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Background: Although SU(2) isospin symmetry is generally assumed in the basic theory of the strong interaction,
a number of significant violations have been observed in scattering and bound states of nucleons. Many of these
violations can be attributed to the electromagnetic interaction but the question of how much of the violation is
due to it remains open.
Purpose: To establish the connection between diquark clustering in the two-nucleon system and isospin breaking
from the Coulomb interaction between the members of diquark pairs.
Method: A schematic model based on clustering of quarks in the interior of the confinement region of the
two-nucleon system is introduced and evaluated. In this model the Coulomb interaction is the source of all
isospin breaking. It draws on a picture of the quark density based on the diquark-quark model of hadron structure
which has been investigated by a number of groups.
Results: The model produces three isospin breaking potentials connecting the unbroken value of the low-energy
scattering amplitude to those of the pp, nn, and np singlet channels. A simple test of the potentials in the
three-nucleon energy difference problem yields results in agreement with the known binding energy difference.
Conclusion: The illustrative model suggests that the breaking seen in the low-energy nucleon-nucleon (NN)
interaction may be understood in terms of the Coulomb force between members of diquark clusters. It allows the
prediction of the charge symmetry breaking interaction and the nn scattering length from the well measured np

singlet scattering length. Values of the nn scattering length around −18 fm are favored. Since the model is based
on the quark picture, it can be easily extended, in the SU(3) limit, to calculate isospin breaking in the strange
sector in the corresponding channels. A natural consequence of isospin breaking from diquark clustering is that
the breaking in the strange sector, as measured by the separation energy difference between 4

�H and 4
�He, is

several times larger than that seen in the comparison of three-nucleon mirror nuclei as observed experimentally.
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I. INTRODUCTION

In spite of the very significant progress that has been made
in the study of quantum chromodynamics (QCD), the under-
standing of the low-energy nucleon-nucleon (NN) interaction
in terms of parton degrees of freedom remains elusive. The
short-range part of the potential has been calculated with
parton degrees of freedom in a number of cases, often with one
gluon exchange (which also involves two quark exchange) in
first order perturbation theory. Such theories tend to give no
(or little) attraction. Since the two-pion exchange produces a
strong intermediate-range attraction [1] it might be thought
that this mechanism alone would suffice. An attempt [2] to
marry the short range quark contribution [3–5] to the well
known one- and two-pion exchange did not succeed. While
empirical evidence of two-pion exchange exists [6] it appears
that it does not provide all of the intermediate range potential
strength needed.

When the confinement volumes of two nucleons be-
gin to overlap, direct quark-quark interactions can occur
through non-color-singlet exchanges producing quark clus-
tering among quarks originating in different nucleons. Under-
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lying this picture is the notion that the NN interaction involves
sharing of quarks between the two incident particles when
they overlap, thus contributing to the NN potential. Even if
this clustering occurs in an isospin symmetric manner (which
we assume), the different charges of the quarks will produce
energy differences which will break the SU(2) symmetry. It
is this source of isospin breaking that we treat in this paper.
Since the Coulomb interaction is hidden in the correlations,
we refer to the effect as “crypto-Coulomb” (CC). We treat
only the valence quarks even though the sea quarks would be
expected to participate as well in a more realistic calculation.

In a diquark-quark model of the nucleon the third (unpaired)
quark in each nucleon can combine in the overlapping and
enlarged confinement region thus adding to the intermediate
range attraction. Models in which quark-quark interactions
have been included in a single baryon have been moderately
successful [7–9] in predicting the mass spectrum.

Here we focus on a more modest goal than producing
a full NN potential; instead, we look at the result of this
type of interaction and study the Coulombic effect of quark
clustering in the valence quark density and compare the result
with experimentally observed isospin breaking to infer the
parameters describing the quark density.

Not having available the strong potential which would
be the result of such a strong-interaction model, we use a
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phenomenological potential of the Reid soft-core type [10]
which has a short-range repulsion, medium-range attraction,
and one-pion-exchange (OPE) tail to provide the basic SU(2)
invariant interaction. This potential is determined by fitting pp
scattering data below 30 MeV and then used to calculate the
nn and np effective range parameters and compare them with
data. The entire process uses a unique quark density (same for
nn, pp, and singlet np pairs) with the isospin breaking being
produced solely by the charge differences between the valence
quarks themselves.

Section II reviews the evidence for diquark clustering in
the interior of hadrons along with a discussion of the expected
role of diquark clustering in low-energy NN scattering. In
Sec. III a brief summary of the data on isospin breaking in
the NN interaction and the status of the theory are reviewed.
In Sec. IV a simple model is introduced which is based on
the naïve quark model but satisfies many of the conditions
just discussed. In Sec. V the method used for extracting the
strong phase shifts from the data is given. Section VI gives the
results of the model. An extension of these ideas to the strange
sector (�-N) is presented in Sec. VII. Section VIII gives a
short discussion with conclusions.

II. DIQUARK MODELS

While diquark models have been around for some time,
there has been an increase in interest recently due to new ex-
perimental results. In this section we review briefly this history.

The model of nucleon as a diquark (D) quark (q) pair is as
old as the idea of quarks themselves. When Gell-mann intro-
duced the name “quark” he discussed the possible existence
of the diquark at the same time [11]. Ida and Kobayashi [12]
and Lichtenberg and Tassie [13] were the first to consider the
diquark-quark model. Ono [14] and Lichtenberg et al. [15,16]
studied the mass spectrum which would be generated by such
a model. Abbott et al. [17] saw evidence for a spin-one diquark
in the need for an explanation of the large ratio of longitudinal
to transverse photon absorption. Gunion [18] saw the need for
a diquark in the form of the structure functions of the nucleon.
Later Mineo et al. [19] calculated the structure functions with
a diquark model.

The existence of diquark correlations in the nucleon is
claimed to be supported by a large body of experimental
evidence (see Ref. [20] for a summary of the situation in
1993). Lattice gauge theory has provided some theoretical
support [21–24] although the size of the diquark extracted
is often larger than that assumed by typical models, but not
always [25].

Much remains to be known about the detailed properties
of these correlations. There seem to be indications for both a
spin-0 and a spin-1 form. The spatial extent of the correlations
also varies with the specific model treated. A typical result
from the lattice is that the spatial size of the axial vector
diquark is larger than that of the scalar diquark. Weiss et al.
[26], in a Nambu-Jona-Lasinio model, found that a larger
axial vector diquark was necessary in order to have the square
charge radius of the neutron be negative. See also Ishii et al.
[27] for a similar model.

One diquark model of the nucleon which is particularly
successful is the one due to Keiner [28]. While many diquark-
quark calculations do not respect isospin invariance, Keiner
presented a diquark model for the nucleon which gives an
excellent fit to the electromagnetic properties of the nucleon
and does respect SU(2) symmetry. In order to conserve isospin
he included both scalar and axial vector diquarks of the same
mass and size (0.24 fm).

More modern treatments [29,30] deal with heavy baryons.
Cloët, Bentz, and Thomas [31] use diquarks to calculate clus-
tering effects on the nucleon elastic form factors. Santopinto
and Ferretti [32] treat strange and nonstrange baryons. Another
model which leads to quark-quark correlations is the Flux-tube
model [8,9].

More recently, a diquark-antidiquark structure has been
studied [33–50] in the form of [Qq][Qq] for recently observed
particles by the BaBar [51], Belle [52], and LHCb [53]
collaborations.

Of perhaps more relevance for NN scattering are the nearly
degenerate light scalar mesons [f0(980) and a0(980)] which
have long been a problem to understand in a qq̄ model.
They have often been viewed as meson-meson molecular
states but more recently the interest has increased to study
them in the diquark-antidiquark picture [54–60]. In summary,
it seems that the idea of diquark clustering in the internal
structure of hadrons, light or heavy, is widespread and has
many supporters.

Diquark models would seem to have taken a blow when it
became evident that the valence quarks carry only a fraction
of the spin of the proton. However, Myhrer and Thomas [61]
and Thomas [62] pointed out that relativistic effects and the
pion cloud could explain this apparent lack. Shortly thereafter,
Cloët and Miller published [63] a diquark-quark model of the
nucleon in which the axial vector diquark plays an essential
role by contributing negatively to the spin sum thus reducing
the apparent fraction of the spin carried by the quarks. In
their fit to the electromagnetic form factors they found the
axial vector diquark to have a smaller mass than the scalar
diquark, contrary to most other models, a point that remains
to be understood.

Although we know of no current theory which takes into
account the clustering of pairs of quarks into diquarks for the
NN interaction in free space, there have been treatments of
the nucleonic interaction in nuclear matter in Landau-Migdal
models [64,65]. There is also a study of the transition of nuclear
matter to quark matter where a condensate of diquarks is
needed to obtain the phase change [66]. The rearrangement
of quarks into quark pairs has also been treated in the
meson-meson interaction [67].

It is hard to imagine that quark clustering will not play some
role in the short-to-mid-range NN interaction. When the two
confinement volumes begin to overlap (when they touch) the
quarks will be free to move about in the aggregated volume so
that the two (initially) unpaired quarks can combine to form
a diquark thus lowering the total mass of the two-nucleon
system thereby creating an attractive potential. This picture is
especially favorable at very low energies where the overlap
of the two systems exists for a long time allowing the quarks
ample opportunity to rearrange themselves.

034001-2



ISOSPIN BREAKING FROM DIQUARK CLUSTERING PHYSICAL REVIEW C 96, 034001 (2017)

The construction of such a theory is well beyond the scope
of this paper. Instead, we look at the connection between the
clustering which might be generated by such a theory and
isospin breaking observed in the NN system in the singlet
scattering lengths.

III. OVERVIEW OF ISOSPIN BREAKING
IN THE NN INTERACTION

In 1974 it was suggested [68] that it might be possible to
learn about the short-range NN interaction from the study of
isospin breaking in this interaction. It is the purpose of this
paper to present a schematic model realizing this idea using as
the only source of breaking the Coulomb interaction between
quark pairs.

SU(2) symmetry (isospin) is one of the fundamental
building blocks of QCD. It is known that this symmetry is
broken by the Coulomb interaction but it is not known to what
extent it is broken in the strong interaction.

One of the most obvious manifestations of isospin breaking
is the difference in the nucleon masses. It is generally believed
that the neutron-proton (np) mass difference is due to the
up-down quark mass differences [69–72]. While the ud quark
mass difference is of the same order as the interior Coulomb
effects we will treat, it will not enter into our considerations
for the following reason: while the different singlet nucleon
pairs will indeed have different total masses, they will not
depend on the distance between the centers of mass of the
nucleons so that there is no localized potential to use for the
calculation of the scattering or binding of nucleons. The result
is constant energy shifts which are expressed as the difference
in nucleon masses. The nucleon masses will affect the kinetic
energy contribution to the bound states and the phase space
of the scattering states leading to a small breaking that can
be treated in the hadronic calculations needed to remove the
conventional Coulomb effects.

Other examples of isospin breaking exist in nuclear physics
and it is important to know if they come from additional
fundamental breaking or if they can be explained by the
electromagnetic interaction. A special case of the breaking is a
failure of charge symmetry (CSB) wherein the nn interaction
is different from the “Coulomb corrected” pp interaction. A
classification of the types of isospin breaking was given by
Ref. [73]. One review of the breaking as of 1990 was given in
Ref. [74], another in 2006 [75], and again in 2009 [76].

By making the exchange neutron ⇔ proton in a nuclear
system, i.e., by comparing the energies of mirror nuclei, a
measure of the CSB can be obtained. In order to carry out this
program the ordinary Coulomb interaction must be taken into
account. A great deal of work has been done in this direction.

A. Okamoto-Nolen-Schiffer anomaly

Discussions of the CSB problem often start with the
Okamoto-Nolen-Schiffer anomaly [77,78] which is the obser-
vation that the addition of the conventional Coulomb force
between protons does not give enough energy difference
between members of a nuclear isospin doublet. By the
conventional Coulomb force we mean a e2/r potential at large

FIG. 1. The dots represent the ratio of the calculation of Blunden
and Iqbal [79] based on the ρ-ω and π -η charge symmetry breaking
potentials of [80] to the CSB energies of Sato [81] as a function of
the angular momentum of the shell. The solid dots correspond to the
SKII results [82], the open circles to DME calculations [83].

distances with a continuation for smaller r representing some
sort of nucleon charge density, often taken as a uniformly
charged sphere. We denote this potential by VC(r). The same
discrepancy is observed in the binding energy difference
between 3He and 3H (see the next section).

In an attempt to explain this discrepancy by a difference in
the fundamental interaction the exchange of heavy mesons
(primarily the mixing of the ρ and ω mesons) [80] has
been proposed [79]. These mesonic CSB potentials [80] give
the right order of magnitude [79] but they appear to fail
quantitatively for the higher angular momentum shells as can
be seen in Fig. 1 where the fraction of the needed additional
energy provided is shown. The discrepancy in the prediction
seems to increase for the larger systems.

Sato [81], who did the calculation of the Coulomb energy
from the nuclear wave functions from which the inadequacy
of the pure ordinary Coulomb force is obtained, attempted to
fit the missing energies with an arbitrary charge-symmetry-
breaking potential constrained only to have a range, less
than or equal to, one pion exchange, but did not find a
fit. The calculations of Blunden and Iqbal [79] were done
with shell-model wave functions and hence did not have
a short-range repulsive interaction excluding the NN wave
function from short relative distances. Since the mesonic CSB
potentials [80] have a very short range (essentially the same as
the one-boson exchange often used to provide the source of the
strongly repulsive short-range potential), one might question
the validity of this procedure since it might be expected to
overestimate the effect.

B. Three-body comparisons

While the mirror nuclei comparison offers several useful
features, in particular the possibility to change the range
over which the breaking interaction is being sampled by
varying the atomic number, there is a complication in that
a reliable structure calculation is needed. As seen from Fig. 1
considerable variation is present from the difference in the two
types of shell-model calculations [82,83] considered.
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TABLE I. Experimental determinations of the singlet NN scattering length.

aNN (fm) Reaction Reference

−23.748 ± 0.009 np scattering from ortho- and parahydrogen [86–88]
−17.3 ± 0.4 Coulomb corrected pp scattering [74,75,89]
−18.5 ± 0.3 nn final state interaction in π−d → nnγ and nd breakup [90–96] and [97–99]
−16.1 to − 16.3 nn final state interaction in nd breakup [74,75][100,101]

The comparison of the binding energy of 3He and 3H offers
a way of examining charge symmetry breaking in which the
uncertainties due to nuclear structure are largely absent. An
additional advantage is that the short-range repulsion of the
unbroken NN interaction can be taken into account by the use
of “realistic” potentials. The conventional Coulomb force can
be included in Fadeev calculations to any desired accuracy.

In the three-nucleon system it is found that the conventional
Coulomb potential supplies about 85% of the difference in
binding energy (648 keV of the 764 observed) and the
remaining 15% can be reliably attributed to CSB beyond
what has been put in to the calculation so far. Wu, Ishikawa,
and Sasakawa [84] considered a number of small effects
(including magnetic interactions and the kinetic energy effect
of the np mass difference) and concluded that about 46 keV
of the 116 keV needed could be supplied by the sum of these
small effects leaving about 70 keV to be attributed to further
CSB interactions. Friar, Gibson, and Payne [85] found a very
similar result.

They estimate that a potential which represents the shift of
scattering lengths in the singlet S state of −17.5 to −18.6
fm (see Sec. III C for a discussion of the source of these
determinations) will also give the right value for the binding
energy difference. The ρ-ω CSB potential [80] provides a large
fraction of what is needed in their calculation. For the breaking
of charge independence they assumed a phenomenological
Woods-Saxon potential with a radius of 0.5 fm, a diffuseness
of 0.2 fm, and a 6 MeV depth. The calculation is complicated
by the fact that the absolute binding energy of 3H is not given
correctly so that an extrapolation must be made.

C. NN scattering states

Scattering states are sensitive to different aspects of the
breaking potentials than the bound states so, in principle
at least, additional information can be obtained by studying
scattering cross sections.

There is a wide range of values the 1S0 NN scattering length
that have been obtained experimentally (Table I), besides the
np singlet scattering length first measured long ago in np
scattering from ortho- and parahydrogen [86–88]. It was found
to be definitely negative leading to the conclusion that there
was no lightly bound state of two neutrons. The study of the
differences in these values has been the subject of many papers.

The pp scattering length, −17.3 ± 0.4 fm [74], is obtained
from the removal of the Coulomb interaction in pp scattering
[89], a procedure which depends on the strong interaction used
and the assumption of the form for the short-range Coulomb
potential. If this number is taken to represent the unbroken
value then it is being assumed that all of the breaking in

the proton-proton (pp) scattering is due to the conventional
Coulomb interaction.

Neutron-neutron nn scattering lengths with values around
−16.1 to − 16.3 fm obtained from the final state interaction
in nd breakup were considered to be the recommended values
at one time but now the value −18.5 ± 0.3 fm, mostly from the
π−d → nnγ reaction, is favored by the majority of physicists
working in this field. This preference may be because the
values from nd breakup have a large dispersion and those
from radiative pion absorption experiments are consistent
[102] but also because the values around −18 fm are in the
correct direction relative to app to explain the binding-energy
difference in the three-nucleon system.

The value extracted from the np interaction is far from
the group of the others. Since this value indicates a system
closer to being bound it would seem to require an additional
attractive potential (relative to the others) to move the value in
that direction.

The breaking expressed by the difference of the value
of the np scattering length compared with the average of
the nn and pp values is usually considered as a separate
effect (charge independence breaking, CIB) from the charge
symmetry breaking (the difference between ann and app). Since
only neutral pions can be exchanged in nn and pp scattering,
the fact that the charged pion mass is different from that of
the neutral pion does not enter into CSB. However, it does
contribute to the CIB. The replacement form for one-pion
exchange when the masses are different was worked out some
time ago [103,104] and has been claimed to provide much
[105] or even all [106] of the breaking needed. Cheung and
Machleidt [105] point out that Ericson and Miller [106] used
an approximation which, when corrected, reduces their value
to something comparable with other determinations (but see
Ref. [107]). All of these corrections were calculated without
form factors or with form factors with large regulating masses.
We find that this correction is sensitive to the value of the cutoff
parameter as will be discussed later in the text.

The role of two pion exchange in CIB has been the subject
of several studies, resulting in a wide range of values for the
contribution to the difference from the average nn and pp
values of the singlet np value. Some values are 0.65 fm [108],
0 [104], 0.16 fm [109], 0.18 fm [105], and 0.88 fm [106].

The pattern of these scattering lengths, which should all be
the same under SU(2) symmetry, would seem to require three
isospin-breaking interactions: one to connect the unbroken
value to the pp scattering, one to connect it to the nn scattering,
and a third to connect it to the singlet np scattering. One
might suppose that the isospin-pure value would lie somewhere
near the centroid of these values which would mean that the
correction for the pn case would be represented by an attractive
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potential while the nn scattering would be produced by a
repulsive potential. The pp potential would have to be more
repulsive than the nn case to give the right sign for the mirror
nuclei difference observed. The considerations in the following
sections naturally lead to three potentials which fulfill these
conditions.

D. A challenge to the meson-exchange theory of CSB

This picture seems to have changed when Goldman,
Henderson, and Thomas [110] calculated the effect of a
form factor in the derivation of the CSB ρ-ω potential in a
quark picture and found that the resulting potential is much
smaller than previously believed. While one might question
the quark model used, their paper was shortly followed by
one by Piekarowicz and Williams [111] using hadronic (NN )
intermediate states which found qualitatively the same result
and one by Hatsuda et al. [112] which found a similar result
using QCD sum rules. Soon after followed several more papers
which argued that these calculations were only examples of a
general rule that the contribution to CSB from ρ-ω mixing
should be negligible [113–117] (but see [118,119]). Thus, it
appears that a replacement theory is needed.

One such alternative theory was the treatment of the effect
of nucleon mass differences in two-pion exchange. The major
contributor is the crossed diagram for the exchange of two
charged pions with nucleon or � intermediate states. The
difference of the internal nucleon masses, compared with
the external masses, changes sign for nn compared with pp
scattering.

Coon and Niskanen [120] found that the difference in
scattering lengths could be understood with this effect in spite
of an earlier calculation which had found the effect to be
three to five times smaller. Li and Machleidt [109] treated the
same diagrams and also found that they could understand the
symmetry breaking. However, the two calculations are very
different. Coon and Niskanen [120] find that the diagram with
two nucleons in the intermediate state dominates while Li and
Machleidt [109] find that it is the diagram with one � which
is, by far, the largest. Machleidt and Mütter [121] investigated
the possibility of choosing between the heavy meson exchange
contribution and the two-pion exchange by studying the partial
waves with 	 > 0.

The paper by Coon and Niskanen [120] contains a summary
of the calculations of the two-pion exchange (before the
work of Li and Machleidt) and concludes that “This cannot
be considered a satisfactory theoretical situation.” These
calculations were done with regulating masses of the pion form
factor of the order of 1 GeV. Coon and Niskanen [120] show
that the scattering length difference is sensitive to the value
chosen. For the values of this mass that we use (see Sec. IV E)
the contribution of these diagrams would be very small.

IV. COULOMB EFFECTS DUE TO CLUSTERING

A. Intranucleon Coulomb

First we consider the Coulomb energy which arises from
the assembly of several charges. The total energy contained
in such a charge cloud depends very much on the details of

how the charges are clustered. An example is provided by the
nucleons themselves.

The proton has two valence quarks (u) with charge +2/3
and one (d) with charge −1/3. If they are equidistant from
each other with an average inverse distance of 〈 1

d
〉 then the

total Coulomb energy of the system is

e2

[
2

3
× 2

3
− 1

3
× 2

3
− 1

3
× 2

3

]〈
1

d

〉
= 0. (1)

For the neutron we have

e2

[
1

3
× 1

3
− 1

3
× 2

3
− 1

3
× 2

3

]〈
1

d

〉
= −1

3
e2

〈
1

d

〉
. (2)

This result is perhaps less surprising when one considers that
an alternate decomposition, n → p + π− (the pion cloud),
would give a negative Coulomb energy as well. There is no
reason, however, to believe that all of the distances between
quarks are the same, indeed one popular model has two of
the quarks combined in a diquark which has a small size. Of
course, this effect still has the wrong sign to explain the np
mass difference; invoking fundamental quark mass differences
appears to remain necessary.

This form of interior Coulomb effect has been known
for a long time and forms the basis for predictions of the
electromagnetic mass differences of Baryons and Mesons (see,
for example, [122–124] and [72] and references therein).

B. Coulomb effects interior to the confinement
range of two nucleons

When two nucleons are at small values of the center-
of-mass separation the six quarks intermixed give more
possibilities for correlations among them leading to additional
Coulomb-energy effects. We restrict this freedom by correlat-
ing two of the quarks in each nucleon to represent a diquark
(D). The view that we have is that when the two confinement
regions touch, and begin to overlap, the partons can move
around in the combined volumes. The initially unpaired quarks
will be able to pair up and form a diquark correlation. Of
course this will happen only a fraction of the time so that some
probability will be associated with the event. It is plausible
that the motion of these components will be governed by the
interaction with the gluons within the expanded confinement
region so that the pairing will be largely independent of the
initial state of the nucleons and the breaking will be state
independent. Of course, within a nucleus, states which differ
in having a different probability for the overlap of the nucleons
would show a state dependence.

To obtain an estimate of the scale of Coulomb energies for
a single diquark, consider using an exponential shape for the
density of the relative motion of the two quarks forming the
diquark. In this case we have

EC = 1.44
√

3n

〈r2〉1/29
≈ 0.277n

〈r2〉1/2
MeV, (3)

where 〈r2〉1/2
is the r.m.s. radius of the correlation density in fm

(from 0.25 to 1 fm from different models) and n = +4, + 1,
and −2 for uu, dd, and ud pairs.
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Any model for Coulomb energy due to quark clustering
in the two-nucleon system will have (at least) three physical
parameters:

(1) The overall size of the system, expressed here as the
diameter of a six quark bag. This parameter will control
the size of the Coulomb effect between the uncorrelated
quarks and the range of the resulting interaction.
Representing the combined system as a sphere is a
crude approximation, since, as the interaction proceeds,
one would expect a deformation of the individual
confinement regions as well as a possible “necking”
of the combined system.

(2) The range of the correlations. This (along with the elec-
tric charges) controls the Coulomb energy contained in
each correlated quark pair.

(3) The probability of forming a quark-quark correlation.
This can be expressed as the probability of the two-
quark state being found in a given configuration, given
that it is known to be found in a known volume.

The following model contains these three pieces of physics
in a simplified form. While the illustrative model to be
presented shortly does not assume point diquarks, it is useful
in order to get a qualitative picture to consider this example. In
this case one has four clusters of charge to deal with. The result
depends on which two quarks are taken to form the diquark.

A common assumption (which we shall follow) is to take
the unlike quarks in the nucleon to form the diquark (one u
and one d giving a charge +1/3 object). In this case one has
for the CC interaction between two neutrons

Cnn(r) = e2

[
1

3
× 1

3

〈
1

d

〉
DD

+ 1

3
× 1

3

〈
1

d

〉
qq

−
(

1

3
× 1

3
+ 1

3
× 1

3

)〈
1

d

〉
Dq

]

= e2

9

(〈
1

d

〉
DD

+
〈

1

d

〉
qq

− 2

〈
1

d

〉
Dq

)
(4)

where 〈 1
d
〉
DD

is the average inverse distance between the
diquarks in the two nucleons, 〈 1

d
〉
qq

is the average inverse
distance between the nonassociated quarks in each nucleon
(we will assume shortly that this pair of quarks also forms
a diquark but for the moment it is general), and 〈 1

d
〉
Dq

is
the average inverse distance between the odd quark in one
nucleon and the diquark in the other. There are of course other
Coulomb energies from quarks in the interior of each nucleon
but these do not depend on the distance between the centers of
mass of the two nucleons (or so we will assume) and does not
contribute to the crypto-Coulomb potential.

For a neutron and a proton we have

Cnp(r) = e2

[
1

3
× 1

3

〈
1

d

〉
DD

− 2

3
× 1

3

〈
1

d

〉
qq

+
(

1

3
× 2

3
− 1

3
× 1

3

)〈
1

d

〉
Dq

]
.

= e2

9

(〈
1

d

〉
DD

− 2

〈
1

d

〉
qq

+
〈

1

d

〉
Dq

)
(5)

and

Cpp(r) = e2

[
1

3
× 1

3

〈
1

d

〉
DD

+ 2

3
× 2

3

〈
1

d

〉
qq

+
(

1

3
× 2

3
+ 2

3
× 1

3

)〈
1

d

〉
Dq

]
= e2

9

(〈
1

d

〉
DD

+ 4

〈
1

d

〉
qq

+ 4

〈
1

d

〉
Dq

)
(6)

for the two proton case. Clearly the “ordinary” Coulomb po-
tential between two protons is included in this last expression
as well.

The dependence on r , the center-of-mass separation of the
nucleons, comes from the dependence of the average inverse
of the distance between quarks on it.

If one assumes that the odd quarks (in different nucleons)
become correlated so as to have a large inverse distance,
one can obtain the negative potential needed for the np
scattering length. A moderately strong effect is also due to
interaction in the DD system. However, it is the same for all
nucleon pairs so does not make a contribution to the breaking.
Neglecting 〈 1

d
〉
Dq

we see that Cnp(r) is attractive (making the
scattering length more negative than the unbroken case) while
both Cnn(r) and Cpp(r) are repulsive (making their scattering
lengths less negative). Of course it is well known that the
difference in the neutral and charged pion masses makes a
significant contribution to the CIB. This effect is discussed in
Sec. IV E.

C. Schematic model

For our purposes we do not need to know the wave function
of the quarks since the density is enough to calculate the
Coulomb energies. We consider a (modest) range of diquark
sizes and vary the strength of the correlation to fit the np singlet
scattering length. We make use of Ockham’s razor in the calcu-
lation by not discussing any feature that is not directly relevant.

We neglect any isospin breaking in the strong interaction;
all violations come from these crypto-Coulombian potential
energies. Thus, there is a single density which is the same for
any singlet NN pair, only the charges of the quarks are varied
according to the particular nucleon pair.

One can look ahead to anticipate the results of the
model qualitatively before making the calculation. Since the
interaction of the members of the intranucleon diquarks are all
the same and the interactions of the odd quark in one nucleon
with the members of the diquark in the other nucleon are
also all the same, the interactions can be grouped as shown in
Table II. This grouping leads us back to Eqs. 4, 5 and 6 with the
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TABLE II. Multiple of the factor 1/9 for the charges on individual
quarks. Quarks 1 and 2 are members of a diquark in one nucleon and
4 and 5 form a diquark in the other while 3 and 6 are unpaired in
the separated nucleons but are correlated when the nucleons overlap.
The model expectation value for the inverse distances is the same
within each group (between the lines) allowing the addition of the
coefficients, resulting in the same values as in Eqs. (4)–(6).

Quark pair pn nn pp

1–4 +4 +4 +4
1–5 −2 −2 −2
2–4 −2 −2 −2
2–5 +1 +1 +1

1–6 +4 −2 +4
2–6 −2 +1 −2
3–4 −2 −2 +4
3–5 +1 +1 −2

3–6 −2 +1 +4

interpretation of the average inverse distances corresponding
to the groups in Table II. Thus, we need only calculate the three
inverse distances, which are the same for all nucleon pairs, as
a function of r and use the combinations given in the table
to get an estimate of the CC contribution for each case. From
this the relative contributions can be calculated immediately.
We first note that the DD contribution (first term) is the same
for all nucleon pairs so leads to a shift away from the isospin
conserved value which is the same for all nucleon pairs and
hence is not visible in the differences among nucleon pairs that
are observed experimentally.

The Coulomb interaction between the odd quark in one
nucleon with the diquark in the other nucleon (third term in
the equations, group 2 in the table) is relatively small since
no correlation between them is assumed. Thus the interaction
between the two odd quarks will dominate. We can then
get an estimate of the relative size of the various breaking
potentials from the coefficients. The np potential will have
an attractive potential with weight 2 and the nn potential will
have a repulsive potential with weight 1 giving the breaking
between nn and np a weight of 3. The pp potential will
have a weight of 4 so that the breaking between the pp and
np systems will have a weight of 6 or twice the difference
between the pp and nn potentials. Of course the pion mass
difference also contributes to the CIB. The factor of 4 in
the pp case is less clean than assumed above because the
comparison is usually made with the “Coulomb corrected”
value of the pp scattering length and hence depends on the
form of the Coulomb potential used at short range.

Since both scalar and axial vector versions of diquarks have
been proposed, the nucleon wave function might consist of a
linear combination of the two. We don’t need to know that,
however. We only need to know that there is a quark-quark
correlation between the odd quarks in the two-nucleon system
and it needs to be the same for all nucleon pairs to have the
amplitude due to the strong interaction being invariant under
SU(2). The correlation which is assumed to form between
the two odd quarks need not have the same properties as the
correlation already present in the individual nucleons, although

we assume here that it does to reduce the number of parameters.
The correlation between the odd quarks is assumed to always
be the same whether they are like or unlike quarks (which
might seem to indicate that the correlation is spin 1). Without
that assumption a large breaking of isospin symmetry would
be present in the strong interaction.

We now present a representative model calculation based
on the naïve quark model considering only the valence quarks.
While this model is too crude to believe in any detail, one may
hope that the basic physics is contained in this simple form.
There are no dynamics in the model; it is represented by a
static quark density. The diquark in this case is embodied by
a correlation between two of the quarks in each nucleon and a
correlation representing the formation of a diquark consisting
of the combination of the remaining unpaired quarks in the
initial nucleons. We are considering the scattering of very low
energy nucleons so the time available for this formation is very
long and the combined two-nucleon system is considered as a
static object.

The density is expressed as a product of correlation
functions. The quarks are considered as distinguishable and
are numbered 1–6. Quarks 1–3 are in one nucleon and 4–6
are in the other. Confinement is represented by a limit of
the distance between pairs of quarks. More complicated (and
more realistic?) conditions could easily be included. The
confinement and correlation functions are the same for all
NN pairs and are as follows:

pairs 1-2 and 4-5 are confined and correlated,
pairs 1-3, 2-3, 4-6, 5-6 are confined but not correlated,
pair 3-6 (the odd quarks) are correlated but not confined,
all other quark pairs have no constraints.
The correlation is represented by a Jastrow style factor

Fc(d) = 1 + αe−βd (7)

where d is the distance between two quarks and α is defined
in terms of β by

α = 1
2 pβ3 (8)

thus adjusting the normalization so as to compensate for the
range of the correlation. It is the parameter p which is varied.
With this choice of normalization, p remains of the order of
1–5 fm3 as we will see later.

As discussed above we assume that the correlation between
“odd” (unpaired) quarks in different nucleons is the same
although they form a ud pair in the np case and a uu or
dd pair in the cases of like nucleons.

The confinement factor is

G(d) = 1

1 + e(d−c)/a
, (9)

where a is chosen to be very small (10−4 fm). The length c
represents the diameter of a spherical bag containing the six
quarks.

Now that the model nucleon density has been defined, the
breaking potential can be calculated by taking the expectation
value of the Coulomb energy over the density for fixed chosen
values of the center-of-mass distance (the usual adiabatic
approximation) which we have already remarked can be
reduced to the calculation of the average of three inverse
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distances. The calculation needed is an 18 dimensional (six
particles in three dimensions) integral over a highly correlated
integrand with the normalization to be determined. It is likely
that several judicial changes in integration variables would
permit a reduction in the number of dimensions (perhaps
even considerably) but we treat the integral as it stands with
the Metropolis algorithm, which could still be applied in a
more general case (say, with a truly three-body confinement
formula). This method also readily permits specifying the
distance between the centers of mass.

The Metropolis algorithm creates a list of configurations
(walkers) which consists of sets of the 18 coordinates giving
the possible positions of all of the particles. The frequency of
the appearance of a given configuration (or similar configura-
tions) gives the probability for that configuration. In order to
fix the distance between the centers of mass it is sufficient
to restrict the possible walkers to those with the desired
separation. To do this, the two nucleons are created with their
centers of mass located at the origin at each Metropolis step.
Then, formally, one nucleon is translated from the origin by the
center-of-mass separation specified for any given calculation.
In practice this translation can be combined with the evaluation
of the distances needed for the calculation of the walker
coordinates. The distances between quarks in the same nucleon
are given by ri − rj (i, j in the same nucleon) while the
distances between quarks in different nucleons are given by
r − ri + rj where r is the distance between the centers of
mass of the two nucleons, i is 1, 2, or 3: j is 4, 5, or 6
and the conditions r1 + r2 + r3 = 0 and r4 + r5 + r6 = 0 are
maintained throughout the calculation. The quark mass differ-
ences that would be needed to explain the np mass difference
are not included in the present calculation. Thus there is no
SU(2) breaking in the strong interaction in the model; all of
the breaking comes from the Coulomb interaction.

The calculation was carried out with a Metropolis step
size of 0.03 fm with 4000 walkers and 200 000 steps. The
calculation for one value of the relative distance between
centers of mass requires 25 min on a 2.5 GH CPU. With a four
core processor the calculation of the CC potential to 4.0 fm in
steps of 0.1 fm takes less than 5 h.

Figures 2–4 show some examples of the potentials obtained
with the model which result from the Coulomb interaction
between the correlated quark pairs. The pp potential in Fig. 2
includes the full Coulomb potential (CC + “ordinary”).

D. Completing the potential

In order to actually compare with the data, full potentials
must be available. It is assumed that there must be an isospin
pure strong-interaction potential which is the same for all
three singlet-nucleon pairs. The parameters of this potential
are determined by fitting the accurate pp data including the
full Coulomb (both ordinary and CC) potential for the pp case.

An isospin invariant potential given (in MeV) by a form
similar to the one assumed by Reid [10],

V0(r) = −C1 e−μ1x + C2 e−μ2x

μ0r
− 10.47

(e−μ0r − e−Mr )

μ0r
,

(10)

FIG. 2. Variation with parameters of the model for the full pp

Coulomb potential.

is employed for the nn and pp cases. The values μ1 = 4 fm−1

and μ2 = 7 fm−1 were used by Reid [10] and we have kept
the same ranges except where specified otherwise. Here x =
0.6945r , μ0 = 0.6840 is the neutral pion mass in fm−1, while
M is the mass governing the square of the pion-nucleon off-
shell form factor (see discussion below). For the np interaction
where charged pion exchange contributes, the third term is

FIG. 3. Variation with parameters of the model for the nn crypto-
Coulomb potential.
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FIG. 4. Variation with parameters of the model for the np crypto-
Coulomb potential.

replaced by [103,104]

10.47

[
(e−μ0r − e−Mr )

μ0r
− 2

(
μ+
μ0

)2 (e−μ+r − e−Mr )

μ0r

]
, (11)

where μ+ is the mass of the charged pion.

E. Contribution of the difference of pion masses
to the breaking of charge independence

The difference in mass between the charged and neutral
pions has long been recognized [103,104] as an important
contributor to the breaking of charge independence. Coon and
Scadron [104] found that mass differences in the exchange of
heavy mesons and two-pion exchange generated only small
breaking effects. We find that the degree of breaking from
the pion mass difference depends rather sensitively on the
off-shell form factor. The form factor lowers the strength of
the one-pion-exchange (OPE) potential at short distances and
since we require that the total potential must be such that the pp
scattering data are correctly fit, the fraction of OPE potential
becomes less and the breaking due to the pion mass difference
along with it.

The correction for the finite size of the pion-nucleon system
is often expressed as a vertex function. If this vertex function
is denoted by v(q) then the modified one-pion-exchange
potential will be given by

Vπ (r) = f 2

4π

∫ ∞

0
q2dq

j0(qr)

q2 + μ2
v2(q). (12)

The expressions Eqs. (10) and (11) above result from taking

v2(q) = M2 − μ2

q2 + M2
. (13)

To compare with values of M taken from the literature
some correspondence must be made. In no case is an exact

comparison possible. Often one compares form factors by
making an expansion for small q and matching the coefficients
of q2. While it is not clear that this is the proper procedure,
since it corresponds to comparing at large r and we are
interested in the behavior at small r , we will often follow
that method as well.

The pion form factor reduces the strength of the potential
at small values of r . For the form mentioned above,

1

μ2 + q2

M2 − μ2

M2 + q2
→ π

2

(e−μr − e−Mr )

r
. (14)

The proper value of the pion-nucleon form factor has been
much debated over the years ([125–131]. A survey of this early
literature leads us to values of M in the range of 1.4–2.8 fm−1.

Recently there has been a great deal of interest in the devel-
opment of an effective field theory in which the dependence
on the form factor range would disappear at the cost of a
renormalization order by order. While this program has met
with partial success [132], an observable dependence on the
range remains.

In a recent high-quality fit to the NN phase shifts,
Entem and Machleidt [133] used a Gaussian form factor
with �g = 0.5 GeV. When using potentials of this type to
construct the equation of state of neutron matter [134,135],
Gaussian form factors with a range for �g of 450 MeV/c
� �g � 650 MeV/c were used. Epelbaum, Glockle, and
Meissner used �g around 600 Mev/c in N3LO calculations
[136]. Epelbaum and Meissner suggest [137] that �g ≈ 3 fm−1

is the value that should be used. Values of �g in the same range
appear optimal in the strange sector [138–140] as well.

The form factor is often regarded as the Fourier transform
of the density of elementary scattering centers in a composite
target. With the assumption of a Gaussian density the form
factor becomes

S(q) = e−〈r2〉q2/6 = e−q2/�2
g . (15)

Using 〈r2〉1/2 = 0.86 fm (a common value for the charge radius
of the proton) leads to �g = 562 MeV/c.

To attempt to match these Gaussian form factors to the one
we have used, one can consider several possibilities. From the
expansions for small q one gets M = �g/

√
2. One might also

choose to make the two form factors (or their squares) equal
at some momentum scale q0, i.e.,

1

1 + q2
0/M2

= e−2q2
0 /�2

g . (16)

Choosing q0 = M we find M/�g = √
ln 2/2 ≈ 0.588 leading

to M = 1.79 fm−1 for �g = 600 MeV/c.
We remind the reader that there exists in the literature a

least one example [141] where it was pointed out [142] that
leaving out the pion-nucleon form factor in the calculation
of the meson-exchange-current contribution to elastic electron
scattering led to a wrong prediction (by a factor of 30) as
verified by experiment.

Thomas and Holinde [143] pointed out that the apparent
discrepancy between the charged and neutral πNN coupling
constants is resolved if the mass in a monopole for each
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vertex is in the range 500–800 MeV (corresponding to M ≈
350–560 MeV or ≈1.75–2.80 fm−1.

In summary, the values quoted here from the literature lie
mainly in the range M = 260–500 MeV/c (1.4–2.8 fm−1). We
adopt a value of M = 2 fm−1 as representative of these limits.

V. EXTRACTING THE “COULOMB CORRECTED” pp
PHASE SHIFTS

We now give the method used to extract the pure pp singlet
S-wave phase shifts from the data. By adding the closed form
for the Rutherford amplitude,

fR(θ ) = − η

2k sin2 θ
2

ei[2σ0−η ln sin2 (θ/2)], (17)

and subtracting the corresponding partial-wave expansion, we
can write the full amplitude as

f (θ ) = fR(θ ) + 1

2ik

∑
	

(2	 + 1)P	(cos θ )(e2iδ	 − e2iσ	 )

(18)

= fR(θ ) + 1

2ik

∑
	

(2	 + 1)P	(cos θ )e2iσ	 (e2iδe
	 − 1),

(19)

where δ	 in Eq. (18) is the full phase shift obtained by matching
the solution of the Schrödinger equation with the strong plus
CC and standard Coulomb potential included. The σ	 are the
“Coulomb phase shifts” which result from the solution of the
Schrödinger equation with a point Coulomb potential. Since
for large 	, δ	 → σ	, this series converges.

In Eq. (19) the modified phase shifts δe
	 (called the “electric

phase shifts” by Heller [144]),

δe
	 ≡ δ	 − σ	. (20)

go to zero for large 	 and at zero energy where both δ	 and σ	

diverge.
We are interested in the phase shifts δ0

	 , given by the strong
interaction alone, and δcc

	 , which results from the strong plus
CC potential. It is the latter which should be used in the
calculation of nuclear properties and the former which are to be
considered as “isospin symmetric” results. In the limit that the
standard Coulomb interaction goes to zero (so that δe

	 → δcc
	 ),

this simple addition of phase shifts might be considered as
the first order correction to the phase shift obtained with
only the strong + CC interaction for the standard Coulomb
effect, although δe

	 clearly contains a further dependence on
the standard Coulomb interactions. In order to calculate this
additional dependence, models for the strong interaction are
used. This correction is sometimes called the “inner Coulomb
correction” in pion-nucleon scattering but we will call it the
“electric correction” to avoid possible confusion with the
CC effect. It only takes into account the Coulomb explicitly
included in the Schrödinger equation, of course. Any hidden
Coulomb effect (such as the crypto-Coulomb that we consider
here) would not figure in this correction; it would appear as
being part of the strong interaction.

FIG. 5. Typical phase shift fit with the Reid-like potential (curve)
(including the CC potential) to the values from Ref. [89] (solid dots).
This fit corresponds to the solid line in Fig. 2. The difference between
the dash-dot and solid curves reflects the importance of the electric
correction. The fitted model has p = 3 fm3 and β = 4 fm−1.

The quantity δe
	 can be obtained directly from the pp data

without recourse to any model [89]. For this reason it makes a
good contact point for fitting models to the data. The precision
of the data is among the best in nuclear physics: The low-
energy points have uncertainties below 1%, most less that
0.1%, while those above 5 MeV have uncertainties of the
order of 0.2–1%. We have added (in quadrature) uncertainties
of 0.1% to the quoted values to take into consideration the
crudeness of our model. We find that the data points are fit to
within the order of 0.1% without difficulty (see Fig. 5).

Turning off the entire Coulomb potential, including the
CC part, we obtain δ0

0 and from it, the a0 (isospin unbroken)
scattering length. Keeping only the strong plus pp CC potential
we obtain the pp version of δ0 and from it the value of app is
obtained. By adding the attractive CC np potential (see Fig. 4)
to V0, anp is obtained and with the repulsive nn potential
(Fig. 3) ann is found. This procedure was followed for the case
of no pion mass difference and the physical difference between
charged and neutral pion masses. The entire process was
carried out for three different sizes of the diquark correlation
range as expressed by β and a sampling of values of the
parameter p.

Figure 5 shows a fit (solid line) to the data. The dash-
dot line shows the results of a calculation using the strong
+ CC potential only. One sees that above 15 MeV the electric
correction is very small, one would have obtained nearly the
same values of δcc

0 from a direct comparison with the data for
δe

0. The result of the effective range formula

k cot δ0 = −1

a
+ 1

2
r0k

2 (21)

is also given (dashed line) and it is seen that the representation
is very good. For a = −16.2 fm and r0 = 2.80 fm, the first
term contributes 0.062 fm−1 and (at 15 MeV) the second gives
0.25 fm−1 so that the effective range term dominates (�80%)
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FIG. 6. Scattering length vs the strength parameter p for β =
8 fm−1. The notation �m = 0 means that the difference in pion
masses is not taken into account; the neutral pion mass is used in
all one-pion exchange calculations. The notation �m means that the
charged and neutral pion masses are used as in Eq. (11).

at these energies and the fit is much more sensitive to r0 than
to a. Of course, at the very low energies the reverse is true.

VI. RESULTS

A. Relationship among the scattering amplitudes

The curves in Figs. 6–8 show how the amplitudes are related
to each other and were obtained by the following procedure:
The experimental pp phase shifts, δe

	 taken from Ref. [89]
were fit using an isospin invariant strong potential [including
one-pion exchange V0(r)] of Eq. (10) plus the full Coulomb
potential (some examples are shown in Fig. 2) generated by
the model for a set of values of the parameter p. As p is varied
the coefficients C1 and C2 must also change in such a way as
to keep V0(r) plus the CC potential the same so as to fit the
data. When the ordinary Coulomb potential VC(r) is removed,
as in the standard procedure, the resulting app calculated from

FIG. 7. Scattering length vs the strength parameter p for β =
12 fm−1. See Fig. 6 for notation.

FIG. 8. Scattering length vs the strength parameter p for
β = 4 fm−1. See Fig. 6 for notation.

this combined potential will be the same, or very nearly so.
This potential would be considered as the “strong potential” if
one were not aware of the presence of the CC potential. This
compensation of variation of V0(r) and the CC potential it seen
to be very good since the values of app are found to be (very
nearly) independent of p at −16.2 fm.

As p varies, however, C1 and C2 do change so that when
V0(r) alone is used to calculate the pure isospin conserving
scattering length a0 does change, as do ann and anp when
calculated with their respective CC potentials.

To find the nn scattering length ann in these figures follow
the short-dashed curve until it crosses the experimental value
of anp (lower horizontal dotted line) to obtain the value of p
appropriate. Then the value of ann can be read off at that value
of p, for example in Fig. 6, p = 1.02 fm3, ann = −18.1 fm.

B. Charge-symmetry-breaking potentials

The range of the correlation rcorr = √
12/β is 0.867 fm

for β = 4 fm−1, 0.433 fm for β = 8 fm−1, and 0.289 fm for
β = 12 fm−1, compared with 0.27 fm from Bloch et al. [7],
0.32 fm from Carlson, Kogut, and Pandharipande [9], 0.21 fm
from Sisodiya et al. [145], and 0.24 fm from Keiner [28].

While it may at first appear that the order of the scattering
lengths has changed since the nn scattering length is now
less negative than the unbroken one, the effect is the same
as before since the CC potential for the pp system is more
repulsive than that of the nn system so that there is an apparent
stronger Coulomb effect in (say) the three-body system. One
can take directly the difference of these potentials to find a
charge symmetry breaking potential which could be used in
the same way as the meson mixing potentials [80].

In general these potentials could be used directly in any
calculation of nuclear properties. However, a charge symmetry
breaking potential to be used in the same spirit as the ρ-ω
potential discussed earlier in a perturbation calculation can also
be obtained by removing the “ordinary” Coulomb potential
(since the desired potential is to be beyond the standard
Coulomb calculation) and then removing the interior repulsive
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FIG. 9. Neutron-neutron and pp potentials resulting from the
calculations described in the text. The pp case includes the normal
Coulomb interaction as well as the hidden part. The dotted line shows
the potential from a uniformly charged sphere of radius 1.56 fm,
VC(r). In order to find the CC part the differences in these curves is
taken.

potential of the nn case. Figures 9–11 show this progression
and selected analytical fits to the breaking potentials are given
in the Appendix.

FIG. 10. Crypto-Coulomb potentials with the potential from a
uniformly charged sphere of radius 1.56 fm subtracted from the pp

interior potential.

FIG. 11. CC charge symmetry breaking potential calculated by
subtracting the uniformly charged potential and the nn interior
Coulomb potential from the pp interior potential (solid line). The
dotted line shows the shape of a one-pion-exchange potential with
arbitrary normalization. The dash-dot line shows the first term of
the ρ − ω CSB potential [Eq. (8) of Ref. [80] with their parameter
β = 0].

C. 3He − 3H mass difference

Several cases have been calculated with our variational
wave function introduced in Ref. [146].

In order to calculate with a realistic wave function we use a
trial wave function which results from a variational calculation
for 3H. Since the true wave function must be translationally
invariant it can depend only on the relative coordinates, rij =
ri − rj .

We choose the basic form

ψ(r1,r2,r3) = f (r12)f (r13)f (r23), (22)

where rij = |rij | and the function, f (r) is arbitrary at this
point. It will be chosen with a number of parameters to be
selected to minimize the energy.

We originally took for the form of f ,

f (r) = (1 − e−c′r )
e−ar

b + r
; (23)

the first factor vanishes at the origin and provides the effect
of a (very mild) repulsive correlation. The rest of the function
has the proper asymptotic form. For the relatively long-range
isospin breaking potentials that we have used before, the
very short-range region was not crucial but with the full NN
potential, with its strong repulsion, we need to model the
short-range exclusion region of the factors. To this end we
include an additional factor in f (r) which is

e−αn/rn

, (24)

where both n and αn can be treated as variational parameters.
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TABLE III. Coulomb differences in the three-nucleon system. The 46 keV in the last line comes from the estimate of several small effects
by Wu, Ishikawa, and Sasakawa [84] and Friar, Gibson, and Payne [85].

β = 4 fm−1 β = 8 fm−1 β = 12 fm−1 Experimental value

E3H (MeV) (with crypto-Coulomb) 8.5034 8.4966 8.4999 8.4818
E3H (MeV) (pure isospin) 8.5475 8.5452 8.5490
Difference (keV) 44.1 48.6 49.1
E3He (MeV) (with crypto-Coulomb) 7.7869 7.7760 7.7770 7.7181
E3He (MeV) (charged sphere) 7.8810 7.8787 7.8825
Difference (keV) 99.4 102.7 105.5
Difference between 3He and 3H (keV) 716.5 720.1 720.6
Including 46 keV 762.5 766.1 766.6 763.8

The np interaction was modified so as to obtain approxi-
mately the correct binding energy for 3H by decreasing the
repulsive core by 38%. Since we have set the parameters
of the wave function to give the correct three-nucleon r.m.s.
radius (we deem the range over which the potential is tested
to be important) this choice of an np potential to give the
correct binding energy is only cosmetic. The mass difference
in the three-nucleon system could be obtained directly by the
expectation value of the breaking CC potentials.

See Table III for a summary of the results. The difference
in energy between the conventional Coulomb and the crypto-
Coulomb for 3He is about 100 keV. Of course the Triton also
has an effect from the nn repulsion which, overall gives about
50 keV less binding with the CC so the difference beyond
the conventional Coulomb is near 50 keV which is about what
Wu, Ishikawa, and Sasakawa [84] and Friar, Gibson, and Payne
[85] find is needed after a number of small effects have been
taken into account.

VII. EXTENSION TO THE STRANGE SECTOR

Similar considerations can be applied to the �n and �p
systems. In the diquark picture the � consists of quarks ud
coupled to I = 0 with charge +1/3 and the strange quark with
charge −1/3. Thus it is electrically the same as the neutron. If
we were to assume that the masses and the interactions among
the quarks were all the same, SU(3), then we could directly use
the nn and np crypto-Coulomb potentials obtained previously.

Table IV shows the results of several variations. The first
line shows the result of removing the one-pion-exchange
potential. We see already that the right order of magnitude
is obtained. Then, by reducing the strength of the remaining
potential in three different ways one can match the NSC97f
�p result of Rijken et al. [147].

Rijken et al. [147] give six fits to hyperon-nucleon scat-
tering data of equivalent quality labeled a–f . The solution
f is emphasized in the paper and their G-matrix calculation
of hyperonic systems also favors it. Miyagawa et al. [150]
give limits on the singlet and triplet scattering and only the f
solution falls within these limits. In Ref. [151] the singlet and
triplet scattering lengths were extracted from the results of a
feasibility experiment of radiative kaon capture on deuterium.
While the limits on the singlet scattering length are too
large (−0.15 → −5.0 fm) for a comparison to be useful, the
triplet determination (−1.3 → −2.65 fm) does provide some

constraint and is in agreement with the triplet version (not
shown) of all of the potentials corresponding to the scattering
parameters shown in the last three lines of Table IV. The
principal isospin breaking mechanism used in the potentials of
Rijken et al. [147] (and others) is �� mixing, first introduced
by Dalitz and von Hippel (DvH) [152].

The potential NSC89 [149] deserves further discussion. It
has a larger �� mixing in the few-baryon system and so lends
itself to the understanding of the anomalous π+ weak decay
of 4

�He [153]. However, perhaps partly due to the fact that it
gives twice the excitation energy of the 1+ state in 4

�He than
that observed, it seems to have been rejected by the community
and it has been said that “NSC89 is definitely not a realistic
YN potential for use in hypernuclei [154].”

The potential ESC08c comes [148,155,156] from a set of
potentials which use the forbidden state concept to implement
the Pauli blocking at short distances and includes explicit two-
pion exchange.

We see that Nijmegen breaking potentials are more attrac-
tive for the �n interaction than for the �p interaction in the
singlet channel. The opposite is true for the triplet channel.
This behavior is expected for the �� mixing mechanism
for the breaking as by the formula given by Gal [157]. Gal
gives [140,157] a simple relation of the breaking potential
to the strong interaction potential causing the transition

TABLE IV. SU(3) predictions for singlet �N scattering pa-
rameters. The calculations were made with NN potentials which
give anp = −23.54 fm, ann = −18.09 fm, r0(np) = 2.69 fm, and
r0(nn) = 2.82 fm. The last two lines are from fits by the Nijmegen
group. NSC97f is from Rijken et al. [147], ESC08c is from Nagels
et al. [148], and NSC89 is from Maessen et al. [149]. Our calculations
are for p = 1.0 fm3 and β = 8.0 fm−1.

Case �p a �n a �p r0 �n r0 % diff a

fm fm fm fm

OPE = 0 −4.17 −3.89 2.88 2.91 6.7
C1 × 0.9535 −2.51 −2.36 3.46 3.51 6.0
C2 × 1.0785 −2.51 −2.37 3.53 3.58 5.5
V × 0.882 −2.51 −2.37 3.33 3.37 5.5

NSC97f −2.51 −2.68 3.03 3.07 −6.8
ESC08c −2.46 −2.62 3.14 3.17 −6.5
NSC89 −2.73 −2.86 2.87 2.91 −4.7
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TABLE V. Isospin breaking energy differences as a function of cutoff parameter taken from Gazda and Gal [140] (columns 2–5) compared
with measurements (columns a–c). The experimental energy breaking difference between the ground and first excited state (column c) is taken
directly from the measurements of the difference in the γ energies [158]. See the text for references to the data.

�g (MeV) 550 600 650 700 Expt. a Expt. b Expt. c

�1+ = B1+(4
�He) − B1+(4

�H) −172 −193 −228 −223 +30 ± 50 −50 ± 90

�0+ = B0+(4
�He) − B0+(4

�H) 30 136 244 294 350 ± 50 270 ± 130

�0+ − �1+ 202 329 492 517 316 ± 20

� → �. The interaction has a major component of one-pion
exchange (OPE).

The OPE potential consists of a central (spin-spin) and
a tensor term. If only the spin-spin term were present, the
singlet to triplet ratio of the breaking potentials would be
−3 : 1. The tensor part contributes (only in the triplet state)
and alters this ratio. For the Nijmegen triplet scattering lengths
(not shown) we estimate that the ratio of the corresponding
breaking potentials is about −1 : 1.

The percentage breaking observed for the triplet state is
about the same as the singlet but in the same direction as
the CC effect. Assuming that both DvH and CC potentials
contribute, we would expect that they tend to cancel in the
singlet and add constructively in the triplet. This would lead
to a large breaking (≈12%) in the triplet state, a fortunate
circumstance since the �n triplet appears [151] to be easier to
extract from data than the singlet.

As in the nonstrange sector, there are tests available in
mirror hypernuclei, the most common being the ground (0+)
and first excited states (1+) of 4

�H and 4
�He.

The experimental data come from several sources which
are enumerated in Yamamoto et al. [158]. The ground-state
binding energies were measured with an emulsion technique
by Jurić et al. [159] B0+(4

�He) = 2.39 ± 0.03 MeV and
B0+(4

�H) = 2.04 ± 0.04 MeV. A modern measurement was
presented by Esser et al. [160], B0+(4

�H) = 2.12 ± 0.09 MeV.
The binding energy of the 1+ excited state is obtained by
adding the energy difference obtained from the measured
energy of the γ from the transition. Yamamoto et al. [158]
(aside from their own measurement of the transition energy
in 4

�He = 1.406 ± 0.003) obtained the γ energy for 4
�H =

1.09 ± 0.02 MeV from the average of three experiments
[161–163]. The breaking data are summarized in Table V.
Experimental column a is calculated using the ground-state
measurements of Jurić et al. [159] while column b substitutes
the measurement of Esser et al. [160] for B0+(4

�H). Column c
shows the breaking in the excitation energy from Yamamoto
et al. [158].

Nogga et al. [164] addressed the challenges of choosing the
“best” hyperon-nucleon interaction by investigating the set of
potentials mentioned above [147]. They found that NSC97f
underbinds 3

�H (but by considerably less than the rest of the 97
set) while NSC89 slightly overbinds the three-baryon system.
Mirror-nuclei tests are not available in this system.

For the difference in energy between the ground state and
the 1+ excited state in the four-body system they found that
NSC97f gives the correct value although the absolute binding
is too small. No potential was found to give the correct values
for all observables.

They also studied the the contribution of the spin to the
total angular momentum and found that the ground state is
about 90% S = 0 and the first excited state is 96% S = 1.
If one were to take the like-nucleon pair to be coupled to
spin zero in a pure s-wave model, the �-odd nucleon pair
would determine the spin of the total system. In this case the
ground state would be pure �-N singlet and the excited state
pure triplet. The percentages found by Nogga et al. [164] are
reasonably consistent with this simple picture.

Nogga et al. [164] also calculated the effect of the CSB
on the difference in separation energies of the 4

�H and 4
�He

systems. They found that NSC97e gives only 70 keV of the
experimental value of 270–350 keV. On the other hand NSC89
gives essentially all that is needed.

We see that our results show a more attractive �p than �n
potential reflected in the fact that the scattering length is more
negative. This is in the direction needed since the separation
energy of the �-3He system (2.39), Jurić et al. [159] (see also
Esser et al. [160]), is greater than that of the �-3H system from
Jurić et al. [159] (2.04 MeV) or Esser et al. [160] (2.12 MeV).
The singlet scattering lengths of Rijken et al. [147] show the
opposite behavior. The crypto-Coulomb attraction in the �p
system and the repulsion in the �n system can be expected to
be about the same in the triplet as the singlet since their origin
is the correlation of the odd quarks of different or same charge.

Since the resulting charge symmetry breaking potential

C�N (r) ≈ Cnp(r) − Cnn(r) (25)

is of the order of 300–400 keV (see Fig. 12) and the difference
of the separation energies is 270–350 keV, it seems that one
is bound to find a significant fraction of this difference from

FIG. 12. Three examples of �N breaking potentials from Eq. (25).
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this source. From general considerations in the present model
we see that CSB in the strange sector (by the measure of
the separation energies) corresponds to CIB in the nonstrange
sector.

An important contribution to the understanding of CSB
in the four-body system was recently reported by Gazda and
Gal [140]. They present the results of no-core shell model
calculations of 4

�He and 4
�H for the ground state (0+) and first

excited state (1+). They use a CSB interaction from the DvH
[152] mechanism which has (largely) pion coupling to mix
the isospin-0 � with the isospin-1 �0. They use YN potentials
from Polinder et al. [138] calculated with effective field theory
to leading order and available for a range of values of cutoff
mass. They find a strong dependence on the cutoff mass (see
Table V). Restricting ourselves to the lower values of �g we
see that the breaking in the ground state is compatible with the
70 keV found by Nogga et al. [164], much smaller than the
experimental value of 270–350 keV.

The breaking in the difference of the energies is equivalent
to the breaking in the directly observed γ rays [158]. The
breaking in the excited state is calculated [140] to be around
−200 keV whereas the experimental value is around zero. A
constant shift of the breaking in both states (0+ and 1+) of
≈200 keV would give agreement with data. An energy shift of
200 keV is about the result expected from the CC mechanism
presented here since, from arguments given earlier, we expect
little or no spin dependence for the CC mechanism.

Thus the mixing (DvH) mechanism gives attraction for the
ground state and repulsion for the excited state. This is perhaps
understandable since the spin-spin coupling which is providing
the mixing changes sign between singlet and triplet states in
the usual manner.

It may be useful to discuss the possibly confusing result that
the maximum breaking in the scattering lengths occurs in the
triplet (1+) state while the maximum breaking in the bound
state is in the singlet (0+) state. The CC effect is attractive
for the �p interaction and independent of spin so it increases
the binding in 4

�He (relative to 4
�H) in both states. It was

pointed out by Gal [157] that the two like nucleons in the
three-body core are paired to spin zero, hence do not interact
with the mixing pion exchange leaving only the odd nucleon
to cause the mixing. Since, with the DvH mechanism, the �n
breaking interaction is more attractive in the singlet state, its
interaction with the single neutron in the nucleon core leads
to an attractive interaction in the 4

�He case, and it adds to the
CC potential constructively. Since the DvH potential changes
sign for the triplet case, the two potentials have opposite signs,
leading to a smaller breaking.

It may be useful to use the breaking in the energy of the
γ between the two states as a constraint [140] since it has the
smallest experimental uncertainty. Doing that, in Table V we
would choose �g = 600 MeV to compare. Adding 200 keV
to the two bindings leads to rough agreement with the data.

There is one caveat in the comparison with the results of
Gazda and Gal [140]. Their calculation was done with the fit to
the leading order effective field theory [138]. Doing the same
calculation with the next to leading order as input [139] leads
to results inconsistent with data [140].

VIII. DISCUSSION

The general idea presented is that quark clustering will lead
to isospin breaking through the Coulomb interaction. We have
attempted to present this notion with a very simple illustrative
model based solely on valence quarks. Since the breaking
interaction arises from the Coulomb potential, it addresses
CSB and CIB on an equal footing. Of course, the breaking
due to the pion mass difference contributes to the CIB as well
although we find that its influence is considerably reduced due
to form factors.

If it seems to the reader that we are attacking the problem
of the low energy NN interaction by starting in the middle, it
is because we are. Our objective is to show that it is possible to
establish a link between the quark rearrangement, which must
occur in any complete theory of NN scattering, and isospin
breaking. We have attempted to do so by considering a simple
model, in which we included what we believe to be the basic
physics of the system. Since only the quark density is needed
to calculate the Coulomb energy, many of the details of the
wave function are unnecessary, allowing progress to be made
with a minimum of assumptions.

The meson-nucleon form factor range plays a significant
role in the understanding of CSB and CIB. The value of
the regulating mass that we have adopted may appear small
to some but we believe we have justified it with a number
of references. It is interesting to note that, in the effective
field theory approach, both in the nonstrange [133–135] and
strange sectors [138,139] the minimum χ2 is obtained for
values of �g around 500–600 MeV/c, in general agreement
with previous determinations of the cutoff cited in Sec. IV D
and also compatible with the value derived from the size of
the nucleon in the same section.

The value that we obtained for the magnitude of the
“Coulomb corrected” pp scattering length (−16.2 fm) is
smaller than the accepted one (−17.3 ± 0.4 fm) although the
error on the latter is perhaps optimistic. Our value does not
depend on the CC potential (removing it in the fit and the cal-
culation of the “strong” calculation gives essentially the same
value), nor does it depend on the ranges μ1 and μ2 in Eqs. (10)
and (11) within limits. The difference may very well come
from the fact that we fit a different data set than others. One
sensitivity that was observed is to the short-range Coulomb.
For example, the use of a point Coulomb potential would lead
to a pp scattering length of −16.7 fm. In any case, the differ-
ence seems to represent a general shift since the nn scattering
length we obtain (−18.0 fm−1) is also less negative than the
measured value such that the breaking, often expressed as

|ann| − |app|, (26)

is 1.8 fm compared with 1.6 ± 0.6 fm [121].
Up until this point we have said little about the spin of the

diquark; it does not enter directly in the calculation. There is
an implicit dependence, however. Since we assume that the
odd quarks always couple to form the same correlation then,
assuming an energy determined by the spin, since the like
quarks must couple to spin 1, the ud quarks would need to
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be in a spin 1 state as well, the spin 0 and spin 1 diquarks
would need to have the same interaction, or there could be
some mixture of the two diquarks.

A number of papers have touched on this topic. Aside
from those mentioned earlier, Close and Thomas [165] studied
quark distributions with an axial vector diquark heavier than
the scalar diquark. Mineo et al. [19] consider a mixture and
conclude that the axial vector diquark should have a weight of
2–10%. Cloët et al. [166] find the inclusion of the axial vector
diquark important for the nucleon electromagnetic form factors
and the quark flavor distribution. Nagata and Hosaka [167]
find the axial vector diquark to be important for understanding
the nucleon charge form factors. Finally, and perhaps most
important, is the work of Cloët and Miller [63] (already
mentioned in Sec. II) where the inclusion of the axial vector
diquark leads to a possible understanding of the proton-spin
puzzle. We see that recent work has indicated that the axial
vector diquark may play a crucial role in the structure of the
nucleon.

There would seem to be a fundamental difficulty with the
assumption of only a scalar diquark for NN scattering. If the
ud quarks are assumed to form a scalar diquark then, in the nn
and pp scattering, the two “odd” quarks must form a spin one
object in the symmetric quark model (the axial diquark). One
need not assume any clustering for this argument. Hence, the
two nucleon system, which must be in a singlet state, cannot
be formed. Thus, nucleons built up from a pure scalar diquark
cannot generate the low-energy S-wave scattering. If the ud
pair always is a combination of scalar and axial vector diquarks
then a coupling to total spin zero is possible for all three NN
pairs.

We finish with some general comments:

(1) The CC model for isospin symmetry breaking depends
only on the density of the quarks and not (directly
at least) on their wave functions or spin. For this
reason, obtaining the correct breaking is not a strong
test of diquark models, although it provides a testing
mechanism.

(2) The non-zero-energy amplitude might also be calcu-
lated and may give information about the rearrange-
ment reaction. This might come about through the study
of the breaking in the effective range, r0, for example. A
better understanding of the nD breakup reaction could
provide crucial input in this regard.

(3) Since models of the type we considered here are based
only on the charges of the quarks, they are readily
extensible to other sectors. The strange sector appears
to be especially useful in this regard. Taking over
results from the nonstrange sector the CC concept

is capable providing an understanding of the recent
result of Gazda and Gal [140] of a state-independent
contribution to the breaking of the order of 200–
300 keV. Of course other models may give a similar
prediction but we know of no other at the present time.
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APPENDIX: ANALYTIC FITS

In each case the parameters C1 and C2 are those in Eq. (10),
M = 2 fm−1. For reference, the original singlet S-wave Reid
[10] soft-core potential had C1 = −1650.6 MeV and C2 =
6484.2 MeV,

β = 12 fm−1, p = 0.58 fm3,

VCSB (r) = Cpp(r) − VC(r) − Cnn(r)

= 0.35

(1 + e(r−0.5)/1.2)
+ 0.07e−(r−1.75)2/0.12

− 0.019 r e−10(r−3.5)2+0.04 e−(r−1.8)2/0.6, (A1)

Cnn(r) = 0.21 e−r2/2.6 + 0.011 r e−(r−1.8)2/0.6. (A2)

Parameters for V0(r): C1 = 1757.87 MeV, C2 =
7075.00 MeV,

β = 8 fm−1, p = 1.0 fm3,

VCSB (r) = Cpp(r) − VC(r) − Cnn(r) = 0.19

(1 + e4(r−2.65))

+ 0.023 e−12.5 (r−1.78)2 − 0.019 r e−10(r−0.95)2
,

(A3)

Cnn(r) = 0.226 e−r2/2.6 + 0.011 r e−(r−1.8)2/0.6. (A4)

Parameters for V0(r): C1 = 1792.88 MeV, C2 =
7150.00 MeV,

β = 4 fm−1, p = 3.0 fm3,

VCSB (r) = Cpp(r) − VC(r) − Cnn(r)

= 0.175 e−(r−1.93)2/0.75 − 0.03 e−1.2r , (A5)

Cnn(r) = 0.17 e−(r/1.2)2 + 0.05 e(r−1.8)2
. (A6)

Parameters for V0(r): C1 = 1809.57 MeV, C2 =
7400.00 MeV.
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