the coordinates makes it difficult to calculate
the matrix elements of many-body operators in general. In
the TOAMD, we perform the Fourier transformation of the
Gaussian functions in F and V . In this transformation, we
can decompose the square of the interparticle coordinates
�r 2
ij in the Gaussian functions into the plane waves having

each particle coordinate �ri and �rj . Hence, in the momentum
space, the matrix elements of many-body operators become
the products of the single-particle matrix elements of the plane
waves. Using the single-particle matrix elements with AMD,
we perform the multiple integration of the associated momenta
and obtain the matrix elements of TOAMD. We explain the
above procedure in detail with typical examples in Refs. [8,11].

III. RESULTS

First, we discuss the comparison between TOAMD and
VMC in the case of central interaction with the short-range
repulsion, which is reported in Ref. [9] for s-shell nuclei in
detail. We use only the central correlation functions FS and
FSFS in Eq. (5). Hence, we have two kinds of correlation
functions. We chose the Malfliet-Tjon V (MT-V) NN potential
with strong short-range repulsion [22,23]. In Table I, we
list the results of TOAMD with other wave functions. The
energies of 3H and 4He in TOAMD reproduce the results of
few-body calculations satisfactorily. Furthermore, the energies
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TABLE I. Energies of 3H( 1
2

+
) and 4He (0+) using MT-V potential

in units of MeV in comparison with other wave functions.

VMC [24] Few-body [25] TOAMD

3H −8.22(2) −8.25 −8.24
4He −31.19(5) −31.36 −31.28

in TOAMD become lower than those of VMC using the
Jastrow correlation method [24]. This result indicates that
the variational accuracy of TOAMD is better than that of the
Jastrow correlation method for the description of short-range
correlation.

Next, we discuss the results of TOAMD with the bare AV6
NN potential for 3H and 4He. The range parameters ν of �AMD

were determined as 0.11 fm−2 for 3H and 0.22 fm−2 for 4He,
respectively. Similar to the case of the AV8′ potential [9], we
obtain �Di = 0 for all the nucleons in �AMD of the two nuclei,
which indicates the s-wave configurations.

In Table II, we show the results of TOAMD by adding
each correlation term successively. In each calculation, the
range parameter ν is fixed, but the correlation functions are
optimized. We use the simple labels of D and S to express the
correlation functions FD and FS , respectively. The symbol +S
is the result with the wave function (1 + FS) × �AMD. The
symbol +DD is the overall calculation of TOAMD up to the
FDFD term in Eq. (5). The components of FSFD and FDFS are
combined together in the results and denoted shortly as +DS.
The radii of 3H and 4He are 1.76 fm and 1.50 fm, respectively.

In Table III, we list the Hamiltonian components for two
nuclei in TOAMD in comparison with other wave functions.
It was confirmed that the energies of 3H and 4He converged
to the results of few-body calculations. It is noted, in 4He, the
kinetic energy in TOAMD shows somewhat smaller values
than those of other wave functions, indicating the necessity of
more correlations to increase the high-momentum components
in TOAMD.

In Fig. 1, we show the total energy E of 3H, obtained
by adding the correlation terms in TOAMD successively. We
confirmed the converging behavior of the total-energy curve
toward the values of few-body calculations. It was found
that the energy of TOAMD is lower than that of VMC. This
indicates that the variational accuracy of TOAMD is beyond
that of VMC in the bare NN interaction, similar to the central
interaction case.

In TOAMD, all the correlation functions are independently
optimized in every term in Eq. (5), which is a feature different
from that of the Jastrow correlation method. It is meaningful to

TABLE II. Energies of 3H ( 1
2

+
) and 4He (0+) using AV6 potential

by adding each correlation term in TOAMD successively in units of
MeV.

AMD +S +D +SS +DS +DD

3H 15.18 3.48 −4.57 −5.52 −6.56 −7.10
4He 65.46 11.17 −13.87 −17.15 −21.20 −24.31

TABLE III. Energies of 3H( 1
2

+
) and 4He (0+) using AV6 potential

in units of MeV in comparison with other wave functions. The
symbols K and V represent the kinetic and interaction energies,
respectively, and C and T represent the contributions of central and
tensor forces, respectively. The units of radius is fm.

VMC GFMC Few-body TOAMD
[20] [20] [21]

E −6.33(5) −7.22(12) −7.15 −7.10
K 37.4 44.8 44.8 44.56

3H V −43.7 −52.0 −51.9 −51.66
C −17.68
T −33.98

Radius 1.95(3) 1.75(10) 1.76 1.76

E −22.75(10) −24.79(20) −25.40 −24.31
K 99.3 97.2 100.1 95.17

4He V −122 −122 −125.4 −119.48
C −41.63
T −77.85

Radius 1.50(1) 1.50(4) 1.49 1.50

investigate the effect of independent optimization of the cor-
relation functions on the solutions of TOAMD. We performed
the following calculation: First, FS and FD were determined
in TOAMD truncated with (1 + FS + FD) × �AMD. Second,
keeping the forms of FS and FD , we performed the full
calculation of TOAMD, where only the weights of the seven
components in Eq. (5) are variational parameters. We show
these constrained results denoted as “Fixed F ” for 3H using
open circles in Fig. 1. We can confirm the energy difference
from the original TOAMD calculation. This constraint finally
provides the energy of 3H as −6.04 MeV with an energy loss
of 1.06 MeV. This energy is also close to that of VMC, which
was −6.33 MeV. This property is interesting and reasonable
from the viewpoint of using common correlation functions in
every pair. From these results, it is clear that TOAMD is able
to treat the NN interaction using FD and FS better than VMC
using the Jastrow correlation method. Similarly, in Fig. 2, we

-5

0

5

10

15

AMD +S +D +SS +DS +DD

VMC
FB

3H

E

En
er

gy
 [M

eV
]

Correlation functions

TOAMD
Fixed F

FIG. 1. Energy convergence of 3H using AV6 by adding each term
of TOAMD successively with solid circles. Open circles denoted as
“Fixed F ” indicate the results obtained using the fixed correlation
functions in TOAMD. Dashed line and short solid line represent the
results of VMC and few-body (FB) calculations, respectively.
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T
3H
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gy
 [M
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]

Correlation functions

FIG. 2. Hamiltonian components of 3H using AV6 in TOAMD
with solid circles. The symbols K/2, C, and T indicate a half value of
the kinetic energy, the central and tensor forces, respectively. Open
circles indicate the results using the fixed correlation functions (Fixed
F ) in TOAMD. Dashed line and short solid line represent the half
value of the kinetic energies in the calculations of VMC and few-body
(FB) methods, respectively.

show the behavior of the Hamiltonian components of 3H. We
can confirm the differences between the values of TOAMD
and the constrained case in every component.

Next, we discuss the case of 4He. Figure 3 shows the
total energy obtained by adding the correlation function
successively in TOAMD. The behavior is very similar to that
of 3H, and a good convergence with the correlation functions
is observed. The energy of TOAMD is lower than that of VMC
for 4He, similar to the case of 3H. There exists slight deviations
from the results of the few-body and GFMC calculations in
Table III, which suggests the inclusion of the next order of
TOAMD such as the triple products of correlation functions.

In the constrained “Fixed F ” calculation for 4He, the
energy is obtained as −22.29 MeV, with an energy loss
of 2.02 MeV. This energy is also close to that of VMC
(−22.75 MeV), similar to the 3H case. Figure 4 explains
the behavior of the Hamiltonian components of 4He showing
the differences between the values of TOAMD and the
constrained case in every component. In particular, the central
component provides the smaller difference than that of the
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FIG. 3. Energy convergence of 4He using AV6. Notations are the
same as used in Fig. 1.

-80

-60

-40

-20

0

20

40

60

AMD +S +D +SS +DS +DD

VMC
FB

K/2

C

T4He

En
er

gy
 [M

eV
]

Correlation functions

FIG. 4. Hamiltonian components of 4He using AV6. Notations
are the same as used in Fig. 2.

tensor component in 4He in comparison with the 3H case in
Fig. 2. This indicates the central correlations including the
short-range correlation commonly act among nucleons for
4He, while this property is somewhat different for 3H. This
result comes from the fact that 4He is rigid because of the strong
binding nature, which supports the Gaussian assumption of
single-nucleon wave function in �AMD rather than the case
of 3H.

For 3H and 4He, the calculation employing the common
correlation functions of FD and FS in every term of TOAMD
in Eq. (5) provides energies close to, but not below the values
of VMC. This behavior seems reasonable, considering the
treatment of correlation functions with common forms. The
present analysis shows that the correlation functions in each
term of the power series in TOAMD should be different from
each other. This property is favorable for the energy variation.
The flexible treatment of the correlation functions in TOAMD
also contributes to the rapid energy convergence in the power
series expansion.

TOAMD has an advantage to describe the clustering states
on the basis of the AMD basis states. As the next step, it is
interesting to consider the cluster states such as 8Be consisting
of two 4He. In the TOAMD analysis, each 4He nucleus
requires the double products of the correlation functions to
obtain the converging solutions. This fact suggests that the
spatially developed two-4He state will need at least fourth
power of the correlation functions in TOAMD. It is interesting
to investigate the description of the cluster states in TOAMD
with the increase of the power of correlation functions. There
are several possibilities to reduce the computational time as to
introduce the Monte Carlo integral method.

IV. SUMMARY

We developed a new variational method for the tensor-
optimized antisymmetrized molecular dynamics (TOAMD).
In TOAMD, we introduce correlation functions to treat the
tensor force and short-range repulsion in strong interactions.
We multiply these correlation functions with the basis states of
the antisymmetrized molecular dynamics (AMD) in the form
of a power series. Each correlation function in each term of
the multiple products is described independently. This property
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of TOAMD is different from the ordinary Jastrow correlation
method, where the correlation functions are multiplied to every
pair once with a common form.

We have shown the results of s-shell nuclei using two kinds
of nucleon-nucleon interaction including bare interaction in
TOAMD within the double products of the correlation func-
tions. The energies and Hamiltonian components in TOAMD
reproduce the few-body results of 3H and 4He satisfactorily.
The numerical accuracy of TOAMD is found to be beyond
that of the variational Monte Carlo (VMC) calculation using
the Jastrow correlation method. The results indicate that the
correlation functions should be different in each order of the
power series expansion in TOAMD. In a recent publication,
there are more VMC results with AV18 and three-body
interactions for 4He, 16O, and 40Ca using the sophisticated

Jastrow correlation method [26]. It is interesting to apply the
TOAMD method to these cases.

We plan to increase the power of the multiple products of
the correlation functions to the triple case in the expansion
and apply TOAMD to the p-shell nuclei. We also plan to use
three-nucleon interactions such as the Fujita-Miyazawa type,
which is treated similarly to that of many-body operators in
the correlated Hamiltonian in TOAMD.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants No.
JP15K05091, No. JP15K17662, and No. JP16K05351. Nu-
merical calculations were partially performed on a computer
system at RCNP, Osaka University.

[1] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51,
53 (2001).

[2] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C
29, 1207 (1984).

[3] R. Jastrow, Phys. Rev. 98, 1479 (1955).
[4] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[5] F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).
[6] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett.

60, 1719 (1988).
[7] M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003).
[8] T. Myo, H. Toki, K. Ikeda, H. Horiuchi, and T. Suhara, Prog.

Theor. Exp. Phys. 2015, 073D02 (2015).
[9] T. Myo, H. Toki, K. Ikeda, H. Horiuchi, and T. Suhara, Phys.

Lett. B 769, 213 (2017).
[10] T. Myo, H. Toki, K. Ikeda, H. Horiuchi, and T. Suhara, Phys.

Rev. C 95, 044314 (2017).
[11] T. Myo, H. Toki, K. Ikeda, H. Horiuchi, and T. Suhara, Prog.

Theor. Exp. Phys. 2017, 073D01 (2017).
[12] Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, C. R. Phys. 4,

497 (2003).
[13] Y. Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp.

Phys. 2012, 01A202 (2012).

[14] K. Ikeda, H. Horiuchi, and S. Saito, Prog. Theor. Phys. Suppl.
68, 1 (1980).

[15] H. Horiuchi, K. Ikeda, and K. Katō, Prog. Theor. Phys. Suppl.
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