
PHYSICAL REVIEW C 96, 034308 (2017)

Isovector spin-multipole strength distributions in double-β-decay triplets
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In this work the energetics and strength distributions of isovector spin-dipole and spin-quadrupole transitions
from the ground states of the pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo, 100Ru), (116Cd, 116Sn), (128Te,
128Xe), (130Te, 130Xe), and (136Xe, 136Ba), of double-β-decay initial and final nuclei, to the J π = 0−,1−,2−,1+,2+,
and 3+ excited states of the intermediate odd-odd nuclei 76As, 82Br, 96Nb, 100Tc, 116In, 128,130I, and 136Cs are
investigated. The calculations are performed using a proton-neutron quasiparticle random-phase approximation
(pnQRPA) theory framework with the Bonn-A two-body interaction in no-core single-particle valence spaces.

DOI: 10.1103/PhysRevC.96.034308

I. INTRODUCTION

At present, the properties of neutrinos attract a lot of
interest in the particle-physics and nuclear-physics commu-
nities. These properties can be studied in many ways, among
others by the neutrino-oscillation experiments, the neutrino-
nucleus scattering, and the neutrinoless double-β (0νββ)
decay [1–5]. The latter two processes require knowledge
about nuclear properties in the form of the nuclear matrix
elements (NMEs). The NMEs of these processes are built
from real or virtual transitions between the ground state
of an initial nucleus and the ground and excited states
of a daughter nucleus. In particular, the transitions in the
charged-current neutrino-nucleus scattering [6–8] and 0νββ
share many common features, like the possibility to feed
(highly) excited Jπ = 0+,0−,1+,1−,2+,2−,3+, . . . states of
an odd-odd nucleus starting from the 0+ ground state of
the neighboring even-even isobar. A suitable framework for
studying these real or virtual transitions is the proton-neutron
random-phase approximation (pnRPA) at closed nuclear major
shells [9] and the corresponding theory for quasiparticles
(pnQRPA) in the case of superfluid open-shell systems [10,11].

In the case of two-neutrino double-β (2νββ) decay the
NME consists of virtual Gamow-Teller (GT) transitions from
the 0+ ground states of the initial and final even-even
nuclei to the 1+ states of the intermediate nucleus. These
transitions have typically been probed by the partial-wave
L = 0 charge-exchange reactions (CXRs) by using the β−
type of (p,n) or (3He,t) reactions and β+ type of (n,p),
(d,2He), or (t,3He) reactions [12–14]. Results of these reac-
tion studies can be compared with theoretical calculations
of the Gamow-Teller and isovector spin-monopole (IVSM)
strength distributions [15–17]. Lately, the partial-wave L = 1
CXRs to 2− states have gained momentum by the improved
experimental methods and facilities, e.g., the RCNP in Osaka,
Japan [18]. These studies could be relevant for the 0νββ decays
because a considerable portion of the corresponding NME can
be built from virtual transitions via the Jπ = 2− multipole
states [19,20]. The experimental considerations can also be
extended to the other L = 1 CXRs by studying the β− and
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β+ types of feedings of the 0− and 1− states involved in the
NMEs of the 0νββ decays.

In the present work we extend the study of [9] to open-shell
superfluid nuclei relevant for the 0νββ decays. In [9] the
pnRPA model was used for closed-shell nuclei to study the
isovector spin-dipole (IVSD, L = 1) and spin-quadrupole
(IVSQ, L = 2) β− and β+ types of feeding of the Jπ =
0−,1−,2− (L = 1) and Jπ = 1+,2+,3+ (L = 2) nuclear states
in a few cases of odd-odd nuclei. Instead of the pnRPA,
we adopt the pnQRPA (proton-neutron quasiparticle random-
phase approximation) with partial restoration of the isospin
symmetry [21] for our studies of the isovector spin-multipole
L = 1,2 feeding of the nuclei 76As, 82Br, 96Nb, 100Tc, 116In,
128,130I, and 136Cs from the 0+ ground states of 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 128,130Te, and 136Xe (β− type of feeding) and
from the 0+ ground states of 76Se, 82Kr, 96Mo, 100Ru, 116Sn,
128,130Xe, and 136Ba (β+ type of feeding). The feasibility of
probing experimentally the IVSD L = 1 strength distributions
to Jπ = 1−,2− states was demonstrated and experimental
results are to be expected in the near future [18]. The feasibility
of probing the IVSQ L = 2 strengths to Jπ = 1+,2+,3+ states
is still an open question but could probably be done in the
not so distant future. When and if available, the measured
L = 1 and L = 2 strength distributions can be compared to
the presently computed ones to learn more about the ability
of the pnQRPA to describe the feeding of the important
intermediate Jπ = 0+,0−,1+,1−,2+,2−,3+ multipole states
in 0νββ processes.

The outline of this article is as follows: In Sec. II
we introduce the used formalism, including the pnQRPA
framework and transition amplitudes, in Sec. III we present
and discuss the obtained results, and finally in Sec. IV we
draw the final conclusions of the study.

II. SHORT REVIEW OF THE FORMALISM

The formalism developed in [16], for the GT and isovector
spin-monopole (IVSM) excitation modes, is now extended to
the IVSD and IVSQ modes. At the same time we extend the
corresponding studies of [9] to open-shell superfluid nuclei.
The calculations start from the ground states of a number of
selected even-even nuclei. In the present study we investigate
the double-beta emitters in the triplets of isobars with A =
76, A = 82, A = 96, A = 100, A = 116, A = 128, A = 130,
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and A = 136. In the following subsections the stages of this
step-by-step study are explained briefly.

A. Single-particle bases

The single-particle energies for both protons and neutrons,
for each even-even nucleus involved, are obtained by solving
the radial Schrödinger equation for a Coulomb-corrected
Woods-Saxon potential. The Woods-Saxon parameters are
obtained from [22]. We include in our calculations only the
bound and quasibound single-particle states.

In this work, the calculations are performed in large no-core
single-particle bases, which means that all the states starting
from nlj = 0s1/2 up to two oscillator major shells above the
proton Fermi surface of each nucleus are taken into account.
The same single-particle space is adopted also for neutrons.

B. Quasiparticle spectra

The two-body interaction used in the BCS calculations
is derived from the Bonn-A one-boson-exchange potential
introduced in [23]. The BCS pairing gaps are fitted to the
observed ones [24–26] using the three-point formulas,

�n(A,Z) = 1
4 (−1)A−Z+1[Sn(A + 1,Z) − 2Sn(A,Z)

+ Sn(A − 1,Z)],

�p(A,Z) = 1
4 (−1)Z+1[Sp(A + 1,Z + 1) − 2Sp(A,Z)

+ Sp(A − 1,Z − 1)],

(1)

where Sp and Sn are the separation energies for protons
and neutrons, respectively. This is achieved by adjusting the
pairing strength parameters g(n)

pair and g
(p)
pair which multiply the

monopole G-matrix elements. The resulting pairing strength
constants and pairing gaps are discussed in the next section.

C. Spectra of the Jπ excitations in odd-odd nuclei

The wave functions and excitation energies for the complete
set of Jπ excitations in the odd-odd nuclei are obtained
by performing a pnQRPA diagonalization in the basis of
unperturbed quasiproton-quasineutron pairs coupled to Jπ .
The pnQRPA states in odd-odd nuclei are then of the form,

|ω〉 = Q†
ω|pnQRPA〉

=
∑
pn

[
Xω

pnA
†
pn(JM) − Yω

pnÃpn(JM)
]|pnQRPA〉, (2)

where ω = nJπM , X and Y are the forward- and backward-
going amplitudes, A† and Ã the quasiproton-quasineutron
creation and annihilation operators, and |pnQRPA〉 is the
pnQRPA vacuum. M denotes the z projection of J . The
formalism is explained in detail in, e.g., [24,26].

The X and Y amplitudes of (2) are calculated by diag-
onalizing the pnQRPA matrix separately for each multipole
Jπ . The isoscalar (T = 0) and isovector (T = 1) parts of the
particle-particle G-matrix elements are multiplied by common
factors gT =0

pp and gT =1
pp , respectively, for all the multipoles

according to a method proposed in [21]. In addition, the
particle-hole part was scaled by a common factor gph for all

the multipoles. These renormalization factors are listed in the
following section for each mass number separately.

D. Transition operators and strength distributions

The transition operators for the spin-dipole (L = 1) and
spin-quadrupole (L = 2) transitions are of the form,

Q±
L,J = rL[YLσ ]J iLt±, (3)

where YL is the spherical harmonic of rank L, σ the Pauli
spin tensor operator, and t+ and t− are the isospin raising and
lowering operators. The reduced single-particle NMEs of this
operator are of the form [22,24],

(jf ||O±
L,J ||ji) = (

nf lf
1
2jf ||rL[YLσ ]J iL||nili

1
2ji

)
=

√
6ĵf Ĵ ĵi

(−1)lf√
4π

ˆlf L̂l̂i

(
lf L li
0 0 0

)

×

⎧⎪⎨
⎪⎩

lf
1
2 jf

li
1
2 ji

L 1 J

⎫⎪⎬
⎪⎭R(L)

f i (−1)
1
2 (li−lf +L)

, (4)

where R(L)
f i is a radial integral [24] and the effect of the isospin

ladder operators is taken into account by the fact that the
initial ji = (nili

1
2ji) and final jf = (nf lf

1
2jf ) single-particle

states have different isospin projections. Here n denotes the
principal quantum number, l the orbital angular momentum,
and j the total angular momentum. Now the reduced NMEs
can be calculated from [24]

(Jπ ||O±
L,J ||0+) =

∑
ab

(a||O±
L,J ||b)√

2J + 1
(Jπ ||[c†ac̃b]J ||0+), (5)

where b and a denote the initial and final single-particle
quantum numbers.

The transition strength for a transition from a 0+ ground
state to the ith Jπ state can be calculated from

S±
LJ (i) = |(Jπ

i ||O±
L,J ||0+)|2. (6)

III. RESULTS AND DISCUSSION

In this chapter we present and discuss the results and the
methods used in the calculations.

A. Single-particle bases and energies

We created the single-particle bases by solving the eigen-
states of the Woods-Saxon potential for protons and neutrons,
separately (for protons we corrected the potential with the
Coulomb force). The values for the central, orbital, and
spin-orbit parameters, and the radius and the surface thickness
parameters needed in the calculations were taken from [22].
Small adjustments to the proton and neutron single-particle
energies were done for the orbitals close to the Fermi
surfaces to better reproduce the low-lying spectra of the
neighboring odd-mass nuclei. Because we are dealing with
no-core calculations, we take all the orbits from the N = 0
oscillator major shell up to about two oscillator major shells
above the respective Fermi surfaces for protons and neutrons.
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TABLE I. Pairing scaling factors and the resulting pairing gaps
for the nuclei relevant for this work.

Nucleus g(n)
pair g

(p)
pair �n(MeV) �p(MeV)

76Ge 0.97 0.89 1.57 1.52
76Se 1.01 0.91 1.72 1.71
82Se 0.94 0.84 1.51 1.43
82Kr 1.01 0.86 1.65 1.63
96Zr 0.77 0.85 0.92 1.48
96Mo 0.90 0.93 1.03 1.52
100Mo 0.88 0.96 1.31 1.63
100Ru 0.85 0.93 1.27 1.60
116Cd 0.89 0.93 1.37 1.43
116Sn 0.82 0.89 1.16 1.84
128Te 0.86 0.81 1.30 1.09
128Xe 0.86 0.88 1.27 1.30
130Te 0.86 0.78 1.21 1.02
130Xe 0.85 0.86 1.25 1.26
136Xe 0.84 0.76 1.44 0.98
136Ba 0.87 0.83 1.08 1.22

An example of the single-particle orbitals and energies for the
A = 76 system is shown in Table I in [17].

B. Pairing gaps, quasiparticle spectra,
and BCS occupation factors

The two-body matrix elements obtained from the Bonn-A
interaction were applied to the “left-hand-side” and “right-
hand-side” even-even nuclei by renormalizing the monopole
neutron and proton channels, separately. The scaling factors
g(n)

pair and g
(p)
pair were adjusted to reproduce the phenomenologi-

cal pairing gaps given in Eq. (1). The needed neutron (proton)
separation energies Sn (Sp) were taken from [27] and [28].
The scaling factors and the resulting pairing gaps for the
nuclei of interest are listed in Table I. Using these scaling
factors we performed the BCS calculations and obtained the
one-quasiparticle spectra and occupation factors v and vacancy
factors u needed in the subsequent pnQRPA calculations of
the energies and wave functions. These factors, along with the
pnQRPA amplitudes of (2), are used to construct the one-body
transition densities of (5) in the form [24],

(Jπ ||[c†pc̃n]J ||0+) = Ĵ
(
upvnX

ω
pn + vpunY

ω
pn

)
, (7)

(Jπ ||[c†nc̃p]J ||0+) = Ĵ (−1)J
(
vpunX

ω
pn + upvnY

ω
pn

)
. (8)

C. Energy spectra and IVSD and IVSQ strength distributions

We decompose each isobaric triplet with mass number
A to “left-hand-side” even-even (A,N,Z), “right-hand-side”
even-even (A,N − 2,Z + 2), and “intermediate” odd-odd
(A,N − 1,Z + 1) nuclei. We construct the spectra of Jπ

excitations in the intermediate odd-odd nuclei applying the
pnQRPA formalism [25,26,29], including particle-hole and
particle-particle channels, to the left- and right-hand-side
even-even nuclei. In this way we obtain two sets of energies
and wave functions for each Jπ state.

TABLE II. Renormalization factors for the particle-hole and
particle-particle interactions in different nuclei.

A gph gT =0
pp gT =1

pp

76 1.156 0.83 0.96
82 0.997 0.82 0.95
96 1.415 0.89 0.94
100 1.224 0.875 0.91
116 1.518 0.82 0.81
128 1.267 0.745 0.87
130 1.228 0.73 0.86
136 1.262 0.67 0.87

The values of the particle-hole (particle-particle) renormal-
ization factors gph (gT =0,1

pp ) are listed in Table II. The gph values
were fitted to reproduce the energetics of the “left-hand-side”
GT− giant resonance (GTGR). The gpp values have usually
been fixed by the half-lives of 2νββ decays [30–34], by the
logf t values of β decays [35,36], or by both β and 2νββ
decays [37,38]. In this work, we adopt an improved method,
quasiparticle random phase approximation with partial restora-
tion of the isospin symmetry, introduced in [19], and first
proposed in [21]: We decompose the pnQRPA NMEs into
isoscalar (T = 0) and isovector (T = 1) parts and then adjust
the parameters gT =0

pp and gT =1
pp independently. The isovector

parameter gT =1
pp is adjusted so that the Fermi NME of 2νββ

matrix element vanishes, and thus the isospin symmetry is
restored. Then we independently vary the isoscalar parameter
gT =0

pp such that it reproduces the calculated matrix element
corresponding to the measured 2νββ half-life and a slightly
quenched value gA = 1.0 of the axial vector coupling constant.
These values are determined for each mass number separately,
and the obtained parameters are adopted for all the multipoles
in both left- and right-hand-side even-even nuclei. The bare
value gA = 1.27 was also tested in the determination of the
gT =0

pp parameters, but the parameter values obtained this way
differed only by 0.01–0.03 from those obtained with gA = 1.0,
resulting in less than 0.3-MeV differences in the obtained
energy centroids of the spin-multipole giant resonances.
Because the changes in the energy centroids were so minor,
we do not list separately the results for gA = 1.27.

D. Energy centroids and strength functions for the spin-dipole
and spin-quadrupole excitations

In this section we discuss the strength distributions of the
IVSD and IVSQ excitations for the left-hand-side (IVSD−

and IVSQ−) and right-hand-side (IVSD+ and IVSQ+) initial
ground states. The corresponding strength functions are

S(IVSD−)(i) = |(Jπ
i ||O−

1,J ||0+
L )|2, (9)

S(IVSD+)(i) = |(Jπ
i ||O+

1,J ||0+
R )|2, (10)

S(IVSQ−)(i) = |(Jπ
i ||O−

2,J ||0+
L )|2, (11)

S(IVSQ+)(i) = |(Jπ
i ||O+

2,J ||0+
R )|2, (12)
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FIG. 1. Strength distributions for A = 76. (a) L = 1, β−, (b) L =
1, β+, (c) L = 2, β−, (d) L = 2, β+. The solid line denotes the sum of
the dashed, dotted, and dash-dotted individual contributions. Energies
are measured relative to the ground state of the odd-odd final nucleus.
The strengths are given in units of fm2 for J π = 0−,1−,2− and in fm4

for J π = 1+,2+,3+.

where the transition operator is given in (3), 0+
L (0+

R ) is the
ground state of the left-hand-side (right-hand-side) even-even
nucleus, and Jπ

i is the ith Jπ state in the intermediate odd-odd
nucleus.

The resulting strength distribution is discrete because of
the discrete basis used in the calculation. To make it better
comparable with the experimental distribution we fold it with
the Lorentzian folding function [39],

FL(E − E0) = W

π

1

W 2 + (E − E0)2
, (13)

where E is the excitation energy in the odd-odd final nucleus,
E0 the energy of the pnQRPA phonon corresponding to
a peak, and W the width of this Lorentz peak. For the
width we have chosen the value W = 0.5 MeV. The folded
strength distributions are shown in Figs. 1–8 for different
mass numbers. In the (a) panels the strength distributions of
IVSD− transitions to different multipoles are shown, in the
(b) panels the corresponding strength distributions of IVSD+

transitions are shown, and in the (c) and (d) panels the IVSQ−

and IVSQ+ transitions to different multipoles are shown. The
energies are given in MeV with respect to the ground state of
the odd-odd final nucleus and the solid line gives the sum
distribution by adding the dashed, dotted, and dash-dotted
individual contributions. The strengths are given in units of
fm2 for the L = 1 (Jπ = 0−,1−,2−) transitions and in fm4 for
the L = 2 (Jπ = 1+,2+,3+) transitions.

We note that for L = 1 β− transitions the average energy is
highest for 0− excitations, except for a few exceptions, lowest
for 2− excitations. This effect was also noted in the earlier
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FIG. 2. The same as in Fig. 1 for A = 82.

calculations [9,40,41]. It can also be noted that the strength
for Jπ = 0−,1− is concentrated in a few peaks, whereas the
strength for Jπ = 2− is more spread. This was noted also in [9].

Similar effects can be seen in the case of L = 2 β−
transitions: The 1+ excitations are the highest in energy,
whereas the 3+ excitations are the lowest. As noted in [9],
most of the strength of Jπ = 1+ resonances is carried by a few
peaks, whereas for the Jπ = 2+,3+ excitations the strength
distributions are much more fragmented. This effect becomes
more visible for the heavier masses.
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FIG. 3. The same as in Fig. 1 for A = 96.
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FIG. 4. The same as in Fig. 1 for A = 100.

In Table III we present the calculated energy centroids for
IVSD± and IVSQ± transitions for different multipoles and
mass numbers. The energies are again given with respect to
the odd-odd final nucleus. For the β− type of strength the spin-
multipole giant resonance (SMGR) region forms a more or less
isolated island so that the total strength of the GR region can be
separated from the low-energy one. This is why in Table III the
spin-multipole strength of the SMGR is only part of the total
β− strength S−

tot. For the β+ type of transitions such a separa-
tion is not easy and hence only the total strength S+

tot is given.
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FIG. 5. The same as in Fig. 1 for A = 116.
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FIG. 6. The same as in Fig. 1 for A = 128.

From Table III we see that for L = 1 transitions the
strengths S−

tot and S+
tot are largest for 0− transitions and smallest

for 2− transitions, except for the A = 82 system. This kind of
trend was also noted in [9] for closed-shell nuclei. In [9] it
was seen that for L = 2 transitions the strengths S−

tot and S+
tot

are largest for 1+ transitions and smallest for 3+ transitions.
Our results for S−

tot and S+
tot differ from [9] for mass numbers

A = 76 and 82, and S−
tot for mass numbers A = 96,128,130,

and 136. Only for A = 116 and 100 our results agree with [9].
The deviations from the IVSD results of [9] are most likely
related to the fact that in the present work we discuss open-shell
nuclei, not magic nuclei as in [9].
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FIG. 7. The same as in Fig. 1 for A = 130.
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FIG. 8. The same as in Fig. 1 for A = 136.

IV. CONCLUSIONS

In this work we have performed realistic pnQRPA calcula-
tions of the isovector spin-dipole and spin-quadrupole excita-
tions in odd-odd nuclei belonging to double-β-decay triplets
with A = 76, A = 82, A = 96, A = 100, A = 116, A = 128,
A = 130, and A = 136. The calculations were performed in
large no-core single-particle bases with realistic Bonn-A-type
two-body interactions. The couplings of the pairing monopole
channels were adjusted to reproduce the experimental odd-
even mass differences separately for protons and neutrons.
Furthermore, the proton-neutron particle-hole renormalization
factor was fitted to the energy of the GTGR centroids of the
left-hand-side even-even nuclei. The isovector and isoscalar
particle-particle strengths were fitted to reproduce the observed
2νββ half-lives and to restore the isospin symmetry of the
2νββ transitions, as proposed in [21].

The resulting strength distributions of orbital angular
momentum L = 1,2 transitions were computed and plotted for
the multipole Jπ = 0−,1+,1−,2+,2−,3+ states in the odd-odd
intermediate nuclei. From these distributions we can see that
there is a considerable difference in the giant-resonance energy
centroids of the various J states corresponding to a given L.
For L = 1 transitions the transition strengths were highest
for the lowest-J transitions and lowest for the highest-J
transitions, except for A = 82. For L = 2 transitions there
was no clear ordering for the transition strengths.

In the future, having access to experimental data on the
L = 1 (and possibly L = 2) strength functions, one could
make comparisons with the present and future theoretical
calculations and access the validity of, e.g., the model
Hamiltonians and their predicted isovector spin-multipole
distributions and giant resonance properties.

TABLE III. Energy centroids of SMGRs and transition strengths
S±(GR) of the corresponding β− and β+ transitions for different
mass numbers. Also the total strengths S±

tot are given. The strengths
are given in units of fm2 for J π = 0−,1−,2− and in fm4 for J π =
1+,2+,3+.

A J π E(GR)− S−(GR) S−
tot E(GR)+ S+

tot = S+(GR)
(MeV) (MeV)

76 0− 18.752 48.168 50.360 11.623 30.945
1− 14.751 47.910 48.785 6.871 21.143
2− 16.639 39.080 45.333 10.225 12.391
1+ 26.502 529.73 834.15 20.199 370.39
2+ 22.406 1017.3 1220.3 16.455 485.92
3+ 19.285 1295.8 1496.2 13.101 550.41

82 0− 17.339 47.873 50.305 10.388 32.835
1− 14.300 52.503 53.505 7.197 22.323
2− 15.798 47.021 52.472 10.218 12.758
1+ 25.493 512.94 847.96 19.542 383.65
2+ 23.201 1080.6 1441.6 19.395 511.23
3+ 19.387 1385.8 1815.7 18.018 604.18

96 0− 31.703 99.535 99.695 11.914 41.175
1− 24.954 82.338 82.990 7.810 23.343
2− 22.720 66.923 71.897 8.325 12.496
1+ 33.900 1485.8 1987.0 19.959 1128.7
2+ 27.214 2137.8 2306.3 14.967 963.80
3+ 24.002 2108.2 2440.8 10.803 816.56

100 0− 25.639 104.54 105.21 11.532 46.076
1− 19.847 86.159 87.810 7.356 27.033
2− 18.487 69.902 74.454 8.673 13.785
1+ 31.196 2946.2 3447.2 20.938 1629.2
2+ 24.227 2644.2 3088.6 15.122 1212.2
3+ 21.248 2405.9 2842.4 11.063 925.65

116 0− 29.069 123.49 124.29 11.537 42.862
1− 22.780 107.91 108.56 7.215 24.937
2− 21.002 89.649 100.83 9.278 15.684
1+ 34.214 3541.6 4450.9 22.103 1920.6
2+ 27.367 3559.4 4084.1 16.253 1411.7
3+ 24.327 3567.6 4021.4 12.840 1140.8

128 0− 22.888 156.98 160.33 10.189 47.981
1− 16.943 135.86 138.30 6.841 26.435
2− 17.069 108.12 121.01 9.774 14.658
1+ 28.038 3733.4 4771.9 21.330 2204.5
2+ 22.628 3749.4 4613.8 16.018 1595.0
3+ 19.087 4166.9 4861.7 12.939 1153.4

130 0− 25.108 165.89 169.18 11.614 46.475
1− 19.342 143.27 147.54 8.517 25.007
2− 17.058 116.69 130.18 9.369 13.620
1+ 27.796 3842.5 4973.5 20.950 2201.8
2+ 22.648 3918.9 4870.3 16.058 1574.0
3+ 19.252 4443.6 5207.7 12.798 1103.3

136 0− 29.610 180.57 180.63 9.858 44.987
1− 23.886 158.95 159.29 6.812 23.770
2− 21.631 132.88 149.85 9.146 13.265
1+ 28.709 3897.1 5163.8 20.268 2220.1
2+ 23.065 4627.8 5112.8 15.707 1584.7
3+ 20.234 5004.4 5498.7 12.231 1094.8

034308-6



ISOVECTOR SPIN-MULTIPOLE STRENGTH . . . PHYSICAL REVIEW C 96, 034308 (2017)

ACKNOWLEDGMENTS

This work was partially supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017
(Nuclear and Accelerator Based Programme at JYFL).

[1] H. Ejiri, Phys. Rep. 338, 265 (2000).
[2] F. T. Avignone, S. R. Elliot, and J. Engel, Rev. Mod. Phys. 80,

481 (2008).
[3] J. D. Vergados, H. Ejiri, and F. Šimkovic, Rep. Prog. Phys. 75,

106301 (2012).
[4] J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).
[5] J. Maalampi and J. Suhonen, Adv. High Energy Phys. 2013,

505874 (2013).
[6] E. Ydrefors and J. Suhonen, Phys. Rev. C 87, 034314 (2013).
[7] W. Almosly, B. G. Carlsson, J. Dobaczewski, J. Suhonen, J.

Toivanen, P. Vesely, and E. Ydrefors, Phys. Rev. C 89, 024308
(2014).

[8] W. Almosly, B. G. Carlsson, J. Suhonen, J. Toivanen, and E.
Ydrefors, Phys. Rev. C 94, 044614 (2016).

[9] N. Auerbach and A. Klein, Phys. Rev. C 30, 1032 (1984).
[10] J. Suhonen and O. Civitarese, J. Phys. G 39, 085105 (2012).
[11] J. Suhonen and O. Civitarese, J. Phys. G 39, 124005 (2012).
[12] P. Puppe, D. Frekers, T. Adachi, H. Akimune, N. Aoi, B. Bilgier,

H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, E. Ganioğlu, M. N.
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