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Mass excesses of 21–24Si and 24S
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I have used a recent parametrization of mirror energy differences to predict two-proton separation energies for
21−24Si and 24S. Results are in good agreement with experimental values for 22,24Si.
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I. INTRODUCTION

Earlier, I discovered a simple parametrization [1] of mirror
energy differences (MEDs) in light nuclei. For p-shell + 2n
nuclei, a three-parameter fit (denoted 3PF here) gave excellent
agreement with experimental MEDs in terms of P (s2), the
amount of s2 occupancy. The fitting function was MED =
f [S2n,P (s2)]Z/A1/3 with f = C + aS2n–bP (s2). The factor
Z/A1/3 was expressly included because any calculation of
Coulomb energies will vary as Z/R. The fit produced
agreement with experimental values with a root-mean-square
deviation of 4 keV (better than the experimental uncertainties
in some cases). That fit included all p-shell + 2n nuclei for
which S2n, S2p, and P (s2) were all known—six mirror pairs
in total. I then used the fit to predict (successfully, as it turned
out) S2p for 15Ne. The sensitivities to S2n and P (s2) are both
easily understandable as being a consequence of the so-called
Thomas-Ehrman effect in which the energy of an s state is
lower in the proton-excess member of a mirror pair. This effect
is extremely well reproduced by calculations in a potential
model with a diffuse potential well. In the original fitting,
the coefficient of the P (s2) term was b = 0.724(6) MeV. In
all subsequent applications, I have kept these 3PF parameters
fixed. The spectroscopic factor and P (s2) are related by the
equation �Ss = 2P (s2), where Ss is the spectroscopic factor
for 2s1/2 neutron pickup.

In any potential-model calculation of MEDs, the result
will depend on the occupancy of the s orbital because of the
Thomas-Ehrman shift—hence the P (s2) dependence. And, it
is well known that the Thomas-Ehrman shift depends slightly
on separation energy—hence the S2n term. The function I
have used is thus the simplest that contains all the essential
physics—the Z/R factor from Coulomb, the dependence on
s occupancy, and a (slight) dependence on separation energy.
With all the current research on nuclei near the proton drip line,
it is important to have a simple estimate of MEDs because the
usual potential-model approach is inapplicable without some
detailed knowledge of the levels of the relevant core nuclei.

In the initial work, I considered only nuclei that contained
no 2s1/2 nucleons in the core. Later, I investigated whether this
3PF could be extended to nuclei in which the core contained
some s nucleons [2]. In 18–20Mg, the 3PF and potential-
model calculations produced predictions that were virtually
identical. This was extremely surprising because the potential-
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model calculations required energies and spectroscopic factors
for several core states. For 19,20Mg, the agreement with
experimental MEDs was exceptional. I then used the 3PF to
predict the mass excess of 17Mg. Here, I use it to estimate
the mass excesses of 21−24Si and 24S. [It should be obvious
that the assumptions of the original treatment require that
the neutron-excess nucleus has even N and therefore the
proton-excess mirror has even Z.]

One possibility for the fact that having s nucleons in the
core does not run afoul of the Pauli principle is the following:
As stated, I am considering only nuclei with even N (and
hence even Z for the mirror). In the lowest state, the neutrons
will tend to be coupled to 0+, whether A is even or odd (with
even N ). Thus, in any term of the wave function for the last
two neutrons, the s orbital is either empty or full as it can
contain at most two neutrons. Thus, there is no problem with
the Pauli principle. Even so, in both sets of nuclei explored so
far (p-shell [1] and N = 10 [2] cores), the agreement was far
better than I had expected.

II. CALCULATIONS AND RESULTS

I define the MED as

MED = S2n(neutron − excess nucleus)

− S2p(proton − excess mirror)

The fitting function was MED = {f [S2n, P (s2)]}Z</A1/3,
where A is the mass number and Z< is the proton number
of the core in the core + 2p nucleus. A function of the form
f = C + aS2n–bP (s2) was found to work extremely well [1].
The success of the 3PF when it was extended into the realm
in which the core also contains sd-shell nucleons [2] has
encouraged me to investigate the consequences for Si nuclei.
For all the Si nuclei, Z< is 12. A recent report of the mass
excess of 22Si [3] has provided further motivation.

In 22O, the 2s1/2 orbital is mostly empty. A shell-model
calculation by Brown et al. [4] predicted a spectroscopic
factor of S = 0.80 for 22O → 23O (g.s.) (where g.s. represents
the ground state). A breakup experiment with 23O reported
S(g.s.) = 0.77(10) [5]. A newer calculation by Brown [6]
predicts S(g.s.) = 0.7823 and �S(2s) = 0.8273, implying
P (s2) = 0.1727 for 22O. A recent experiment [3] produced
a beam of 22Si by fragmentation of 28Si and investigated
its decays. Those authors provided an estimate of the 2p
separation energy: S2p = −108(125) keV. If 22Si is indeed
unbound to 2p decay, the 3PF requires P (s2) < 0.174 for
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TABLE I. Present results for 2p separation energies of 21−24Si and 24S.

Nucleus S2n (MeV) a Mirror S2p (MeV)

Predicted Measured a ImKG c

21N 6.75(10) 21Si −3.69(9) −3.898(98)
22O 10.66(6) 22Si −0.003(54) −0.108(125) b −0.004(57)
23F 12.78(5) 23Si 2.07(5) 1.79(50) from syst. 2.114(100)
24Ne 14.070 24Si 3.389 3.434(19)
24O 6.93(12) 24S −2.32(33) −4.934(125)

aReference [7], unless indicated otherwise.
bReference [3]. The estimate from systematics is −1.2(5) MeV [7].
cImproved Kelson-Garvey model [10].

22O—remarkably close to (but slightly larger than) the shell-
model value.

Alternatively, I can use the shell-model P (s2) and the 3PF
to predict the 2p separation energy. The result is S2p(3PF) =
−3(54) keV where the uncertainty arises from the uncertainty
in the 2n separation energy of 22O of 10.66(6) MeV [7]. The
latest mass evaluation estimates S2p(22Si) = −1.2(5) MeV
from systematics [7].

Turning now to the 24Ne/24Si mirror pair, I note that the 2p
separation energy of 24Si is known to be 3.434(19) MeV [7]. In
a study of the 24Ne(d,p) reaction (in reverse kinematics) [8],
the g.s. spectroscopic factor was measured as S = 0.80 for
24Ne → 25Ne g.s. Because this value is virtually identical to
the 22O → 23O result, I choose to use P (s2) for 24Ne to be the
same as for 22O, viz 0.1727. The resulting 3PF prediction is
then 3.389 MeV for 24Si, reasonably close to the experimental
value. Requiring agreement with the measured S2p would have
needed P (s2) = 0.188(6). It is astonishing that fit parameters
obtained for nuclei from 12O to 18Ne [1] work so well for
Mg [2] and Si [here].

I turn now to two odd-A Si nuclei—21Si and 23Si, neither
of which has an experimental value of S2p. For 23Si, the
estimate from systematics is 1.79(50) MeV [7]. For present
purposes, because the parent nuclei have the same number of
neutrons, I use the same P (s2) for these nuclei as for 22,24Si,
viz. 0.1727. With the experimental S2n of 12.78(5) MeV for
23F, the prediction is S2p = 2.07 MeV for 23Si—within the
range estimated from systematics. The 2n separation energy
of 21N is 6.75(10) MeV, resulting in a prediction for 21Si of
S2p = −3.69 MeV. All these results are summarized in Table I.

I have also chosen to look at 24S because the spectroscopic
factor for 2s1/2 pickup from its mirror 24O → 23O has
been measured as S(2s1/2) = 1.74(19) [9], implying P (s2) =
0.87(10). With a separation energy of S2n = 6.93(12) MeV for
24O, the result for 24S is S2p = −2.32(33) MeV.

III. COMPARISON WITH OTHER PREDICTIONS

Recent predictions from an improved Kelson-Garvey
(ImKG) model [10] are listed in the last column of the table.
For 21–23Si, the close similarity of the two sets of predictions
is amazing because the two approaches are quite different. The
present 3PF analysis uses only P (s2) and S2n for the mirror
nucleus, whereas the ImKG model involves masses of several
nearby nuclei. I see no reason why the two approaches should
give similar answers. For 24S, the two predictions are signifi-
cantly different, as was also the case previously for 15Ne. In this
latter case, the 3PF prediction [1] was S2p = −2.64(24) MeV,
and ImKG predicted −3.532(23) MeV. A recent experi-
ment [11] reported S2p = −2.522(66) MeV. For both 24O/24S
and 15B/15Ne, P (s2) is large. Because my 3PF depends
strongly on the 2s1/2 occupancy, and ImKG depends on it only
indirectly, it is clear that the two will not agree for both small
and large occupancies. It appears that ImKG does not take suf-
ficient account of the Thomas-Ehrman effect, and thus the two
predictions will be expected to disagree when P (s2) is large.

A calculation for several Z = 8 and 20 proton-rich nuclei
by Holt et al. [12] used two- and three-nucleon forces. For 22Si,
they predicted S2p = −1.63 MeV with a calculation in the sd
space and S2p = −0.12 MeV in an expanded sdf7/2p3/2 space.

IV. SUMMARY

To summarize, I have used a recent parametrization to
predict two-proton separation energies for 21−24Si and 24S.
Predictions agree well with experimental results for 22,24Si.
Perhaps the present predictions will spur investigations into
the other nuclei.
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