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We compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave
analysis, applied to the electroproduction of pseudoscalar mesons off nucleon targets. We give examples which
show, in detail, how the amplitude reconstruction (observables measured at a single energy and angle) is related to
a truncated partial-wave analysis (observables measured at a single energy and a number of angles). A connection
is made to existing data.
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I. INTRODUCTION AND MOTIVATION

There have been numerous recent efforts to extract max-
imal information, unbiased by any particular model, from
experimental pseudoscalar photoproduction data. These have
included the study of complete experiment analyses [1] (CEA)
and truncated partial-wave analyses [2] (TPWA). Legendre
analyses directly applied to data [3] have the same motivation.
The CEA determines helicity or transversity amplitudes at
a single energy and angle, up to an overall (energy- and
angle-dependent) phase. The TPWA introduces a cutoff to the
partial-wave series, obtaining multipoles for a fixed energy,
with an overall unknown phase dependent only on energy.

The methods used to study the photoproduction of pseu-
doscalar mesons from nucleon targets can be extended to the
case of electroproduction, with the introduction of longitudinal
amplitudes associated with the incoming virtual photon. An
examination of the CEA was performed by Dmitrasinovic et al.
[4], who considered the required polarization measurements.
They concluded that a CEA, determining the electroproduction
transversity amplitudes up to an overall phase, was not possible
with either recoil or target polarization measurements alone but
required at least one measurement from the other polarization
set. They further concluded that a CEA could be constructed
without the need for more complicated measurements involv-
ing both a polarized target and recoil polarization detection.
These conclusions assumed that all structure functions could
be separated in a set of measurements. As in all such studies, it
was also implicitly assumed that measurements could be made
arbitrarily precise.

Here we generalize our recent study [2] of the CEA and
TPWA in photoproduction to electroproduction. While the
study in Ref. [4] focused on the CEA, in practice, one desires
multipole amplitudes that can be associated with resonance
contributions. These cannot be directly obtained from a
complete set of transversity amplitudes and the methods used
in solving the CEA and TPWA problems are quite different,
as was discussed in detail in Ref. [2].

The electroproduction reaction, unlike photoproduction,
requires detailed knowledge of the electron-scattering process
producing the interacting virtual photon. As the electron

scattering and outgoing hadronic particles define two different
planes, a second angle defining their relative orientation
is required, as shown in Fig. 1. The virtual photon can
have a nonzero value for its 4-momentum squared, which
allows for the independent variation of photon energy and
momentum. This nonzero value also complicates the spin
structure, requiring the introduction of both longitudinal and
transverse components, as described in Refs. [5,6]. Below, we
first review the electroproduction formalism. We then consider
both simple and more realistic examples of the CEA and TPWA
process, showing how the experimental requirements change.

II. CROSS SECTION AND POLARIZATION
DEGREES OF FREEDOM

Here we follow the notation of Ref. [6] to describe the
pseudoscalar meson electroproduction process. As denoted in
Fig. 1, �e is the electron scattering angle while q and k are
the respective 4-vectors for the virtual photon and outgoing
meson, with q2 = ω2 − q2, where ω and q are the photon
energy and 3-momentum. The momentum transfer is denoted
by Q2 = −q2 and the “photon equivalent energy” is given by
klab
γ = (W 2 − m2

i )/2mi , where W is the center-of-mass energy
of the hadronic system and mi is the mass of the initial nucleon.
The degree of transverse polarization of the virtual photon is

ε =
(

1 + 2q2

Q2
tan2 �e

2

)−1

, (1)

with q and �e expressible in either the laboratory or c.m.
frame. The longitudinal polarization,

εL = Q2

ω2
ε , (2)

is frame dependent.
Experiments with three types of polarization can be

performed in meson electroproduction: electron beam polar-
ization, polarization of the target nucleon, and polarization of
the recoil nucleon. Target polarization will be described in
the frame {x,y,z}, with the z axis pointing in the direction
of the photon momentum q̂, the y axis perpendicular to the
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FIG. 1. Kinematics of an electroproduction experiment. The
scattering plane {1,3} is defined by the respective incoming and
outgoing electron momenta �ki,�kf with the electron-scattering angle
�e. The reaction plane is spanned by the virtual photon �q and the
outgoing meson �k, scattered by the angle θ . The reaction plane is
tilted vs the scattering plane by the azimuthal angle φ.

reaction plane, ŷ = q̂ × k̂/ sin θ , where k̂ is the direction of
the outgoing meson, and the x axis given by x̂ = ŷ × ẑ. For
recoil polarization, we will use the frame {x ′,y ′,z′}, with the z′
axis defined by the momentum vector of the outgoing meson,
the y ′ axis parallel to ŷ, and the x ′ axis given by x̂′ = ŷ′ × ẑ′.
These frames are displayed in Fig. 2.

The most general expression for a coincidence experiment
considering all three types of polarization is

dσv

d	
= |�k|

kcm
γ

PαPβ

{
R

βα
T + εLR

βα
L

+ [2εL(1 + ε)]1/2
(c
R

βα
LT cos φ +sR

βα
LT sin φ

)
+ ε

(c
R

βα
T T cos 2φ +s R

βα
T T sin 2φ

)
+ h[2εL(1 − ε)]1/2

(c
R

βα
LT ′ cos φ +s R

βα
LT ′ sin φ

)
+ h(1 − ε2)1/2R

βα
T T ′

}
, (3)

where h is the helicity of the incoming electron, Pα = (1, �P )α
and Pβ = (1, �P ′)β . Here �P = (Px,Py,Pz) denotes the target

(k)
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FIG. 2. Frames for polarization vectors. Target and recoil polar-
ization are commonly defined as {x,y,z} and {x ′,y ′,z′} in the c.m.
frame, with the z′ direction along the outgoing meson π (k). The
virtual photon γ (q) can carry different types of polarization, including
the linear and circular polarizations, PT in the {x,y} plane and P�
along the z axis, as in photoproduction. In addition, the longitudinal
photon carries a polarization, εL, with further polarization types
appearing in the LT interferences of Eq. (3).

and �P ′ = (Px ′ ,Py ′ ,Pz′ ) is the recoil polarization vector. The
zero components, P0 = 1, lead to contributions in the cross
section which are present in the polarized as well as the
unpolarized case. In an experiment without target and recoil
polarization, α = β = 0 and the only remaining contributions
are R00

i . The functions R
βα
i describe the response of the

hadronic system in the process. Summation over Greek indices
(0,1,2,3) is implied. An additional superscript s or c on the
left indicates a sine or cosine dependence of the respective
contribution on the azimuthal angle. Some response functions
vanish identically (see Table I of Ref. [6] for a systematic
overview). The number of different response functions is
further reduced by equalities, as shown in Table I, and in the
most general electroproduction experiment, 36 polarization
observables can be determined. The response functions R

βα
i

are real or imaginary parts of bilinear forms of the CGLN [7]
amplitudes depending on the c.m. energy W , the scattering
angle θ , and the photon virtuality Q2.

III. AMPLITUDES USED IN PSEUDOSCALAR
MESON ELECTROPRODUCTION

Before comparing the CEA and TPWA approaches, we
continue with a review of notation used for the underlying
amplitudes. The multipoles and CGLN [7] F amplitudes are
related by

F1 =
∑
�0

{(M+ + E+)P ′
+1 + [( + 1)M− + E−]P ′

−1},

(4a)

F2 =
∑
�1

[( + 1)M+ + M−]P ′
 , (4b)

F3 =
∑
�1

[(E+ − M+)P ′′
+1 + (E− + M−)P ′′

−1], (4c)

F4 =
∑
�2

[M+ − E+ − M− − E−]P ′′
 , (4d)

F5 =
∑
�0

[( + 1)L+P ′
+1 −  L−P ′

−1], (4e)

F6 =
∑
�1

[ L− − ( + 1)L+]P ′
 . (4f)

The definition of helicity amplitudes is subject to phase con-
ventions. Here, we choose the conventions of Ref. [8], which
were also used by Walker in Ref. [9] for photoproduction.
Without loss of generality, we set φ = 0,

H1 = − 1√
2

sin θ cos
θ

2
(F3 + F4) , (5a)

H2 =
√

2 cos
θ

2

[
F2 − F1 + (F3 − F4) sin2 θ

2

]
, (5b)

H3 = 1√
2

sin θ sin
θ

2
(F3 − F4) , (5c)

H4 =
√

2 sin
θ

2

[
F1 + F2 + (F3 + F4) cos2 θ

2

]
, (5d)
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TABLE I. Spin observables expressed in terms of helicity and transversity amplitudes. Also listed are alternate (ALT) observables, differing
by at most a sign in their definition, and associated photoproduction observables (γ ). Note that these expressions are not uniquely defined. We
follow the conventions of Refs. [9,10].

Obs ALT γ Helicity Transversity
representation representation

R00
T −cR

y′y
T T I 1

2 (|H1|2 + |H2|2 + |H3|2 + |H4|2) 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)

R
0y
T −cR

y′0
T T Ť −Im(H2H

∗
1 + H4H

∗
3 ) 1

2 (|b1|2 − |b2|2 − |b3|2 + |b4|2)

R
y′0
T −cR

0y
T T P̌ Im(H3H

∗
1 + H4H

∗
2 ) 1

2 (|b1|2 − |b2|2 + |b3|2 − |b4|2)

Rx′x
T −cRz′z

T T Ťx′ Re(H4H
∗
1 + H3H

∗
2 ) Re(b1b

∗
2 − b4b

∗
3)

Rx′z
T

cRz′x
T T −Ľx′ Re(H3H

∗
1 − H4H

∗
2 ) Im(b4b

∗
3 − b1b

∗
2)

Rz′x
T

cRx′z
T T Ťz′ Re(H2H

∗
1 − H4H

∗
3 ) Im(b1b

∗
2 + b4b

∗
3)

Rz′z
T −cRx′x

T T Ľz′ 1
2 (|H1|2 − |H2|2 − |H3|2 + |H4|2) Re(b1b

∗
2 + b4b

∗
3)

R00
L −R

y′y
L |H5|2 + |H6|2 |b5|2 + |b6|2

R
0y
L −R

y′0
L −2Im(H6H

∗
5 ) |b5|2 − |b6|2

Rx′x
L −Rz′z

L −|H5|2 + |H6|2 −2Re(b6b
∗
5)

Rz′x
L Rx′z

L 2Re(H6H
∗
5 ) −2Im(b6b

∗
5)

cR00
LT −cR

y′y
LT

1√
2
Re((H1 − H4)H ∗

5 + (H2 + H3)H ∗
6 ) Re(b6b

∗
3 + b5b

∗
4)

sR0x
LT

cR
y′z
LT ′

1√
2
Im((H3 − H2)H ∗

5 − (H1 + H4)H ∗
6 ) Re(b1b

∗
6 − b5b

∗
2)

cR
0y
LT −cR

y′0
LT − 1√

2
Im((H2 + H3)H ∗

5 − (H1 − H4)H ∗
6 ) Re(b5b

∗
4 − b6b

∗
3)

sR0z
LT −cR

y′x
LT ′ − 1√

2
Im((H1 + H4)H ∗

5 − (H2 − H3)H ∗
6 ) Im(b5b

∗
2 − b1b

∗
6)

sRx′0
LT −cR

z′y
LT ′

1√
2
Im((H2 − H3)H ∗

5 − (H1 + H4)H ∗
6 ) Re(b6b

∗
2 − b1b

∗
5)

sRz′0
LT

cR
x′y
LT ′ − 1√

2
Im((H1 + H4)H ∗

5 + (H2 − H3)H ∗
6 ) Im(b6b

∗
2 − b1b

∗
5)

cRx′x
LT −cRz′z

LT − 1√
2
Re((H1 − H4)H ∗

5 − (H2 + H3)H ∗
6 ) −Re(b5b

∗
3 + b6b

∗
4)

cRz′x
LT

cRx′z
LT

1√
2
Re((H2 + H3)H ∗

5 + (H1 − H4)H ∗
6 ) Im(b5b

∗
3 − b6b

∗
4)

cR00
T T −R

y′y
T −�̌ Re(H3H

∗
2 − H4H

∗
1 ) 1

2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2)
sR0x

T T R
y′z
T T ′ Ȟ Im(H3H

∗
1 − H4H

∗
2 ) Re(b1b

∗
3 − b4b

∗
2)

sR0z
T T −R

y′x
T T ′ −Ǧ −Im(H4H

∗
1 + H3H

∗
2 ) Im(b4b

∗
2 − b1b

∗
3)

sRx′0
T T −R

z′y
T T ′ Ǒx Im(H2H

∗
1 − H4H

∗
3 ) Re(b3b

∗
2 − b1b

∗
4)

sRz′0
T T R

x′y
T T ′ Ǒz Im(H3H

∗
2 − H4H

∗
1 ) Im(b3b

∗
2 − b1b

∗
4)

sR00
LT ′ −sR

y′y
LT ′ − 1√

2
Im[(H1 − H4)H ∗

5 + (H2 + H3)H ∗
6 ] Im(b6b

∗
3 + b5b

∗
4)

cR0x
LT ′ −sR

y′z
LT

1√
2
Re[(H2 − H3)H ∗

5 + (H1 + H4)H ∗
6 ] Im(b1b

∗
6 + b5b

∗
2)

sR
0y

LT ′ −sR
y′0
LT ′ − 1√

2
Re[(H2 + H3)H ∗

5 + (H4 − H1)H ∗
6 ] Im(b5b

∗
4 − b6b

∗
3)

cR0z
LT ′ sR

y′x
LT

1√
2
Re[(H1 + H4)H ∗

5 + (H3 − H2)H ∗
6 ] Re(b1b

∗
6 + b5b

∗
2)

cRx′0
LT ′ sR

z′y
LT

1√
2
Re[(H3 − H2)H ∗

5 + (H1 + H4)H ∗
6 ] −Im(b1b

∗
5 + b6b

∗
2)

cRz′0
LT ′ −sR

x′y
LT

1√
2
Re[(H1 + H4)H ∗

5 + (H2 − H3)H ∗
6 ] Re(b1b

∗
5 + b6b

∗
2)

sRx′x
LT ′ −sRz′z

LT ′
1√
2
Im[(H1 − H4)H ∗

5 − (H2 + H3)H ∗
6 ] −Im(b5b

∗
3 + b6b

∗
4)

sRz′x
LT ′ sRx′z

LT ′ − 1√
2
Im[(H2 + H3)H ∗

5 + (H1 − H4)H ∗
6 ] Re(b6b

∗
4 − b5b

∗
3)

R0x
T T ′ −sR

y′z
T T F̌ Re(H2H

∗
1 + H4H

∗
3 ) Im(b1b

∗
3 + b4b

∗
2)

R0z
T T ′ sR

y′x
T T −Ě 1

2 (|H1|2 − |H2|2 + |H3|2 − |H4|2) Re(b1b
∗
3 + b4b

∗
2)

Rx′0
T T ′ sR

z′y
T T −Čx′ Re(H3H

∗
1 + H4H

∗
2 ) −Im(b1b

∗
4 + b3b

∗
2)

Rz′0
T T ′ −sR

x′y
T T −Čz′ 1

2 (|H1|2 + |H2|2 − |H3|2 − |H4|2) Re(b1b
∗
4 + b3b

∗
2)
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H5 = cos
θ

2
(F5 + F6) , (5e)

H6 = − sin
θ

2
(F5 − F6) . (5f)

Finally, transversity amplitudes can be constructed [4,10]
from these helicity amplitudes,

b1 = 1
2 [(H1 + H4) + i (H2 − H3)], (6a)

b2 = 1
2 [(H1 + H4) − i (H2 − H3)] , (6b)

b3 = 1
2 [(H1 − H4) − i (H2 + H3)] , (6c)

b4 = 1
2 [(H1 − H4) + i (H2 + H3)] , (6d)

b5 = 1√
2

[H5 + i H6] , (6e)

b6 = 1√
2

[H5 − i H6] . (6f)

Here we note that the definitions of both helicity and
transversity amplitudes are not unique. Apart from phase
conventions, different numbering choices can also be found
in the literature. Here we follow the definitions of Barker
et al. [10]. In Table I, expressions for the response functions,
appearing in Eq. (3), are given in terms of both the helicity and
transversity amplitudes. In the following, we will suppress the
superscripts c and s for interference terms. As can be seen
in Table I, for a specific polarization, the assignment of this
superscript is always unique.

Transversity amplitudes often simplify the discussion of
amplitude reconstruction in photoproduction, as the unpo-
larized and single-polarization observables determine their
moduli. Another simplification is the property

b2(θ ) = −b1(−θ ) , b4(θ ) = −b3(−θ ) , and

b6(θ ) = b5(−θ ) , (7)

which allows one to parametrize only three of the six
transversity amplitudes. The form introduced by Omelaenko
[11],

b1 = c a2L

eiθ/2

(1 + x2)L

2L∏
i=1

(x − αi) , (8a)

b3 = −c a2L

eiθ/2

(1 + x2)L

2L∏
i=1

(x − βi) , (8b)

with x = tan(θ/2) and L being the upper limit for , is
convenient for a truncated partial-wave analysis, as the
ambiguities can be linked to the conjugation of the complex
roots of the above relations, with a constraint

2L∏
i=1

αi =
2L∏
i=1

βi. (9)

The quantity c is a constant and a2L is proportional to the
backward photoproduction cross section [2,11]. The choice
of an appropriate L value is reaction dependent. For pion

photoproduction, a low value of L is better suited to neutral
pion production.

For the amplitudes b5 and b6, which are present in
electroproduction in addition to the four transverse amplitudes,
it is feasible to write a linear-factor decomposition according
to Omelaenko, similar to expressions (8a) and (8b). As the
resulting nonredundant transversity amplitude, we pick here
b6 and the expression is

b6 = c d2L

eiθ/2

(1 + x2)L

2L∏
i=1

(x − γi). (10)

The amplitude b5 is then specified via the constraint given in
(7). The 2L complex roots γi determine the purely longitudinal
amplitudes b5 and b6, while the constant c is the same as in (8a)
and (8b). The quantity d2L is another polynomial normalization
coefficient, which may differ from a2L.

However, no constraint among the γ roots has been found
which would be analogous to Omelaenko’s relation (9) for
the α and β roots and we conjecture that no such additional
constraint for the γi exists. This may be substantiated by
the fact that the number of real degrees of freedom for the
parametrizations of b5 and b6 in terms of multipoles, as well
as in terms of roots, exactly match.

For every truncation order L, one has 2L + 1 complex
longitudinal multipoles, i.e., the S-wave L0+ and two new
multipoles L± for every new order in . This corresponds in
terms of mulipoles to 4L + 2 real degrees of freedom. In terms
of roots, one has the γi which comprise a set of 2L complex
variables or 4L real degrees of freedom. In addition to this,
the complex normalization coefficient d2L also defines b5 and
b6, which brings the total number of real variables to 4L + 2
in this case as well.

The only issue not considered until now is the overall
phase, either of (for instance) L0+, in case of the multipole
parametrization, or d2L in case of roots, which remains
undetermined if only longitudinal observables are measured.
This would reduce the number of real degrees of freedom
by one. However, in electroproduction, the mixed observables
of type LT can very well fix this overall phase, leaving the
unknown phase information in one of the quantities specifying
the purely transverse amplitudes, e.g., E0+. Therefore, the
number 4L + 2 real variables for longitudinal multipoles
remains true for the most general case in electroproduction.

For the transverse multipoles, the situation is the same as in
photoproduction with 4L multipoles, i.e., the S wave E0+, the
P waves E1+,M1+,M1−, and four new multipoles E±,M±
for every new order in . If we subtract the overall free phase,
which is typically assumed for the E0+ multipole, we have
8L − 1 real values to be determined by the experiment.

Altogether with longitudinal and transverse multipoles,
the most general case in electroproduction is described by
6L + 1 E,M,L multipoles, and 12L + 1 real values have to
be determined by the experiment. And one of those, e.g., E0+,
can be chosen to be positive.

IV. COMPLETE EXPERIMENT ANALYSIS (CEA)

In electroproduction, the CEA needs to determine six
complex amplitudes at a given energy and angle, e.g., helicity
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amplitudes H1,...,6 or transversity amplitudes b1,...,6 up to
an overall phase, which is naturally also energy and angle
dependent. This requires the determination of 11 real numbers,
where one of them can be chosen to be positive. In principle,
this could work with 11 observables, but due to quadrant
ambiguities, a minimum of 12 will be generally required.

Choosing 12 observables out of 36 will allow more than
a billion different sets. Even restricting to meaningful sets,
including transverse, longitudinal, and LT interference terms,
still gives millions of nontrivial sets that need to be checked
for completeness.

Two strategies seem to work straightforwardly. First, one
would select the six observables that are defined only by mod-
uli of transversity amplitudes, R00

T ,R
0y
T ,R

y ′0
T ,R00

L ,R
0y
L ,R00

T T .
Then five relative angles need to be defined from six out of the
remaining 30 interference terms. Even if thousands of such
sets will lead to complete sets of 12 observables, it is not
obvious how these observables should be chosen. As can be
seen in Table I, except for b5b

∗
6, all interference terms appear as

linear combinations, e.g., b1b
∗
2 ± b3b

∗
4, and a direct separation

would always require a measurement of both ± combinations.
Therefore, a separation of five angles as cosine and sine
functions would naively require 10 observables, leading
altogether to 16, and it is nontrivial to reduce this number
by four observables to find the minimum number of eight.

A second approach is to start with a complete set of eight
observables for the transverse amplitudes b1,b2,b3,b4 in a
CEA of photoproduction. Such studies are also nontrivial,
but have been intensively studied in the literature, and the
most comprehensive study was done by Chiang and Tabakin
[1]. Having chosen any of almost 4500 possible complete
sets of eight observables leads to a unique determination
of four moduli and three relative angles. Then with four
additional LT interference terms, such as Re(b1b

∗
5 ± b2b

∗
6)

and Im(b1b
∗
5 ± b2b

∗
6), the remaining moduli |b5|,|b6| and

the relative phases of b5 and b6 to the already known
transverse amplitudes b1,b2 are uniquely determined. This
leads to, for example, the complete set of 12 observables
R00

T ,R
0y
T ,R

y0
T ,R00

T T ,R0x
T T ,R0x

T T ′ ,R
z′0
T T ,Rz′0

T T ′ ,Rx ′0
LT ,Rz′0

LT ,Rx ′0
LT ′ ,R

z′0
LT ′ .

In this case four LT interference terms with beam-recoil
polarization have been used.

Alternatively, another three combinations can be chosen
with b2b

∗
5 ± b1b

∗
6,b3b

∗
5 ± b4b

∗
6, and b4b

∗
5 ± b3b

∗
6. Looking at

Table I, one finds that the first set, b1b
∗
5 ± b2b

∗
6, requires

recoil polarization, the second one, b2b
∗
5 ± b1b

∗
6, requires

target polarization, and the third one, b3b
∗
5 ± b4b

∗
6, would even

require both target and recoil polarization. The last one, b4b
∗
5 ±

b3b
∗
6, corresponds to the observables R00

LT ,R
0y
LT ,R00

LT ′ ,R
0y
LT ′ ,

which is identical to R00
LT ,R

y ′0
LT ,R00

LT ′ ,R
y ′0
LT ′ and can therefore

be measured with either target or recoil polarization.
By this rather simple strategy, we have already found

four times the number of possible complete photoproduction
sets, which amounts to almost 18 000 complete sets of
electroproduction.

Using the MATHEMATICA NSOLVE function and integer
algebra for randomly chosen real and imaginary parts of
amplitudes, we can test any given set of 12 observables for
completeness. Given the enormous number of possibilities

with hundreds of millions of sets with 12 observables (where
only R00

T is set), we have not yet performed a systematic search
for all possible complete sets as was done for photoproduction
in our previous work [2].

V. AMPLITUDE RECONSTRUCTION

A. Simplest case: L = 0

In photoproduction this case is trivial, involving only
a single multipole amplitude. Here, in set 1 of Table II,
there are two multipoles (E0+ and L0+), producing two
independent helicity or transversity amplitudes, requiring only
three measurements (e.g., R00

T ,R
0y
LT ,R

0y
LT ′) at a single energy

and angle, which solves both the CEA and TPWA. This is a
special case, where the absolute squares of the two multipoles
are not mixed together but already separated in R00

T = |E0+|2
and R00

L = |L0+|2. Therefore, R00
T gives directly the E0+

multipole, which can freely be taken with a positive value,
and for the absolute value |L0+| and the relative angle, the two
selected LT interference terms are sufficient.

It should be noted, however, that in principle, through the
Rosenbluth separation of RT and RL, the determination of
RT gives also RL, and therefore the three-observable case is
essentially academic, in practice a fourth measurement needs
to be done. We will return to this Rosenbluth issue later on.

B. Case: J = 1/2

Here, in set 2 of Table II, there are four multipoles involved
(E0+,M1−,L0+,L1−) producing four independent helicity or
transversity amplitudes. The separation into longitudinal and
transverse pairs suggests two strategies for finding a complete
set of eight measurements for a CEA in this case. Sets of
four observables would determine either the transverse or
longitudinal pairs, up to an overall phase, but would leave the
relative phase between the pairs undetermined. One method:
Take the set of four measurements determining (E0+ and M1−)
up to an overall phase (R00

T ,R
y ′0
T ,Rx ′z

T , Rz′z
T ). Add to this a

set of four measurements defining the relative phases of L0+
and L1− to E0+ and M1− respectively (R0y

LT ,Rx ′x
LT ,Rz′0

LT , R
0y
LT ′ ).

Second method: Take the sets of four measurements defining
the longitudinal and transverse pairs up to an overall phase.
Remove one measurement from each set and replace with a
pair of interference terms. This leads, for example, to the set
(R00

T ,R
y ′0
T ,Rz′z

T ,R00
L ,R

0y
L , Rz′x

L ,R00
LT ,R00

LT ′).
Furthermore, longitudinal observables R

βα
L can be avoided

by getting the same information from LT interference terms,
and a solution is found with a minimum number of five
observables, with some of these measured at two angles.

As a general rule, for n complex multipoles we need 2n
independent measurements. Due to the free overall phase (we
always assume E0+ real and positive), there are 2n − 1 free
parameters. However, in order to solve the quadrant ambiguity,
we generally need one more measurement. In the special case
of L = 0 (set 1) this was not needed but, as was mentioned,
this case is exceptional.

C. Comparing CEA and TPWA beyond J = 1/2

In set 3 of Table II, we study a purely longitudinal
model, with two complex helicity (H5,H6) or transversity
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TABLE II. Examples of measurements at a single energy for CEA and TPWA. The number of different measurements (n), different
observables (m), and different angles (k) needed for a complete analysis are given as n(m)k. Entries with a † do not allow the comparison CEA
↔ TPWA. For cases with only one angle, the CEA and TPWA are equivalent. The number of necessary distinct angular measurements is given
in brackets.

Set Included partial waves CEA TPWA Complete sets for TPWA

1 L = 0 (E0+,L0+) 3(3) 3(3)1 R00
T [1],R0y

LT [1],R0y

LT ′ [1]

2 S wave multipoles

2 J = 1/2 (E0+,M1−,L0+,L1−) 8(8) 8(8)1 R00
T [1],Ry′0

T [1],Rz′z
T [1],R00

L [1],R0y
L [1],Rz′x

L [1],

4 S,P wave multipoles R00
LT [1],R00

LT ′ [1]

8(8) 8(8)1 R00
T [1],Ry′0

T [1],Rx′z
T [1],Rz′z

T [1],R0y
LT [1],R0z

LT [1],

Rx′x
LT [1],R0y

LT ′ [1]

8(5)2 R00
T [2],Ry′0

T [1],R00
LT [1],R0x

LT [2],R0x
LT ′ [2]

3 L = 0,1 (L0+,L1−,L1+) † TPWA at 1 angle not possible

full set of 3 longitudinal 7(4)2 R00
L [2],R0y

L [2],Rx′x
L [1],Rz′x

L [2]

S,P wave multipoles 6(3)3 R00
L [3],R0y

L [2],Rx′x
L [1]

4 L = 0,1 (E0+,M1−,E1+,M1+) † TPWA at 1 angle not possible

full set of 4 transverse 8(5)2 R00
T [2],R0y

T [2],Ry′0
T [2],R00

T T [1],R0x
T T ′ [1]

S,P wave multipoles 8(4)3 R00
T [3],R00

T T [1],R0x
T T [2],R0x

T T ′ [2]

5 L = 0,1,2 (E0+,M1−,E1+,E2−, 12(12) 12(12)1 R00
T [1],R0y

T [1],Ry′0
T [1],R00

L [1],R0y
L [1],Rx′x

L [1],

L0+,L1−) R00
LT [1],R0z

LT [1],Rx′0
LT [1],R00

T T [1],R00
T T ′ [1],R0x

T T ′ [1]

set of 6 S,P,D wave multipoles 12(5)3 R00
T [3],R0y

T [2],R00
LT [2],R0y

LT [3],R00
LT ′ [2]

6 L = 0,1 (E0+,M1−,E1+,M1+, † TPWA at 1 angle not possible

L0+,L1−,L1+) 14(7)2 R00
T [2],R0y

T [2],Rx′x
T [2],R00

L [2],R0y
L [2],R00

LT [2],

full set of 7 S,P wave multipoles R0x
LT [2]

14(6)3 R00
T [3],R0y

T [2],R00
LT [2],R0x

LT [3],R00
LT ′ [2],R0x

LT ′ [2]

amplitudes (b5,b6), four possible polarization observables (see
Table I), and 2L + 1 complex multipoles L±. With all four
observables, a CEA is possible and can determine the two
complex amplitudes up to a phase. But a TPWA with three
multipoles requires six measurements and is therefore not
possible at a single angle. However, we find a solution with
four observables at maximally two angles, and also with a
minimal number of three observables, measured at maximally
three angles, a solution exists.

Set 4 is identical to the photoproduction case. Here, only
electric and magnetic multipoles contribute, and as discussed
in our previous paper [2] a TPWA at a single angle is
not possible. This set can be uniquely resolved with only
four observables requiring only beam and target polarization:
R00

T [3],R00
T T [1],R0x

T T [2],R0x
T T ′[2], which are identical to the

photoproduction observables I [3] ,�̌[1] ,Ȟ [2] ,F̌ [2].
In set 5, we discuss a model with six multipoles and six

nonvanishing amplitudes. In this case, the CEA and TPWA
are equivalent and both can be resolved with the same number
of 12 observables measured at a single angle. Again, when the
information from more than one angle is available, the number
of observables can be drastically reduced to only five, which
need to be measured at maximally three angles.

Finally, in set 6, we discuss the full set of seven S,P wave
multipoles, which requires 14 measurements for a unique

solution. In this case, we find a minimal number of six
observables, where again recoil polarization can be completely
avoided. A similar set is also possible that completely avoids
target polarization. With a total number of 36 observables, a
huge number of possibilities exist that could be used to resolve
all ambiguities.

The results of set 6 with 14 measurements of six observables
and two angles for L = 1 can be generalized theoretically for
arbitrary L, as was found in photoproduction [2,11,12]. For
each additional angular momentum, , each observable obtains
two more Legendre coefficients, and therefore allows for two
additional independent angular measurements. The number of
multipoles increases with 6L + 1 and the number of different
measurements by n = 12L + 2. With six observables, the
number of measurements increases by 12 for each additional
angular momentum; therefore there is no principal limit for
L. In practice this is, however, very different. Our present
numerical simulations are approaching a limit for L = 3. All
examples with L = 1 are calculated with the MATHEMATICA

NSOLVE function, giving exact solutions within integer algebra.
This approach was no longer successful for L = 2; therefore,
instead of finding exact solutions, we have done a minimization
of the coupled equations using the MATHEMATICA NMINIMIZE

function and random search methods. This worked very well
and for the solutions with L = 2 the squared numerical

025210-6



AMPLITUDE RECONSTRUCTION FROM COMPLETE . . . PHYSICAL REVIEW C 96, 025210 (2017)

deviation was found to be of the order 10−20, in agreement
with our work on photoproduction.

D. TPWA without Rosenbluth separation

So far, we have always assumed that a complete separation
of all observables (response functions) of Eq. (3) has been
obtained in a first preparatory step. For most of these, e.g., with
φ dependence or beam polarization h, this is straightforward
and has been applied very successfully in the past. A problem
is the so-called Rosenbluth separation between RT and RL,
which is experimentally very challenging and has only been
done in a very few cases [13,14]. However, for a TPWA the
combination R

β,α
T + εLR

β,α
L can be used and a separation is

not necessary. In many cases that are discussed in Table II,
the observables R

β,α
T can be replaced by the Rosenbluth

combinations

R
β,α
RB = R

β,α
T + εLR

β,α
L , (11)

and we find a unique solution for all included partial waves.
In the special case of set 1, with only three observables, this is
not possible and a fourth observable is needed.

In 2005, the Hall A Collaboration at JLab published
a measurement on recoil polarization for � excitation in
pion electroproduction, where 14 separated response func-
tions plus two Rosenbluth combinations had been observed
in full angular distributions at W = 1.23 GeV and Q2 =
1.0 (GeV/c)2 [15]. In our notation, these are

R00
RB, R

y ′0
RB,

R00
T T , Rx ′0

T T , R
y ′0
T T , Rz′0

T T ,

R00
LT , Rx ′0

LT , R
y ′0
LT , Rz′0

LT ,

R00
LT ′ , Rx ′0

LT ′ , R
y ′0
LT ′ , Rz′0

LT ′ ,

Rx ′0
T T ′ , Rz′0

T T ′ . (12)

For a CEA, this set of observables is not complete. A
complete experiment analysis for electroproduction needs a
minimum of 12 observables including both target and recoil
polarization. In fact, with two more observables involving
also target polarization, a CEA would be possible. These
are, e.g., R0x

LT ,R0z
LT or R0x

T T ,R0z
T T or R0x

LT ,R0x
T T or many other

combinations.
For a TPWA, however, the 16 observables from the

Hall A experiment are by far complete. Only a subset
of six observables, at maximally three angles, is needed
for a unique solution of all S,P wave multipoles, e.g.,
R00

RB[3],Ry ′0
RB[2],R00

LT [2],Rx ′0
LT [2],R00

LT ′ [2],Rx ′0
LT ′[3]. In the fits of

Ref. [15], several truncation levels were tried with L = 1 and
L = 2, where some multipoles were fixed. In Table III of this
work, the cutoff value of L was varied and a comparison of
multipole ratios, associated with the �(1232) resonance, was
presented.

VI. CONCLUSIONS

We have explored the CEA and TPWA approaches
to pseudoscalar-meson electroproduction, extending our

previous study of photoproduction. Simple examples, corre-
sponding to a low angular momentum cutoff, simplify the
discussion and allow one to see how the CEA and TPWA are re-
lated. As in photoproduction, the TPWA can be accomplished
with fewer observable types supplemented by additional angu-
lar measurements. The resulting TPWA (multipole) amplitudes
have an undetermined phase depending on energy while the
CEA (transversity or helicity) amplitudes are found with an
unknown overall phase depending on both energy and angle.
Comparisons are given for representative cases in Table II.

The CEA requires measurements involving both polarized
targets and recoil polarization, as was stressed in the study of
Ref. [4]. This is similar to the finding, for CEA analyses and
photoproduction, that measurements are required from two out
of the three groups containing beam-target, beam-recoil, and
target-recoil observables. Triple polarization experiments give
no further information in photoproduction, which is different
from electroproduction. For purely transverse observables it
is the same, but for purely longitudinal L and longitudinal-
transverse interference terms LT and LT ′ this is different.
Already the terms without target and recoil polarization, R00

L ,
R00

LT , and R00
LT ′ have to be counted as beam polarizations with

a polarized virtual photon. By this way of counting, there
are six triple polarization observables, see Table I, all of
which can be measured in an alternative triple-polarization
measurement. In electroproduction, as in photoproduction, all
36 observables can be measured in an alternative way, giving in
total 72 possibilities for allowed measurements. However, as
was found in Ref. [2], the TPWA can be accomplished without
involving observables having both polarized targets and recoil
polarization. This is not the case for a CEA, where at least
two observables have to be chosen from another group. This
finding from photoproduction carries over to electroproduction
without further modification.

The present formalism can be immediately applied to
data. In fact, there exists a dataset [15] which measured 16
observables, mostly with recoil polarization but was conducted
without a polarized target. Even though this set was not
complete for a CEA, it was by far enough to fulfill the
requirements of a complete TPWA.

Our principal goal in the amplitude reconstruction has been
a model-independent partial-wave analysis. This can only be
done at fixed energy W and fixed Q2. The remaining angle
dependence is then expanded in the partial-wave series. In
practice, this has to be repeated first at fixed Q2, for several
energies, and finally for several Q2 values. If the data are not
complete or not sufficiently accurate, model assumptions are
helpful and in most previous analyses this has been done. For
the Q2 dependence, dipole form factors, modified with power
series, have been used and for the energy dependence, isobar
models are most commonly used.
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