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Finite-size effects on the hadron-quark phase transition in neutron stars
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We study the finite-size effects, like the surface and Coulomb energies, on the hadron-quark mixed phase in
neutron stars. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing
the total energy including the surface and Coulomb contributions, which are different from the Gibbs conditions
without finite-size effects. We employ the relativistic mean-field model to describe the hadronic phase, while
the Nambu-Jona-Lasinio model with vector interactions is used for the quark phase. It is found that finite-size
effects can significantly reduce the region of the mixed phase, and the results lie between those of the Gibbs and
Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on
the surface tension of the hadron-quark interface and the vector coupling between quarks. The repulsive vector
interaction in the Nambu-Jona-Lasinio model can stiffen the equation of state of quark matter, and therefore
delay the phase transition and increase the maximum mass of neutron stars.
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I. INTRODUCTION

Neutron stars provide a unique environment for the study of
cold and dense matter. It is expected that the phase transition
from hadronic matter to quark matter may occur in the core
of massive neutron stars [1–3]. Over the past decades, many
authors have studied the deconfinement phase transition of
neutron-star matter and its influence on properties of neutron
stars [4–14]. Most of these studies are based on the bulk
approximation, in which the hadron-quark phase transition
is performed through the Maxwell or Gibbs constructions. In
the Maxwell construction, local charge neutrality is imposed,
while the coexisting hadronic and quark phases have equal
pressure and baryon chemical potential but different electron
chemical potential. The pressure of the mixed phase in the
Maxwell construction remains constant, and therefore such
a mixed phase is not allowed to appear inside neutron
stars. With the Gibbs conditions for phase equilibrium, only
global charge neutrality is required, while hadronic and quark
phases have opposite electric charges. The mixed phase
in the Gibbs construction persists over a finite range of
pressure, so it is possible for the massive neutron star to
contain a mixed-phase region in its interior. It has been
shown in Ref. [15] that there are significant differences in
the behavior of compact stars between Maxwell and Gibbs
constructions.

In general, the mixed phase with the Gibbs construction is
energetically more favorable than the one with the Maxwell
construction. However, when the surface and Coulomb en-
ergies are taken into account, the energy density of the
quark-droplet phase may be higher than that of the Maxwell
construction due to a large surface tension [16]. A detailed
calculation including charge screening indicates that the mixed
phase with a large surface tension behaves like that of the
Maxwell construction, while the one with a small surface
tension is close to the case of the Gibbs construction [17–19].
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In fact, the Maxwell and Gibbs constructions correspond to the
two limits of infinite and zero surface tension, respectively. It
is interesting to examine the effect of a finite surface tension
on properties of the hadron-quark mixed phase.

In an earlier study performed by Heiselberg et al. [16],
the Coulomb and surface effects were examined for the
description of the hadron-quark mixed phase. The geometrical
structure and size of the mixed phase could be determined
by competition between surface and Coulomb energies. The
possible geometrical structure of the mixed phase has been
extensively discussed in Refs. [17–21], which may change
from droplet to rod, slab, tube, and bubble with increasing
density. It was reported in Refs. [17,22] that the charge
screening effect and the rearrangement of charged particles
should be taken into account for a realistic description of
the hadron-quark mixed phase. In most of the studies on
the finite-size effects, the coexisting hadronic and quark
phases were required to satisfy the Gibbs conditions for phase
equilibrium. An additional pressure due to the surface tension
was also included in the pressure equilibrium condition [17].
In fact, the equilibrium conditions would be modified when
the surface and Coulomb energies are taken into account.
Proper equilibrium conditions could be derived by minimizing
the total free energy of a system [23,24]. It is important to
examine the equilibrium conditions between the hadronic and
quark phases with inclusion of the surface and Coulomb
terms.

In the present work, we employ the Wigner-Seitz ap-
proximation to describe the hadron-quark mixed phase. We
derive the equilibrium conditions for coexisting hadronic and
quark phases by minimization of the total energy including
the surface and Coulomb contributions. In the Wigner-Seitz
cell, the hadronic and quark phases are assumed to be
separated by a sharp interface with a finite surface tension.
The surface tension plays a crucial role in determining the
structure of the mixed phase, but its value is poorly known.
The calculation in the MIT bag model by using the multiple
reflection expansion method [25] gave a value of the surface
tension σ ∼ 10 MeV /fm2, while a similar calculation in the
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Nambu-Jona-Lasinio (NJL) model including color supercon-
ductivity [26] yielded σ ∼ 145–165 MeV/fm2. The surface
tension calculated from a geometrical approach fell in the
range σ ∼ 7–30 MeV/fm2 [27]. Considering the uncertainty
of σ , we treat the surface tension as a free parameter in
the present study following the idea of Refs. [16,17,19].
Furthermore, the finite-size effects on the hadron-quark phase
transition are examined by varying this parameter. The limit
of σ = 0 corresponds to the absence of surface and Coulomb
energies in the Gibbs construction.

The aim of the present work is to investigate the influence
of surface and Coulomb contributions on the hadron-quark
phase transition using the equilibrium conditions derived by
minimization of the total energy. We employ the relativistic
mean-field (RMF) model to describe the hadronic phase, while
the NJL model is used for the quark phase. The NJL model can
successfully describe dynamical chiral symmetry breaking and
generation of constituent quark masses, so it has been widely
used as an effective theory of QCD for the description of
quark matter [9,28–31]. In this work, we adopt the three-flavor
NJL model with a repulsive vector interaction. It has been
extensively discussed in the literature that the inclusion of
repulsive vector interactions could significantly affect the
QCD phase diagram [32–34] and stiffen the equation of state
(EOS) of quark matter which would result in larger maximum
neutron-star masses [19,30,31,35–41]. For hadronic matter,
we employ the RMF model with the parameter set TM1 [42],
which can satisfactorily describe the properties of nuclear
matter and finite nuclei. This model has been successfully
applied to construct the EOS for supernova simulations and
neutron stars [43,44]. With only nucleonic degrees of freedom,
the TM1 model predicts a maximum neutron-star mass of
2.18 M�. If � hyperons are allowed to appear, the maximum
mass is reduced to 1.75 M� [44]. It is well known that the
appearance of hyperons can significantly soften the EOS at
high density and thus reduce the maximum neutron-star mass.
The accurate mass determinations for PSR J1614-2230 [45,46]
and PSR J0348+0432 [47] provide a strong constraint on
the EOS of neutron-star matter. Most of the EOS including
hyperons cannot satisfy the maximum mass constraint. It has
been reported in Ref. [37] that by using the EOS interpolated
between hadronic matter with hyperons and quark matter in
a crossover region, the maximum neutron-star mass could
be compatible with the observations, and an earlier onset of
the hadron-quark crossover would provide a larger maximum
mass. The authors of Ref. [37] considered several different
hadronic EOSs obtained by G-matrix calculations and the
chiral SU(3) symmetric RMF model, and they found that
the qualitative conclusion is insensitive to the choice of the
hadronic EOS. Currently there are large uncertainties in the
contributions from hyperons at high density [48]. Therefore,
we do not include hyperons in the present calculation and
focus on the transition from nonstrange hadronic matter to
deconfined quark matter with the inclusion of finite-size
effects.

This article is organized as follows. In Sec. II, we briefly
describe the RMF model for hadronic matter. In Sec. III,
the NJL model used for quark matter is shortly introduced.
In Sec. IV, we describe the hadron-quark mixed phase

with finite-size effects and derive the equilibrium conditions
for coexisting phases by minimization of the total energy
including the surface and Coulomb contributions. In Sec. V,
we present the numerical results and discuss the finite-size
effects on the hadron-quark phase transition and neutron star
properties. Section VI is devoted to the conclusions.

II. HADRONIC MATTER PHASE

We employ the RMF model to describe the hadronic
matter phase. In the RMF approach, nucleons interact via
the exchange of various mesons. The exchanged mesons
considered here include the isoscalar scalar and vector mesons
(σ and ω) and isovector vector meson ρ. We adopt the
RMF model with the parameter set TM1, which provides an
excellent description of nuclear matter and finite nuclei. For
hadronic matter consisting of nucleons (p and n) and leptons
(e and μ), the effective Lagrangian reads

LRMF =
∑
i=p,n

ψ̄i(iγμ∂μ−M−gσσ−gωγμωμ−gργμτaρ
aμ)ψi

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
WμνW

μν + 1

2
m2

ωωμωμ + 1

4
c3(ωμωμ)2

− 1

4
Ra

μνR
aμν + 1

2
m2

ρρ
a
μρaμ

+
∑
l=e,μ

ψ̄l(iγμ∂μ − ml)ψl, (1)

where Wμν and Raμν are the antisymmetric field tensors for ωμ

and ρaμ, respectively. In the RMF approach, we treat the meson
fields as classical fields and replace them by their expectation
values. The nonvanishing expectation values of meson fields
in hadronic matter are σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ30〉. The
equations of motion for the meson fields in uniform matter are
given by

m2
σ σ + g2σ

2 + g3σ
3 = −gσ

(
ns

p + ns
n

)
, (2)

m2
ωω + c3ω

3 = gω(np + nn), (3)

m2
ρρ = gρ(np − nn), (4)

where ns
i and ni denote the scalar and number densities of

species i, respectively. With the parameter set TM1 listed in
Table I, these coupled equations are solved self-consistently,
which yield that the nuclear matter saturation density is
0.145 fm−3, the binding energy per nucleon is 16.3 MeV, the
symmetry energy is 36.9 MeV, and the incompressibility is
281 MeV.

For hadronic matter in β equilibrium, the chemical poten-
tials satisfy the relations μp = μn − μe and μμ = μe. At zero
temperature, the chemical potentials of leptons are expressed

by μl =
√

kl
F

2 + m2
l , while that of nucleons are given by μi =√

ki
F

2 + M∗2 + gωω + gρτ
i
3ρ with M∗ = M + gσσ being the

effective nucleon mass. The total energy density of hadronic
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TABLE I. Parameter set TM1 for the RMF Lagrangian. The masses are given in MeV.

Model M mσ mω mρ gσ gω gρ g2 (fm−1) g3 c3

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 4.6322 −7.2325 0.6183 71.3075

matter can be written as

εHP =
∑
i=p,n

1

π2

∫ ki
F

0

√
k2 + M∗2 k2dk + 1

2
m2

σ σ 2 + 1

3
g2σ

3

+ 1

4
g3σ

4 + 1

2
m2

ωω2 + 3

4
c3ω

4 + 1

2
m2

ρρ
2

+
∑
l=e,μ

1

π2

∫ kl
F

0

√
k2 + m2

l k2dk, (5)

and the pressure is given by

PHP =
∑
i=p,n

1

3π2

∫ ki
F

0

k4dk√
k2 + M∗2

− 1

2
m2

σ σ 2 − 1

3
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3

− 1

4
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4 + 1

2
m2

ωω2 + 1

4
c3ω

4 + 1

2
m2

ρρ
2

+
∑
l=e,μ

1

3π2

∫ kl
F

0

k4dk√
k2 + m2

l

. (6)

III. QUARK MATTER PHASE

For the description of quark matter, we employ the NJL
model with three flavors. The Lagrangian is written as

LNJL = q̄(iγμ∂μ − m0)q + GS

8∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2]

−K{det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]}

−GV

8∑
a=0

[(q̄γ μλaq)2 + (q̄γ μγ5λaq)2], (7)

where q denotes the quark field with three flavors and three
colors. The first term is the free Dirac Lagrangian with the
current quark mass matrix given by m0 = diag(m0

u,m
0
d ,m

0
s ).

The second term with coupling GS is a chirally symmetric
four-quark interaction, where λa are the flavor SU(3) Gell-
Mann matrices with λ0 = √

2/3 I . The third term corresponds
to the six-quark Kobayashi–Maskawa–’t Hooft interaction
that breaks the UA(1) symmetry. The last term introduces
additional vector and axial-vector interactions with a positive
coupling GV that play important roles in describing massive
stars [36–41]. In the present work, we adopt the parameters
given in Ref. [49], m0

u = m0
d = 5.5 MeV, m0

s = 140.7 MeV,
� = 602.3 MeV, GS�

2 = 1.835, and K�5 = 12.36. As for
the vector coupling GV , we treat it as a free parameter and take
the ratios GV /GS = 0, 0.2, and 0.4, in order to investigate the
effect of the repulsive vector interaction on the equation of
state.

In the NJL model at the mean-field level, the quarks get
constituent quark masses by spontaneous chiral symmetry

breaking. The constituent quark mass in vacuum mi is
considerably larger than the current quark mass m0

i . In quark
matter, the constituent quark masses m∗

i are determined from
the coupled set of gap equations

m∗
i = m0

i − 4GS〈q̄iqi〉 + 2K〈q̄j qj 〉〈q̄kqk〉, (8)

with (i,j,k) being any permutation of (u,d,s). Ci = 〈q̄iqi〉 is
the quark condensate of the flavor i. The energy density of
quark matter is given by

εNJL =
∑

i=u,d,s

[
− 3

π2

∫ �

ki
F

√
k2 + m∗2

i k2dk

]

+ 2GS

(
C2

u + C2
d + C2

s

) − 4KCuCdCs

+ 2GV

(
n2

u + n2
d + n2

s

) − ε0, (9)

where ε0 is introduced to set εNJL = 0 in the physical vacuum.
In Refs. [30,31], an effective bag constant B∗ was introduced
since there remains uncertainty in the low-density normaliza-
tion of pressure in the NJL model. The authors of Ref. [31]
varied the free parameter B∗ in the range of −40 MeV/fm3 to
50 MeV/fm3, and they found that the hadron-quark transition
density would increase with increasing B∗. In the present work,
our choice of ε0 corresponds to a vanishing pressure in the
vacuum.

For the quark matter consisting of quarks (u, d, and s) and
leptons (e and μ) in β equilibrium, the chemical potentials
satisfy the relations μs = μd = μu + μe and μμ = μe. At
zero temperature, the chemical potential of the quark flavor

i is defined as μi =
√

ki
F

2 + m∗
i

2 + 4GV ni . The total energy
density and pressure in the quark matter are given by

εQP = εNJL +
∑
l=e,μ

1

π2

∫ kl
F

0

√
k2 + m2

l k2dk, (10)

PQP =
∑

i=u,d,s,e,μ

niμi − εQP. (11)

IV. HADRON-QUARK MIXED PHASE WITH
FINITE-SIZE EFFECTS

To describe the hadron-quark mixed phase, we employ the
Wigner-Seitz approximation, in which the system is divided
into equivalent and charge-neutral cells. We assume that the
coexisting hadronic and quark phases inside the cell are
separated by a sharp interface and the leptons (electrons and
muons) are uniformly distributed throughout the cell. It has
been discussed that the geometrical structure of the mixed
phase may change from droplet to rod, slab, tube, and bubble
with increasing density [1,17]. For simplicity, we consider only
droplet and bubble phases in the present study.

Generally, the surface and Coulomb contributions are
neglected in the bulk approximation, where the mixed phase
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is governed by the Gibbs conditions. When the finite-size
effects are taken into account, the equilibrium conditions for
coexisting hadronic and quark phases should be derived by
minimization of the total energy including the surface and
Coulomb contributions, which are different from the Gibbs
conditions without finite-size effects. The total energy density
of the hadron-quark mixed phase is written as

εMP = uεQP + (1 − u)εHP + εsurf + εCoul, (12)

where u = VQP/(VQP + VHP) is the volume fraction of the
quark phase. The energy densities, εHP and εQP, are given
by Eqs. (5) and (10), respectively. The surface and Coulomb
energy densities for a spherical cell are given by

εsurf = 3σuin

r
, (13)

εCoul = e2

5
(δnc)2r2uinD(uin), (14)

where

D(uin) = 1 − 3
2u1/3

in + 1
2uin. (15)

Here, uin denotes the volume fraction of the inner part with
radius r , i.e., uin = u for droplets and uin = 1 − u for bubbles.
σ is the surface tension of the hadron-quark interface, which
is treated as a free parameter in the present calculation.
δnc = nHP

c − nQP
c is the charge-density difference between the

hadronic and quark phases. The energy density of the mixed
phase εMP can be considered as a function of nine variables:
np, nn, nu, nd , ns , ne, nμ, u, and r . We derive the equilibrium
conditions by minimizing εMP under the constraints of global
charge neutrality and fixed average baryon density nb, which
are written as

0 = u

3
(2nu − nd − ns) + (1 − u)np − ne − nμ, (16)

nb = u

3
(nu + nd + ns) + (1 − u)(np + nn). (17)

By introducing the Lagrange multipliers, μe and μn, for these
two constraints, we perform the minimization for the function

w = εMP − μn

[u

3
(nu + nd + ns) + (1 − u)(np + nn)

]
−μe

[
ne + nμ − u

3
(2nu − nd − ns) − (1 − u)np

]
. (18)

Minimizing w with respect to the particle densities yields the
following equilibrium conditions for the chemical potentials:

μu − 4εCoul

3u δnc

= 1

3
μn − 2

3
μe, (19)

μd + 2εCoul

3u δnc

= 1

3
μn + 1

3
μe, (20)

μs + 2εCoul

3u δnc

= 1

3
μn + 1

3
μe, (21)

μp + 2εCoul

(1 − u) δnc

= μn − μe, (22)

μμ = μe. (23)

The minimization over u leads to the equilibrium condition for
the pressure

PHP = PQP − 2εCoul

δnc

[
1

3u
(2nu − nd − ns) + 1

1 − u
np

]

∓ εCoul

uin

(
3 + uin

D
′

D

)
, (24)

where the sign of the last term is − for droplets and + for
bubbles. The minimization over r results in the equilibrium
condition between surface and Coulomb energies,

εsurf = 2εCoul, (25)

which implies that the radius of the droplet or bubble is given
by

r =
[

15σ

2e2(δnc)2D(uin)

]1/3

. (26)

It is clear that the equilibrium equations (19)–(24) are
different from the Gibbs equilibrium conditions due to the
inclusion of surface and Coulomb energies in the minimization
procedure. However, these equations would reduce to the
Gibbs conditions when the surface and Coulomb energies are
neglected.

By solving the above equilibrium equations at a given
baryon density nb, we can obtain the properties of coexisting
hadronic and quark phases, and then calculate thermodynamic
quantities of the mixed phase. The pressure of the mixed
phase is extracted from the thermodynamic relation, PMP =
n2

b
∂(εMP/nb)

∂nb
. Due to the inclusion of surface and Coulomb

energies, PMP is no longer equal to PHP and PQP, which is
similar to the case of nuclear liquid-gas phase transition at
subnuclear densities [23,24,50].

V. RESULTS AND DISCUSSION

In this section, we present numerical results for the hadron-
quark phase transition with finite-size effects. The hadron-
quark mixed phase is obtained by solving the equilibrium
conditions under the constraints of global charge neutrality
and baryon number conservation. We consider both quark
droplet and bubble phases in the Wigner-Seitz approximation.
It has been pointed out in Ref. [16] that the droplet phase may
become energetically unfavorable for large surface tension
(σ > 70 MeV/fm2), since the energy density of the droplet
phase is higher than those of pure hadronic matter, pure quark
matter, and the mixed phase in the Maxwell construction.
In the present work, we first examine how large the surface
tension is allowed to ensure that the droplet or bubble phase is
energetically favorable. In Fig. 1, we plot the energy densities
of the mixed phase for various values of the surface tension σ ,
relative to that of the Gibbs construction (σ = 0). The cross
symbols mark the transition from the droplet phase to the
bubble phase. The energy densities of pure hadronic matter and
pure quark matter are shown for comparison. The mixed phase
in the Maxwell construction, which contains locally charge-
neutral hadronic and quark matter, has higher energy density
than that of the Gibbs construction, and their differences are
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FIG. 1. Energy densities of the mixed phase for different values of the surface tension σ , relative to that of the Gibbs construction without
surface and Coulomb energies (σ = 0). The cross symbols mark the transition from the droplet phase to the bubble phase. The results of the
Maxwell construction are indicated by the green dotted lines. The left and right panels correspond to results for GV = 0 and GV = 0.4 GS ,
respectively.

indicated by the green dotted lines. The results with the vector
coupling GV = 0 and GV = 0.4 GS are displayed in the left
and right panels, respectively. It is shown that the droplet or
bubble phase with σ > 80 MeV/fm2 (σ > 200 MeV/fm2) for
GV = 0 (GV = 0.4 GS) is energetically unfavorable due to its
larger energy density than that of the Maxwell construction.
This implies that the Maxwell construction is preferred and
the local charge neutrality is required for such high surface
tension. In this study, we focus on the difference from the
Gibbs construction caused by surface and Coulomb energies,
so we will perform the calculation for relatively small values
of the surface tension. By comparing the left and right panels

of Fig. 1, we can see that the density range of the mixed
phase for GV = 0.4 GS is shifted to larger value and much
wider than that for GV = 0. This is because the repulsive
vector interactions in the NJL model can significantly stiffen
the EOS of quark matter, which results in a delay of the phase
transition. At higher density, the surface tension has less impact
on the mixed phase, and therefore the allowed values of the
surface tension σ for GV = 0.4 GS are much larger than that
for GV = 0.

In Fig. 2, we show the density range of the mixed phase
as a function of the surface tension σ for GV = 0 (left panel)
and GV = 0.4 GS (right panel). At the beginning of the mixed

FIG. 2. Phase transition densities as a function of the surface tension σ . The shaded region indicates the density range of the mixed phase
in the droplet and bubble configurations. The left and right panels correspond to results for GV = 0 and GV = 0.4 GS , respectively.
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phase, quark matter occupies a small volume fraction and
the favored structure is quark droplets embedded in hadronic
matter. However, toward the end of the mixed phase, the
quark bubble phase is more stable than the droplet phase.
It is known that other geometrical structures, such as rod, slab,
and tube, may exist in the middle of the mixed phase, which
have been neglected in this calculation for simplicity. As one
can see from Fig. 2, the density range of the mixed phase is
significantly reduced as σ increases. Particularly, the range of
the bubble phase gets smaller and eventually disappears for
σ > 50 MeV/fm2 in the case of GV = 0. Compared to the left
panel for GV = 0, the density range of the mixed phase for
GV = 0.4 GS (shown in the right panel) is shifted to higher
densities and its dependence on σ is relatively weak. This is
because, as density increases, the contribution from the surface
term becomes less important relative to the bulk energy. As a
result, the influence of the surface tension σ on the phase
diagram becomes smaller at higher densities as shown in the
right panel of Fig. 2.

It is interesting to examine the influence of surface and
Coulomb energies on properties of the mixed phase. The Gibbs
conditions for phase equilibrium demand equal pressures and
chemical potentials for coexisting phases. However, when
surface and Coulomb energies are taken into account, the
pressure of quark matter is different from that of hadronic
matter, as indicated in Eq. (24). In Fig. 3, we plot the pressures
of hadronic and quark phases, PQP and PHP, in the mixed
phase obtained with σ = 10 and 40 MeV/fm2 for GV = 0.
It is shown that the differences between PQP and PHP are
very small for σ = 10 MeV/fm2, while evident differences
are observed for σ = 40 MeV/fm2, especially at low densities.
The pressures coming from the surface and Coulomb energies

FIG. 3. Pressures of hadronic and quark phases, PHP and PQP, as
a function of the baryon density in the mixed phase with σ = 10 and
40 MeV/fm2 for GV = 0.

FIG. 4. Radius of the droplet or bubble (r) and that of the Wigner-
Seitz cell (R) as a function of the baryon density with σ = 10 and
40 MeV/fm2 for GV = 0.

have opposite signs, and the one from the surface tension
is somewhat larger than that from the Coulomb energy.
Therefore, the pressure of the inner phase is slightly higher than
that outside. In Fig. 4, we show the radius of the inner part (r)
and that of the Wigner-Seitz cell (R) as a function of the baryon
density nb obtained with σ = 10 and 40 MeV/fm2 for GV = 0.
As density increases, we can see that r increases in the droplet
phase and then turns to decrease in the bubble phase, but R
shows rather different behavior. This is related to the increase
of the quark volume fraction in the mixed phase. It is seen that
both r and R for σ = 40 MeV/fm2 are larger than those for
σ = 10 MeV/fm2. This is because a large value of σ favors a
large r as indicated in Eq. (26), and meanwhile, a large R is
achieved according to R = ru

−1/3
in . In Fig. 5, the electric charge

densities of hadronic and quark phases, nHP
c and nQP

c , are shown
as a function of nb for the same values of σ and GV as in Figs. 3
and 4. The Gibbs construction corresponds to σ = 0, which
contains positively charged hadronic matter and negatively
charged quark matter with relatively large differences between
nHP

c and nQP
c . In contrast, the Maxwell construction consists

of two charge-neutral phases, i.e., nHP
c = nQP

c = 0, which is
caused by extremely high surface tension. The results obtained
with σ = 10 and 40 MeV/fm2 are somewhat different from
those of the Gibbs construction, and a larger value of σ results
in more significant differences. In Figs. 3–5, we show results
only for GV = 0; however, similar behaviors are observed for
other values of GV .

In Fig. 6, we plot the pressures as a function of the
baryon density for hadronic, mixed, and quark phases. The
left, middle, and right panels show respectively the results
for GV = 0, 0.2 GS , and 0.4 GS , while the upper and lower
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FIG. 5. Charge densities of hadronic and quark phases, nHP
c and

nQP
c , as a function of the baryon density. The results with σ = 10

and 40 MeV/fm2 are compared to those of the Gibbs and Maxwell
constructions.

panels correspond to the results of the mixed phase obtained
with σ = 10 and 40 MeV/fm2. The droplet and bubble phases
are indicated by the red and purple solid lines. For comparison,
results with the Gibbs and Maxwell constructions are shown by
the blue dashed and green dotted lines, respectively. It is shown

that pressures of the mixed phase obtained with a finite value of
σ lie between those of the Gibbs and Maxwell constructions.
The results of σ = 10 MeV/fm2 (upper panels) are closer to
that of the Gibbs construction than those of σ = 40 MeV/fm2

(lower panels). By comparing the left, middle, and right panels,
one can see the effect of the repulsive vector interactions in
the NJL model. As the vector coupling GV increases, the EOS
of quark matter gets stiffer. As a result, the mixed phase exists
in a broad density range and moves toward higher densities.

To examine the finite-size effects on properties of neutron
stars, we solve the Tolman-Oppenheimer-Volkoff equation by
using the EOS described above for GV = 0 (left panel) and
GV = 0.4 GS (right panel). For the description of neutron-
star crusts, the present EOS is matched to the EOS at
subnuclear densities, which was calculated from the Thomas-
Fermi approximation by using the TM1 model for nuclear
interactions [43]. The resulting mass-radius relations are
presented in Fig. 7, where the observational constraints of PSR
J0348-0432 (M = 2.01 ± 0.04 M�) [47] and PSR J1614-2230
(M = 1.928 ± 0.017 M�) [46] are shown by the lighter and
darker shaded regions, respectively. For comparison, results of
pure hadronic EOS are shown by thin solid lines, which give
a maximum mass of 2.18 M� [44]. The inclusion of quark
degrees of freedom significantly softens the EOS and reduces
the maximum mass of neutron stars, which depends on the
vector coupling GV , as shown in the two panels of Fig. 7. In
the case of GV = 0.4 GS (GV = 0), the maximum mass with
the Gibbs construction is reduced to 2.13 M� (1.91 M�).
When the finite-size effects are taken into account, neutron-
star masses are somewhat higher than those of the Gibbs
construction and the differences depend on the surface tension
σ . In Table II, the calculated properties of neutron stars with
the maximum mass are presented in detail. For the cases of

FIG. 6. Pressures as a function of the baryon density for hadronic, mixed, and quark phases. The results of the mixed phase with
σ = 10 MeV/fm2 (upper panel) and σ = 40 MeV/fm2 (lower panel) are compared to those of the Gibbs and Maxwell constructions. The
results for GV = 0, GV = 0.2 GS , and GV = 0.4 GS are shown in the left, middle, and right panels, respectively.
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FIG. 7. Mass-radius relations of neutron stars for different EOS. For comparison, the results from a pure hadronic EOS are shown by the thin
solid lines. The lighter and darker shaded regions correspond to the observational constraints of PSR J0348-0432 (M = 2.01 ± 0.04 M�) [47]
and PSR J1614-2230 (M = 1.928 ± 0.017 M�) [46], respectively.

σ = 0 (Gibbs), 10, and 40 MeV/fm2, a mixed-phase core
with radius RMP can be formed in the interior of stars and RMP

decreases with increasing GV , but the central density is not
high enough to generate pure quark matter. For the Maxwell
construction, the mixed phase is not allowed to appear in
stars because of its constant pressure. However, a small quark
phase core may exist with RQP = 0.82 km for GV = 0 and
RQP = 0.38 km for GV = 0.2 GS . We notice that there is no
quark matter in the interior of neutron stars for larger vector
coupling GV = 0.4 GS , as shown in the last line of Table II. It
is found that the internal structures of neutron stars are rather
sensitive to the values of the surface tension σ and the vector
coupling GV .

VI. CONCLUSIONS

We have investigated the finite-size effects on the hadron-
quark phase transition, which may occur in the interior of
massive neutron stars. The RMF model has been used to
describe the hadronic matter phase, while the NJL model
with vector interactions has been adopted for the quark matter
phase. We have employed the Wigner-Seitz approximation to
describe the hadron-quark mixed phase, where the coexisting
hadronic and quark phases inside the charge-neutral cell
are separated by a sharp interface. We have derived the
equilibrium conditions for coexisting hadronic and quark
phases by minimization of the total energy including the
surface and Coulomb contributions. It has been found that

TABLE II. Properties of neutron stars with the maximum mass Mmax. The central energy density and baryon number density are denoted
by εc and nc, respectively. RQP, RMP, and R correspond to radii of the quark phase, the mixed phase, and the whole star.

Mmax εc nc RQP RMP R

(M�) (MeV/fm3) (fm−3) (km) (km) (km)

Gibbs GV = 0 1.91 876.3 0.76 7.80 13.09
GV = 0.2 GS 2.05 912.4 0.77 5.60 13.00
GV = 0.4 GS 2.13 963.9 0.80 4.50 12.77

σ = 10 MeV/fm2 GV = 0 1.94 798.2 0.70 5.60 13.30
GV = 0.2 GS 2.08 907.3 0.77 4.50 13.01
GV = 0.4 GS 2.15 948.7 0.79 3.41 12.77

σ = 40 MeV/fm2 GV = 0 2.00 792.4 0.69 3.64 13.37
GV = 0.2 GS 2.11 889.0 0.75 2.95 13.03
GV = 0.4 GS 2.17 981.5 0.81 2.26 12.67

Maxwell GV = 0 2.04 896.1 0.77 0.82 13.40
GV = 0.2 GS 2.16 1395.3 1.08 0.38 12.77
GV = 0.4 GS 2.18 1081.2 0.87 12.30
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these equilibrium conditions are different from the Gibbs
conditions used in the bulk calculations due to the inclusion of
surface and Coulomb energies. As a consequence, the pressure
of quark matter is no longer equal to that of hadronic matter,
and the differences are more pronounced for larger values of
the surface tension.

The effects of the surface tension σ and the vector coupling
GV on properties of the hadron-quark mixed phase have
been investigated in the present work. For large values of
σ , the density range of the mixed phase is significantly
reduced with respect to that of the Gibbs construction.
Furthermore, a larger surface tension generally leads to a larger
structure size and smaller charge density difference between
the two phases. Since the Gibbs and Maxwell constructions
correspond, respectively, to the two limits of zero and infinite
surface tension, results for finite values of the surface tension
were found to lie between these two limits. The repulsive
vector interactions in the NJL model could stiffen the EOS
of quark matter, and as a result, the mixed phase would
exist in a broad density range and move toward higher
densities.

The properties of neutron stars have been calculated with
the inclusion of finite-size effects. The maximum masses of

neutron stars were found to depend on both the surface tension
σ and the vector coupling GV , which increase with increasing
σ and GV . The maximum masses for finite values of σ
were found to lie between results of the Gibbs and Maxwell
constructions. A mixed-phase core might be formed in the
interior of massive stars, but no pure quark phase could exist
for relatively small surface tension in the present study. In
the case of the Maxwell construction, a small pure quark core
could appear for smaller values of GV . It has been noticed
that our results of neutron stars could be compatible with
the observations of PSR J1614-2230 and PSR J0348-0432.
Finally, we emphasize that the surface tension of the hadron-
quark interface and the vector interaction between quarks
play critical roles in determining behaviors of the hadron-
quark phase transition and neutron star properties. Therefore,
better estimates for these quantities are needed for further
studies.
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