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Photoproduction of γ p → K+�∗(1520) and decay of �∗(1520) → K− p in the Reggeized framework
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Photoproduction of �∗(1520) resonance of spin-parity 3
2

−
off the proton target is investigated within the Regge

framework where the reggeization of the t-channel meson exchange is applied for the K(494) + K∗(892) +
K∗

2 (1430) exchanges in the Born amplitude. The present model is based on two basic ingredients; one is the
minimal gauge prescription for the convergence of the reaction and the other is the role of K∗

2 crucial to be
consistent with high energy data. Cross sections for total, differential, and photon polarization asymmetry are
reproduced without fit parameters and compared with existing data. The LAMP2 and LEPS measurements
of the angular distribution of K− in the �∗(1520) → K−p decay are investigated and found to be dominated by
the decay of �∗ with helicity ±3/2 based on the analysis of the density matrix elements. Detailed discussion on
the density matrix elements is given to clarify the analysis of the observable. The reaction mechanism is featured
by the dominance of the contact term with K and K∗

2 exchanges following in the low energy region. The K∗

exchange appears in a minor role. At high energies beyond Eγ ≈ 5 GeV the role of K∗
2 exchange leads over other

exchanges in the reaction process.

DOI: 10.1103/PhysRevC.96.025208

I. INTRODUCTION

To study electromagnetic production of strangeness from
a nucleon is important in hadron physics because it provides
information about the interaction between nucleon and
hyperon as well as the static properties of hyperon. There
was a growth of empirical data dedicated to the study of the
hyperons and their resonances produced by hadronic and
electromagnetic probes.

Of these, the reaction γp → K+�∗(1520) is an interesting
process in both sides of theory and experiment because it
involves the production of negative-parity hyperon resonance
of spin-3/2 via the process γp → K+K−p.

Given the empirical data recently measured with accuracy
by the CLAS [1], LEPS [2,3], and SAPHIR [4] Collaborations
up to photon energy Eγ = 3 GeV, in addition to the old
measurements from the LAMP2 group at higher energies Eγ =
2.8–4.8 GeV [5], and 11 GeV at the SLAC [6], theoretical
efforts on the reaction process have been made to investigate
the production mechanism based on the effective Lagrangian
approach [7], or on a type of hybrid model using the t-channel
Regge-pole interpolated with the Feynman propagator [8].

To unravel the role of baryon resonances in the low energy
region the latter approach was elaborated to calculate the
contributions of baryon resonances [9–11]. In these studies
the contributions of K and K∗ in the t-channel exchange
are analyzed and the role of N∗(2120) [previously called
D13(2080)] is identified in the resonance region.

On the other hand, it was an issue to determine the
K∗N�∗ coupling constant from the present process because
it could give a hint on our understanding of the structure of
the �∗ resonance. In Refs. [12,13] the K̄N coupled-channel
approach to �∗ leads to the coupling constant gK∗N�∗/mK∗ =
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1.56/mK∗ , whereas the quark model predicts the value, i.e.,
gK∗N�∗ � 10 much larger by an order of magnitude.

In recent experiments it was another topic to measure the
decay angular distribution of K− in the �∗(1520) → K−p
decay process, because the observable is expected to provide
information about spin exchanges of K and K∗ in understand-
ing the production mechanism. However, the interpretation
of it seems not clear yet, because the recent data on the
photoproduction [4] and the result from the electroproduction
process [14] lead to a conclusion contradictory to the LAMP2
data.

With these in mind, we, here, investigate the γp →
K+�∗(1520) process off the proton target from threshold to
the photon energy 11 GeV, where there is a data point measured
in the SLAC experiment [6]. Our purpose here is to provide
a theoretical framework which can afford one to describe the
reaction without either fit parameters or any modulation of
the particle propagation for a convergence of the process at
high energies. Indeed, the reaction with �∗ of spin-3/2 in the
final state would give rise to a divergence as the photon energy
increases. Nevertheless a special gauge prescription, the so-
called minimal gauge prescription, adopted in Refs. [15–17]
simplifies the analysis of such reaction processes to a greater
extent. This interesting result is a consequence of the Ward
identity in the electromagnetic coupling vertex of the spin-3/2
baryon in the Rarita-Schwinger formalism [18], and supported
further by the agreements with high energy data of π� and
K�∗ photoproductions.

We also point out the important role of the spin-2 tensor
meson which is crucial to agree with existing data on γN →
K+�∗(1385) as well as γp → π±�(1232) at high energies
[15,17]. In this work we will include the tensor meson K∗

2
with an expectation that the uncertainty in the role of K∗
arisen from the previous works [7,8,12,13,19] but unanswered
yet can be resolved by considering the role of K∗

2 as a natural
parity together with K∗.

This paper is organized as follows: In Sec. II, we provide
a general formalism for the photoproduction amplitude with
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a brief introduction of the minimal gauge for the invariant
K exchange. The coupling vertex for K∗

2 p�∗ is newly intro-
duced with discussion on determining its coupling constants.
Numerical results are given in Sec. III for the analyses
of the old LAMP2/SLAC data and the recent CLAS/LEPS
measurements. This will includes the cross sections for the
total, differential, beam polarization asymmetry. Analysis of
the decay angular distribution of K− in the �∗ → K−p decay
is given in detail based on the density matrix elements related.
We give a summary and discussion in Sec. IV. The kinematics
related to the t-channel helicity frame of the particle rest is
defined in Appendix A, and the angular distribution function
in terms of the density matrix elements is given in Appendix B.

II. PHOTOPRODUCTION AMPLITUDE IN THE
MINIMAL GAUGE

We begin with the production amplitude for γ (k) +
p(p) → K+(q) + �∗(p′) which is given by

iM = iMK + iMK∗ + iMK∗
2
, (1)

where each term represents the t-channel K , K∗, and K∗
2

Regge-pole amplitude in order. The respective 4-momenta of
the photon, proton, kaon, and �∗ are denoted by k, p, q, and
p′ in Fig. 1(a).

In these terms the latter two exchanges are themselves
gauge invariant. However, the K exchange in the t channel
is not gauge invariant as expressed in the Born amplitude, i.e.,

iMt(K) = eK

fKN�∗

mK

ūν
�∗ (p′)γ5Qν

2q · ε

t − m2
K

uN (p), (2)

where eK is the kaon charge, ε is photon polarization, and
Qν = (q − k)ν is the t-channel momentum transfer.

For the gauge invariant K exchange in Eq. (2) the current
conservation following the charge conservation, ep − eK −
e�∗ = 0, requires the inclusion of the charge term of the

p(p) Λ∗(p )

K, K∗, K∗
2

γ(k) K+(q)

(a) (b)

(c)

p p Λ∗

γ K+

γ K+

p Λ∗

FIG. 1. Feynman diagrams for γp → K+�∗. The exchange of
K in the t channel (a), the proton pole in the s channel (b), and
the contact term (c) are the basic ingredients for gauge invariance
of the reaction. The K∗ and K∗

2 exchanges in the t channel (a) are
themselves gauge invariant.

proton pole in the s channel and the contact term. Here, ep

and e�∗ are the respective charges of proton and �∗. Because
the usual Dirac charge-coupling term in the proton pole is
ep( �p+ �k + M) �ε = ep(2p · ε+ �k �ε), it can be reduced to
ep 2p · ε by removing the transverse term by redundancy with
respect to gauge invariance in the sense of the minimal gauge
1 as discussed in Refs. [15,17].

Thus, the gauge-invariant extension of the K exchange
which is now Reggeized is given by

iMK = i[Mt(K) + Ms(p) + Mc] × (
t − m2

K

)
×RK (s,t)e−iπαK (t), (3)

where

iMs(p) = ep

fKN�∗

mK

ūν
�∗ (p′)γ5qν

2p · ε

s − M2
p

uN (p), (4)

iMc = −eK

fKN�∗

mK

ūν
�∗ (p′)γ5ενuN (p), (5)

are the proton pole and the contact term, and

Rϕ(s,t) = πα′
ϕ

�[αϕ(t) + 1 − J ] sin παϕ(t)

(
s

s0

)αϕ (t)−J

(6)

is the Regge propagator written collectively for ϕ(=K,K∗,
K∗

2 ) of spin J , αϕ(t) is the trajectory, and s0 = 1 GeV2 is taken
as usual.

For the higher-spin meson exchanges we consider the
vector-meson K∗ and the Reggeized amplitude relevant to
the leading contribution of the K∗N�∗ interaction is given by

iMK∗ = −i
gγKK∗

m0

fK∗N�∗

mK∗
εαβλσ εαkβqλū

ν(p′)

× ( �Qgνσ − Qνγσ )u(p)RK∗
(s,t)e−iπαK∗ (t), (7)

with the mass parameter m0 = 1 GeV.
In accordance with our previous work on γN →

K+�∗(1385), we introduce the tensor meson K∗
2 exchange in

the t channel to the present reaction process. By considering
the parity of �∗ opposite to �∗ the new Lagrangian for the
K∗

2 N�∗ coupling first considered in this work can be written
as

LK∗
2 N�∗ = fK∗

2 N�∗

mK∗
2

�̄∗
α(gαμ∂ν + gαν∂μ)NK∗

2 μν, (8)

and the Reggeized amplitude for the K∗
2 exchange is given by

iMK∗
2

= −i
2gγKK∗

2

m2
0

fK∗
2 N�∗

mK∗
2

εαβμλεμkλQαqρ�
βρ;σξ (Q)

× ūν(p′)(gνσPξ+gνξPσ )u(p)RK∗
2 (s,t)e−iπαK∗

2
(t)

, (9)

with the momentum P = (p + p′)/2, and �βρ;σξ (q) the spin-2
projection given in Ref. [17].

1The minimal gauge requires the pure charge term of the proton
pole to be included. If one uses ep( �p+ �k + Mp) �ε in Eq. (4), but
still containing the transverse component, he(she) cannot obtain an
agreement with the cross section data without a cutoff function as
shown in Fig. 2(a) below.
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The coupling constant fKN�∗ is estimated to be fKN�∗ =
10.59 from the measured decay width ��∗→N̄K = 7.02 MeV
in the Particle Data Group.

The radiative decay constant in the K∗ exchange is
estimated to be gγK+K∗+ = ±0.254 from the measured width
�K∗→γK± = (0.05 ± 0.005) MeV, and we take the negative
sign to agree with empirical data. As mentioned before,
however, the determination of the coupling constant fK∗N�∗ is
still at large. We found in Ref. [7] that the phenomenological
determination of the K∗N�∗ coupling constant was discussed
somewhat in detail, in which case gK∗N�∗ = α�∗gKN�∗ was as-
sumed with the parameter α�∗ = +0.372, or −0.657 obtained
from the fit of the LAMP2 data [7]. By the different definition
of the coupling vertex in the present work these correspond to
fK∗N�∗ = +7.12 and −12.57, respectively. But we note that
the values of α�∗ were determined by using the K∗ trajectory
αK∗ (t) = 0.9 t − 0.1 and the energy dependence of the Regge
pole ∼sαK∗ (t), which are quite different from those we have
employed in the present calculation. Moreover, such a lower
intercept of the trajectory significantly reduces the contribution
of the Regge-pole exchange so that a large coupling constant
might be needed in their analysis for an agreement with the
LAMP2 data.

In this work we consider determining fK∗N�∗ from the nu-
merical analysis of the reaction. Within the present framework,
however, it is not a free parameter because it is related to the
coupling constant of the tensor meson K∗

2 as

fK∗
2 N�∗

mK∗
2

= −3
fK∗N�∗

mK∗
(10)

by the duality and vector dominance [20]. Because the latter
exchange is expected to play the role significant in the high
energy region, we first obtain the K∗

2 coupling constant as
−3fK∗N�∗/mK∗ = −10.5/mK∗ by fitting to the SLAC data
point at Eγ = 11 GeV, and, then, fK∗N�∗ is determined
according to the relation in Eq. (10) above. We adopt these
coupling constants in the case of spin-3/2 baryon of negative
parity, because the duality and the vector dominance are
believed to be universal. The radiative coupling constant for
K∗

2 is estimated to be gγKK∗
2

= ±0.276 from the decay width
�K∗

2 →γK± = (0.24 ± 0.05) MeV [21]. In the calculation we
choose the negative sign for a better agreement with existing
data.

The coupling constants for the present calculation are
summarized in Table I and compared to those used for other
model calculations.

As to the trajectory and phase of the t-channel Regge pole,
we use

αK (t) = 0.7
(
t − m2

K

)
,

αK∗ (t) = 0.83 t + 0.25, (11)

αK∗
2
(t) = 0.83

(
t − m2

K∗
2

) + 2,

for a consistency with the previous works [17,21,22], and
assign the complex phase to all the mesons K , K∗, and K∗

2 as
shown above.

TABLE I. Coupling constants of exchanged mesons in the
�∗(1520) process. The meson-baryon coupling constants in set I
are for the CLAS and LEPS data and set II for the LAMP2 and SLAC
data. The signs of radiate decay constants gγKK∗ = −0.254 and
gγKK∗

2
= −0.276 are taken in this work. The quark model prediction

for fKN�∗ � 10.

Refs. [12,13] Ref. [7] Set I Set II

fKN�∗/
√

4π −0.15 2.99 1.8 2.5
fK∗N�∗ ±1.58 −12.57, 7.12 3.5 3.5
fK∗

2 N�∗
mK∗

2

– – − 10.5
mK∗ − 10.5

mK∗

III. NUMERICAL RESULTS

In this section we first discuss our result in the differential
cross sections from the LAMP2 and SLAC experiment to
examine the convergence of the reaction at high energies. Then,
we present the cross sections from the CLAS and LEPS data
in the lower energy region with the relevance of the coupling
constants to the old and recent measurements indicated in
Table I.

To avoid confusion in expression in what follows, we denote
the symbol K by the single K exchange in Eq. (2) which is
Reggeized by multiplying (t − m2

K )RKe−iπαK . Similarly, the
symbols K∗ and K∗

2 denote the amplitudes in Eqs. (7) and
(9) for brevity. Also we call the contact term to imply the
amplitude in Eq. (3) without Mt(K) and Ms(p).

A. Reaction at high energies

Before the LEPS and CLAS experiments [1–3] theoretical
studies [7,19] on this reaction were based on the LAMP2
and SLAC data which were shown in Fig. 2 for the total,
differential, and the angular distribution of K− in the decay
�∗ → K−p in the final state.

In Fig. 2 the LAMP2 data for the total and differential cross
sections at Eγ = 2.8 ∼ 4.8 GeV and the SLAC differential
cross section at Eγ = 11 GeV are reproduced by the full
amplitude in Eq. (1) with the coupling constants from set II
in Table I. The leading coupling constant fKN�∗ taken here
is smaller than the value estimated from the measured decay
width by a factor of 0.84. To test the validity of the minimal
gauge we reproduce the total cross section with the charge
term taken as ep( �p+ �k + Mp) �ε in the proton pole instead of
ep 2p · ε in Eq. (4) and show the result by the dotted line in
Fig. 2(a). This demonstrates that such a good convergence of
the cross section to the experimental data cannot be obtained
without the cutoff function otherwise. Also it should be noted
that the role of K∗

2 is crucial to reproduce the total and
differential cross sections at high energy, as can be seen by
comparing the solid lines with the dashed ones in Figs. 2(a)
and 2(d).

The final state �∗(1520) of spin-parity 3/2− decaying to
the K−p system was measured in the LAMP2 group where
the angular distribution of K− is given by

I (θ∗) = 3

4π

[
ρ33 sin2 θ∗ + ρ11

(
1

3
+ cos2 θ∗

)]
, (12)
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K2*

FIG. 2. Total and differential cross sections in (a) and (c) at Eγ =
2.8 ∼ 4.8 GeV [5], and the angular distribution of K− in the decay
�∗ → K−p in (b) from the LAMP2 measurement. The differential
cross section from the SLAC at Eγ = 11 GeV is shown in (d) [6].
The dotted line in (a) results from the proton pole with the charge
term ep( �p+ �k + Mp) �ε in Eq. (4) for the full amplitude in Eq. (1).
The cross sections without K∗

2 are shown by the dashed lines in the
total (a) and differential cross sections (d). In (b) the decay angle of
K− is denoted by θ∗ for a distinction from the reaction angle θ of
K+ produced. I (θ∗) is reproduced at Eγ = 3.8 GeV and θ = 1◦ by
the density matrix elements ρ33 and ρ11 in Fig. 3 with the factor of
30 multiplied to Eq. (12). The contributions of K , K∗, and K∗

2 are
depicted by the blue dashed, green dash-dotted, red dash-dot-dotted
line, in order. The blue dotted line is from the contact term and exactly
coincides with the solid line from the full calculation. Note that the
contribution of the K exchange from Eq. (2) is zero at θ = 0◦ in (b).

with the angle θ∗ of the decaying K− in the �∗ rest frame.
Here, we neglect the remnants in the original equation in
Ref. [5] by fixing the angle φ∗ = 90◦ as well as the small-
ness of the density matrix Re[ρ3−1] for simplicity. Because
the dynamics of the photoproduction process is contained
in the density matrix elements ρ33 and ρ11, their dependencies
on the energy and angle are important to analyze I (θ∗) in
conjunction with the reaction mechanism of photoproduction.

In the photoproduction process associated with the decay
channel, γp → K+�∗ → K+K−p, the LAMP2 data was
understood as the dominance of the �∗ decay with the helicity
Sz = ±3/2, as shown in Fig. 2(b) where the K∗ exchange
of the natural parity in the photoproduction leads to the
decay of �∗ with helicity Sz = ± 3

2 , which corresponds to
the term sin2 θ∗, whereas the K exchange of unnatural parity
to Sz = ± 1

2 corresponds to the term ( 1
3 + cos2 θ∗).

Figure 3 shows the density matrix elements ρ33 and ρ11

calculated in the t-channel helicity frame of �∗ where the
z axis is taken to be the direction opposite the target proton
momentum [2,14,23], as presented in the appendix. At θ ≈ 0◦
and at Eγ = 3.8 GeV, together with the small negative values
for Re[ρ32] and Re[ρ3−1], we obtain ρ33 = 0.375 and ρ11 =
0.125, which are consistent with those extracted from the
LAMP2 data given in Table 1 of Ref. [5]. As the representative
of each term in Eq. (12), therefore, the angular dependence
of ρλλ′ in Fig. 3 can tell us that ρ33 is always dominant as
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0.1
0.2
0.3
0.4
0.5

-1 -0.5 0 0.5 1
0

0.1
0.2
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-1 -0.5 0 0.5 1
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-0.3
-0.2
-0.1

0
0.1
0.2
0.3

-1 -0.5 0 0.5 1
cosθ

-0.2
-0.1

0
0.1
0.2

ρ33 ρ11

Re[ρ31]

Re[ρ3−1]

FIG. 3. Density matrix elements for γp → K+�∗ at Eγ =
3.8 GeV. The angle θ dependence of ρλλ′ is calculated in the t-channel
helicity frame of �∗ [2,14,23]. Solid lines are the full calculation of
ρλλ′ from set II with the conventions and definitions from Ref. [24].
The respective contributions of K , K∗, and K∗

2 are shown by the
blue dashed, green dash-dotted, red dash-dot-dotted curves in order.
The blue dotted line is from the contact term. The density matrix
elements unravel the overall dependence of I (θ∗) on the angle. At
θ = 0◦, ρ33 = 0.375 and ρ11 = 0.125, respectively, to satisfy the trace
condition ρ33 + ρ11 = 1/2.

compared to ρ11 in the overall range of the angle at the given
energy. Thus, we expect the dominance of the natural parity
exchange in the photoproduction from the shape of the I (θ∗)
convex up and this is consistent with the LAMP2 data as we
reproduced in Fig. 2(b).

Within the present framework which is valid for the forward
angles the dominance of the sin2 θ term is from the contribution
of the contact term which dominates the photoproduction
below Eγ ≈ 4 GeV as shown in Fig. 4 in addition to the
contributions of K∗ + K∗

2 at the very forward angle. As can be
seen in Fig. 3, however, the contribution of K∗

2 is varying very
rapidly near θ = 0◦ in shaping I (θ∗). Nevertheless, we find
that the K exchange always yields the shape concave down by
the role solely in ρ11.

Differential cross sections at Eγ = 3.8 ± 1 GeV from the
LAPM2 and 11 GeV from the SLAC experiments are presented
in Figs. 3(c) and 3(d). As shown by the dash-dot-dotted line in
the latter case, the role of K∗

2 is apparent, and the dashed line
in Fig. 3(d) as well as in Fig. 3(a) without it cannot agree with
the experimental data for the differential and the total cross
sections.

B. Reaction at low and intermediate energy

We now turn to the analysis of the experimental data
recently measured by the CLAS and LEPS Collaborations.

Figure 4 shows the total cross section from set I in Table I
and the result is compared with the CLAS data. The dashed
line of the LAMP2 cross section in Fig. 2 is also reproduced
for comparison. Note that the discrepancy between the two,
and we use the fKN�∗/

√
4π = 1.8 to agree with new data.
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FIG. 4. Total cross sections for γp → K+�∗(1520). Solid line
is the full calculation of the cross section from the CLAS data with
coupling constants set I in Table I. The dashed line is the total cross
section of the LAMP2 and SLAC data with coupling constants of set
II. The contributions of the contact term and the meson exchanges
are shown with the same notations as in Fig. 3. The CLAS data are
taken from Ref. [1].

The dominance of the contact term over the meson exchanges
in the CLAS data is illustrated. It should be pointed out that
the exchange of K∗

2 as the natural parity becomes the leading
contribution at high energy Eγ = 11 GeV to meet with the
SLAC data. In contrast, the role of the K∗ exchange is very
small in comparison to those of K and K∗

2 as shown in Fig. 4.
This may explain why the cross sections is not sensitive to
such a wide change of K∗N�∗ from 0 to ±11 in the model
without the tensor meson K∗

2 [8].
Together with the total cross section in Fig. 4 the differential

cross sections displayed in Fig. 5 show that the reaction
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FIG. 5. Differential cross sections of the CLAS Collaboration in
the nine energy bins. The solid line results from physical constants of
set I. The leading role of the contact term with K and K∗

2 following
with equal contributions are well reproduced in the differential cross
sections as well as the total cross section above. The contribution of
meson exchange and the contact term are displayed with the same
notations as in Fig. 4. Data are taken from Ref. [1].
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FIG. 6. Angle and energy dependencies of differential cross
sections measured in the range of the energy 1.9 < Eγ < 2.4 GeV
and the reaction angle 30 < θ < 180. The solid lines from set I
show the results at the central values in the experimental ranges. The
contribution of meson exchange and the contact term are displayed
with the same notations as in Fig. 4. Data of the LEPS in 2009 (black
filled circle) are taken from Ref. [2].

mechanism is feature by the leading role of the contact term
followed by K and K∗

2 with equal contributions, and this
feature from the CLAS measurement is also valid for the
differential cross sections measured in the LEPS experiment
as will be shown in Fig. 6 next.

Shown in Figs. 6 and 7 are the energy and angle de-
pendencies of the differential cross sections and the energy
dependence of the beam polarization asymmetry measured
in a sequential experiment of the LEPS Collaboration. The
roles of the contact term and each meson exchange discussed
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FIG. 7. Energy dependence of differential cross sections and
beam polarization asymmetry measured in angle bins. The bands
correspond to the cross sections in the range of angles denoted in
each figure with coupling constants from set I. The contribution of
meson exchange and the contact term are displayed in � with the
same notations as in Fig. 4. Data of the LEPS in 2010 are taken from
Ref. [3].
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in the CLAS data are realized in these differential cross
sections as well with respect to energy and angle, as shown
in Fig. 6. Therefore, such a consistency of the LEPS data
with the CLAS confirms the validity of the present analysis
based on the Reggeized framework without fit parameters.
However, the lack of the present model predictions in the
backward region of the CLAS data in Fig. 5 as well as in the
threshold peaks in the LEPS as shown in Figs. 7(a)–7(c) is
suggestive of the contributions from the baryon resonances to
the reaction process. The LEPS data in 2009 [2] reported that
� � −0.01 ± 0.07 at the kaon angle θ less than 60◦ in the
energy interval Eγ = 1.75 ∼ 2.4 GeV, and suggested that it
is almost zero within the experimental uncertainties. The data
from the LEPS in 2010 [3] showed a slightly positive value
of � in the same energy range but for the different angles
0.6 < cos θ < 1, and we reproduce it in the range of the angle
0.6 � cos θ � 0.8 by using � = dσy−dσx

dσy+dσx
, where x and y are

the axes of the reaction plane perpendicular to the z axis taken
to be the incident photon momentum, as usual. The result
presented in Fig. 7(d) shows the large positive contributions
from the K∗ + K∗

2 of the natural parity and the large negative
contribution of the K exchange, i.e., −1, to �, though not
shown here. Hence the difference between the natural and
unnatural parity leads to the positiveness of �.

Finally, we reexamine the K− angular distribution I (θ∗) in
the �∗ rest frame by using the LEPS measurement. The data
were obtained by using a fit of the K+p mode based on the
function,

I (θ∗) = N
[
α sin2 θ∗ + β

(
1
3 + cos2 θ∗) + γ cos θ∗], (13)

where the effect of the background is further assumed in the
last term with the parameter γ and a scale constant N to the
arbitrary dimension of I (θ∗). The fractions of the �∗ helicities
±3/2 and ±1/2 are parametrized as α and β, which were
extracted to be about 0.52 and 0.48 from the LEPS fitting
procedure in the kinematical ranges 1.9 < Eγ < 2.4 GeV and
0◦ < θ < 60◦. In the backward region the fractions α ≈ 0.63
and β ≈ 0.37 were extracted in the angle 90◦ < θ < 180◦
and energy range 1.7 < Eγ < 2.4 GeV. Here, we consider
recovering α and β as ρ33 and ρ11, as before, to give them the
energy and angle dependencies in Eq. (13). Given the constant
N = 15, we obtain those solid curves in Fig. 8 with γ = −0.15
at θ = 30◦ for the forward [Fig. 8(a)] and γ = 0 at θ = 135◦
for the backward [Fig. 8(b)] directions at Eγ = 2.15 GeV by
using ρ33 and ρ11 calculated in the t-channel helicity frame at
the given energy and angles.

To examine the variation of I (θ∗) at the central values
of angle and energy as in Figs. 8(a) and 8(b) within the
experimental ranges of angle and energy, we calculate the
angle and energy dependencies of ρ33 and ρ11 to confirm that
the variations of these variables are not significant as shown
in Figs. 8(c) and 8(d). Furthermore, the overall dominance
of ρ33 over ρ11 is apparent in the given ranges of angle and
energy. Thus, we compare ρ33 ≈ 0.38 and ρ11 ≈ 0.12 to those
α/2 ≈ 0.26 and β/2 ≈ 0.24 from the fit of the LEPS above at
the forward angle, by considering that the trace condition of
the latter is twice that of the former. This supports the result in
the analysis of the LAMP2 data.
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FIG. 8. Angular distributions of the polar K− in the t-channel
helicity frame of �∗. Solid curves are our results in I (θ∗) from set
I with the parameters α and β replaced by ρ33 and ρ11 in Eq. (13).
The solid curves in the forward (a) and backward (b) directions are
estimated at θ = 30◦ with γ = −0.15, and at θ = 135◦ with γ = 0
for the fixed N = 15 at Eγ = 2.15 GeV. The contributions of K ,
K∗, K∗

2 , and the contact term are shown with the same notations
as in Fig. 3. Data are taken from Ref. [2]. The angle and energy
dependencies of ρ33 and ρ11 at forward angle (a) are presented by
solid and dotted lines in (c) and (d).

IV. SUMMARY AND DISCUSSION

In this work we have investigated the reaction γp →
K+�∗(1520) from threshold to photon energy Eγ = 11 GeV
based on the production amplitude in Eq. (1) for the meson
exchanges in the t channel. Following the convention and
definitions of the previous works [17,21,22] the t-channel
exchanges are Reggeized with the trajectories taken the same
as those γp → K+�, γp → K∗+�, and γp → K+�∗(1385)
for the sake of consistency.

Covering the whole range of the reaction energy for the
CLAS, LEPS, LAMP2, and SLAC experiments the cross sec-
tions for total, differential, and beam polarization asymmetry
are analyzed without either cutoff functions or fit parameters.
The angular distribution of K− from the �∗ → K−p decay
in the final state is discussed based on the role of the
density matrix elements played in the LAMP2 and LEPS data.
The basic ingredients of this simple model are the minimal
gauge prescription for the convergence of the reaction to the
experimental data and the role of K∗

2 substantial to agree with
data at high energies. Within the present framework, therefore,
the electromagnetic production of spin-3/2 baryon resonance
of negative parity could simply be understood as the production
mechanism similar to the well-known cases of π� [15] and
K�∗ [17], just as we have illustrated here.

Throughout the analysis of the total and differential cross
sections we find that the production mechanism is featured
by the dominance of the contact term and the K and K∗

2
exchanges follow with almost equal contributions in the low
energy region. While the role of the K∗ exchange is minor, the
K∗

2 exchange plays the role leading over other exchanges in
the reaction process at high energies. Though determined from
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the phenomenological analysis, here, the coupling constant of
fK∗N�∗ = 3.5 is interesting because it is closer to the result of
the K̄N coupled channel approach [13] rather than the quark
model prediction. It should be recalled that the determination
of K∗ in this work is not a free parameter but bound to
a determination of the K∗

2 coupling constant by Eq. (10),
which is set to agree with the SLAC data at Eγ = 11 GeV.
Therefore, the difficulty in identifying the coupling strength of
K∗ in previous studies is resolved by including K∗

2 with both
coupling constants set to be determined simultaneously in one
relation.

Based on the density matrix elements presented here, we
analyze the angular distribution function I (θ∗) for the �∗ →
K−p decay to investigate the role of the natural and unnatural
parity exchanges in the photoproduction process. By using the
t-channel helicity frame of �∗ for the calculation of the density
matrix elements ρλλ′ , we show that the numerical analysis of
the LAMP2 and LEPS data on I (θ∗) is consistent with the
dominance of the helicity ±3/2 of �∗ decay from the strong
contribution of ρ33 by the contact term in addition to the K∗ +
K∗

2 contributions. This finding is, however, contradictory to
the experiments in the SAPHIR [4] and the CLAS albeit the
latter case of electroproduction has more reasons to be [14].
Therefore, such a contradiction in explaining I (θ∗) should be
clarified in experiments by the precise measurements of ρ33

and ρ11 in a specified G.-J. frame.
As an application of the present work it is desirable to

reexamine the N∗ resonances here because the role of K∗
2 as

a new entry to the process is expected to regularize the χ2

fit to some degree with a hope that the double-counting by
the duality between s and t channels should not be significant
from the smallness of the N∗ contribution expected.
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APPENDIX A: DENSITY MATRIX IN t-CHANNEL
HELICITY FRAME OF �∗

We calculate the density matrix elements using the helicity
formalism in the Gottfried-Jackson (G.-J.) frame where the �∗
is rest. The z axis can be taken either as the direction of the
incident photon or as the target proton in the �∗ rest frame
conventionally, while the y axis is defined to be normal to the
production plane, i.e., ŷ ∝ γ̂ × K̂+. In the present calculation,
we take the z axis to be antiparallel to the direction of the
target proton following Ref. [14], which is called the t-channel
helicity frame of �∗. To work with the helicity formalism, we
perform the Lorentz transformation of the kinematic variables
k,q,p,p′ (which are the respective momenta of the photon,
K+, proton, and �∗) from the center-of-mass frame to the �∗
rest frame. By doing this the boosted momenta kA,qA,pA,p′

A

are obtained in the �∗ rest frame, the so-called the Adair frame.

Then, we construct the helicity eigenstate for each momentum
in the Adair frame.

For the target proton with mass Mp, we use the helicity
solutions as follows:

ψ

(
pA,

1

2

)
= N

⎛
⎜⎜⎜⎜⎝

cos θ
2

eiφ sin θ
2

| �pA|
E+Mp

cos θ
2

| �pA|
E+Mp

eiφ sin θ
2

⎞
⎟⎟⎟⎟⎠, (A1)

ψ

(
pA,−1

2

)
= N

⎛
⎜⎜⎜⎜⎝

− sin θ
2

eiφ cos θ
2

| �pA|
E+Mp

sin θ
2

− | �pA|
E+Mp

eiφ cos θ
2

⎞
⎟⎟⎟⎟⎠, (A2)

where pA = (E,| �pA| sin θ cos φ,| �pA| sin θ sin φ,| �pA| cos θ ) is
the momentum of target proton in the Adair frame and N is
the normalization constant.

For the �∗ resonance, the Rarita-Schwinger field of spin-
3/2 baryon is constructed from the vector-spinor representa-
tion,

ψμ

(
p,

3

2

)
= ε

μ
+(p)u

(
p,

1

2

)
,

ψμ

(
p,

1

2

)
=

√
2

3
ε

μ
0 (p)u

(
p,

1

2

)
+

√
1

3
ε

μ
+(p)u

(
p,−1

2

)
,

ψμ

(
p,−1

2

)
=

√
1

3
ε

μ
−(p)u

(
p,

1

2

)
+

√
2

3
ε

μ
0 (p)u

(
p,−1

2

)
,

ψμ

(
p,−3

2

)
= ε

μ
−(p)u

(
p,−1

2

)
, (A3)

where p = (M�∗ ,0,0,0), and M�∗ is the mass of �∗. For the
spinor u(p), the following wave functions are used:

u

(
p,

1

2

)
=

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠, (A4)

u

(
p,−1

2

)
=

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠. (A5)

For the vector εμ(p), the following helicity wave functions
are used:

ε
μ
±(p) = 1√

2
(0, ∓ 1,−i,0), (A6)

ε
μ
0 (p) = (0,0,0,1). (A7)

Once we get the density matrix elements ρA in the Adair
frame, we need to perform the coordinate transformation once
more from the Adair to the G.-J. frame to obtain ρGJ there.
In other words, to go to the G.-J. frame where the z axis is
antiparallel to the incident proton direction, we need to rotate
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x
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−pA
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FIG. 9. Photoproduction in the c.m. frame (a), and in the �∗ rest frame called as the Adair frame (b). The rotation from the Adair to the
t-channel helicity frame of �∗ by the angle β (c).

ρA about the y axis using the Wigner rotation matrix, i.e.,

ρG.J. = d†(β)ρAd(β). (A8)

Here β is the angle of the rotation between the incident proton
direction and the z axis in the Adair frame as shown in
Fig. 9. We summarize the procedure discussed above in a
diagrammatic representation in Fig. 9.

APPENDIX B: ANGULAR DISTRIBUTION FUNCTION FOR �∗ → K− p

The angular distribution function W (θ,φ) for �∗ → K−p decay measures the decay angle (θ,φ) of K− in the G.-J. frame
[the same angles (θ∗,φ∗) in the text] with respect to the incident photon polarization:

�Pγ = Pγ (− cos 2�,− sin 2�, 0), (B1)

where � is the angle between the polarization vector of the photon and reaction plane, and

W (θ,φ,�) = W 0(θ,φ) +
3∑

i=1

P i
γ (�)Wi(θ,φ). (B2)

The angular distribution function Wα for α = 0,1,2,3 is expressed in terms of the density matrix elements as [25]

Wα(θ,φ) = 2J + 1

8π

∑
λ′′

D
(3/2)∗
λλ′′ (φ,θ,−φ) ρα

λλ′ D
(3/2)
λ′λ′′ (φ,θ,−φ) (B3)

for the decay of spin- 3
2 → spin-0+spin- 1

2 with λ′′ = + 1
2 , or − 1

2 , i.e.,

Wα(θ,φ) = 1

2π

[
D

(3/2)∗
λ 1

2
(φ,θ,−φ) ρα

λλ′ D
(3/2)
λ′ 1

2
(φ,θ,−φ) + D

(3/2)∗
λ− 1

2
(φ,θ,−φ) ρα

λλ′ D
(3/2)
λ′− 1

2
(φ,θ,−φ)

]
, (B4)

with the spin- 3
2 rotation matrix elements given by

D
(3/2)
λ 1

2
=

(
−

√
3 cos2 θ

2
sin

θ

2
e−iφ, cos3 θ

2
− 2 cos

θ

2
sin2 θ

2
,

(
2 cos2 θ

2
sin

θ

2
− sin3 θ

2

)
eiφ,

√
3 cos

θ

2
sin2 θ

2
e2iφ

)
, (B5)

D
(3/2)
λ− 1

2
=

(√
3 cos

θ

2
sin2 θ

2
e−2iφ,

(
sin3 θ

2
− 2 cos2 θ

2
sin

θ

2

)
e−iφ,−

(
2 cos

θ

2
sin2 θ

2
− cos3 θ

2

)
,
√

3 sin
θ

2
cos2 θ

2
eiφ

)
. (B6)
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Here, the density matrix elements are

ρα
λλ′ =

⎛
⎜⎝

ρ33 Re ρ31 + i Im ρ31 Re ρ3−1 + i Im ρ3−1 i Im ρ3−3

Re ρ31 − i Im ρ31 ρ11 i Im ρ1−1 Re ρ3−1 − i Im ρ3−1

Re ρ3−1 − i Im ρ3−1 −i Im ρ1−1 ρ11 −Re ρ31 + i Im ρ31

−i Im ρ3−3 Re ρ3−1 + i Im ρ3−1 −Reρ31 − i Im ρ31 ρ33

⎞
⎟⎠ (B7)

for α = 0, 1 with Re [ρ3−3] = 0 = Re [ρ1−1] by Hermiticity and parity, and

ρ2
λλ′ =

⎛
⎜⎝

ρ33 Re ρ31 + i Im ρ31 Re ρ3−1 + i Im ρ3−1 Re ρ3−3

Re ρ31 − i Im ρ31 ρ11 Re ρ1−1 −Re ρ3−1 + i Im ρ3−1

Re ρ3−1 − i Im ρ3−1 Re ρ1−1 −ρ11 Re ρ31 − i Im ρ31

Re ρ3−3 −Re ρ3−1 − i Im ρ3−1 Reρ31 + i Im ρ31 −ρ33

⎞
⎟⎠, (B8)

with Im [ρ3−3] = 0 = Im [ρ1−1].
Thus, the angular distribution functions for α = 0,1 and α = 2 are given by

Wα(θ,φ) = 3

4π

[
ρα

33 sin2 θ + ρα
11

(
1

3
+ cos2 θ

)
− 2√

3
Re ρα

31 sin 2θ cos φ − 2√
3

Re ρα
3−1 sin2 θ cos 2φ

]
, (B9)

W 2(θ,φ) = 3

4π

(
2√
3

Im ρ2
31 sin 2θ sin φ + 2√

3
Im ρ2

3−1 sin2 θ sin 2φ

)
. (B10)

Therefore, according to Eq. (B2), the decay angular distribution in the G.-J. frame is given by [26]

W (θ,φ,�) = 3

4π

{
ρ0

33 sin2 θ + ρ0
11

(
1

3
+ cos2 θ

)
− 2√

3
Re

[
ρ0

31 cos φ sin 2θ + ρ0
3−1 cos 2φ sin2 θ

]

−Pγ cos 2�

[
ρ1

33 sin2 θ + ρ1
11

(
1

3
+ cos2 θ

)
− 2√

3
Re

[
ρ1

31 cos φ sin 2θ + ρ1
3−1 cos 2φ sin2 θ

]]

−Pγ sin 2�
2√
3

Im
[
ρ2

31 sin φ sin 2θ + ρ2
3−1 sin 2φ sin2 θ

]}
. (B11)

The beam polarization asymmetry is defined by integrating W over θ, φ angles,

� = − 1

Pγ

W (� = 0) − W
(
� = π

2

)
W (� = 0) + W

(
� = π

2

) , (B12)

which leads to

� = 2
(
ρ1

33 + ρ1
11

)
. (B13)

And in relation with the multikaon process the beam polarization asymmetry � with the final kaon measured at the specific
angles θ = 90◦ and φ = 90◦ in Eq. (B11) is written as [27]

�∗ = − 1

Pγ

W
(

π
2 , π

2 ,� = 0
) − W

(
π
2 , π

2 ,� = π
2

)
W

(
π
2 , π

2 ,� = 0
) + W

(
π
2 , π

2 ,� = π
2

) , =
ρ1

33 + 1
3ρ1

00 + 2√
3
Re

[
ρ1

3−1

]
ρ0

33 + 1
3ρ0

00 + 2√
3

Re
[
ρ0

3−1

] , (B14)

for the measurement at the fixed angle θ, φ.
The � in Eq. (B13) is equivalent to the beam polarization asymmetry,

� = dσy − dσx

dσy + dσx

, (B15)

defined in the center-of-mass frame. The estimate of the density matrix elements is in general dependent on the frame chosen for
calculation.

[1] K. Moriya et al., Phys. Rev. C 88, 045201 (2013).
[2] N. Muramatsu et al., Phys. Rev. Lett. 103, 012001 (2009).
[3] H. Khori et al., Phys. Rev. Lett. 104, 172001 (2010).
[4] F. W. Wieland et al., Eur. Phys. J. A 47, 47 (2011).
[5] D. P. Barber et al., Z. Phys. C 7, 17 (1980).
[6] A. M. Boyarski et al., Phys. Lett. B 34, 547 (1971).

[7] A. I. Titov, B. Kämpfer, S. Daté, and Y. Ohashi, Phys. Rev. C
72, 035206 (2005).

[8] S.-i. Nam and C.-W. Kao, Phys. Rev. C 81, 055206 (2010).
[9] J. He and X.-R. Chen, Phys. Rev. C 86, 035204 (2012).

[10] J.-J. Xie, E. Wang, and J. Nieves, Phys. Rev. C 89, 015203
(2014).

025208-9

https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevLett.103.012001
https://doi.org/10.1103/PhysRevLett.103.012001
https://doi.org/10.1103/PhysRevLett.103.012001
https://doi.org/10.1103/PhysRevLett.103.012001
https://doi.org/10.1103/PhysRevLett.104.172001
https://doi.org/10.1103/PhysRevLett.104.172001
https://doi.org/10.1103/PhysRevLett.104.172001
https://doi.org/10.1103/PhysRevLett.104.172001
https://doi.org/10.1140/epja/i2011-11047-x
https://doi.org/10.1140/epja/i2011-11047-x
https://doi.org/10.1140/epja/i2011-11047-x
https://doi.org/10.1140/epja/i2011-11047-x
https://doi.org/10.1007/BF01577315
https://doi.org/10.1007/BF01577315
https://doi.org/10.1007/BF01577315
https://doi.org/10.1007/BF01577315
https://doi.org/10.1016/0370-2693(71)90677-0
https://doi.org/10.1016/0370-2693(71)90677-0
https://doi.org/10.1016/0370-2693(71)90677-0
https://doi.org/10.1016/0370-2693(71)90677-0
https://doi.org/10.1103/PhysRevC.72.035206
https://doi.org/10.1103/PhysRevC.72.035206
https://doi.org/10.1103/PhysRevC.72.035206
https://doi.org/10.1103/PhysRevC.72.035206
https://doi.org/10.1103/PhysRevC.81.055206
https://doi.org/10.1103/PhysRevC.81.055206
https://doi.org/10.1103/PhysRevC.81.055206
https://doi.org/10.1103/PhysRevC.81.055206
https://doi.org/10.1103/PhysRevC.86.035204
https://doi.org/10.1103/PhysRevC.86.035204
https://doi.org/10.1103/PhysRevC.86.035204
https://doi.org/10.1103/PhysRevC.86.035204
https://doi.org/10.1103/PhysRevC.89.015203
https://doi.org/10.1103/PhysRevC.89.015203
https://doi.org/10.1103/PhysRevC.89.015203
https://doi.org/10.1103/PhysRevC.89.015203


BYUNG-GEEL YU AND KOOK-JIN KONG PHYSICAL REVIEW C 96, 025208 (2017)

[11] E. Wang, J.-J. Xie, and J. Nieves, Phys. Rev. C 90, 065203
(2014).

[12] L. Roca, S. Sarkar, V. K. Magas, and E. Oset, Phys. Rev. C 73,
045208 (2006).

[13] T. Hyodo, S. Sarkar, A. Hosaka, and E. Oset, Phys. Rev. C 73,
035209 (2006).

[14] S. P. Barrow et al., Phys. Rev. C 64, 044601 (2001).
[15] B.-G. Yu and K.-J. Kong, Phys. Lett. B 769, 262 (2017).
[16] B.-G. Yu and K.-J. Kong, arXiv:1612.02071.
[17] B.-G. Yu and K.-J. Kong, Phys. Rev. C 95, 065210 (2017).
[18] P. Stichel and M. Scholz, Nuovo Cimento 34, 1381 (1964).
[19] H. Toki, C. García-Recio, and J. Nieves, Phys. Rev. D 77, 034001

(2008).

[20] G. Goldstein and J. F. Owens III, Nucl. Phys. B 71, 461 (1974).
[21] B.-G. Yu, T. K. Choi, and W. Kim, Phys. Lett. B 701, 332

(2011).
[22] B.-G. Yu, Y. Oh, and K.-J. Kong, Phys. Rev. D 95, 074034

(2017).
[23] K. Schilling, P. Seyboth, and G. Wolf, Nucl. Phys. B 15, 397

(1970).
[24] S. Donnachie, G. Dosch, P. Landshoff, and O. Nachtmann,

Pomeron Physics and QCD (Cambridge University Press,
Cambridge, 2002).

[25] S. U. Chung and T. L. Trueman, Phys. Rev. D 11, 633 (1975).
[26] H. H. Bingham et al., Phys. Rev. Lett. 25, 1223 (1970).
[27] Q. Zhao, Phys. Rev. C 63, 025203 (2001).

025208-10

https://doi.org/10.1103/PhysRevC.90.065203
https://doi.org/10.1103/PhysRevC.90.065203
https://doi.org/10.1103/PhysRevC.90.065203
https://doi.org/10.1103/PhysRevC.90.065203
https://doi.org/10.1103/PhysRevC.73.045208
https://doi.org/10.1103/PhysRevC.73.045208
https://doi.org/10.1103/PhysRevC.73.045208
https://doi.org/10.1103/PhysRevC.73.045208
https://doi.org/10.1103/PhysRevC.73.035209
https://doi.org/10.1103/PhysRevC.73.035209
https://doi.org/10.1103/PhysRevC.73.035209
https://doi.org/10.1103/PhysRevC.73.035209
https://doi.org/10.1103/PhysRevC.64.044601
https://doi.org/10.1103/PhysRevC.64.044601
https://doi.org/10.1103/PhysRevC.64.044601
https://doi.org/10.1103/PhysRevC.64.044601
https://doi.org/10.1016/j.physletb.2017.03.070
https://doi.org/10.1016/j.physletb.2017.03.070
https://doi.org/10.1016/j.physletb.2017.03.070
https://doi.org/10.1016/j.physletb.2017.03.070
http://arxiv.org/abs/arXiv:1612.02071
https://doi.org/10.1103/PhysRevC.95.065210
https://doi.org/10.1103/PhysRevC.95.065210
https://doi.org/10.1103/PhysRevC.95.065210
https://doi.org/10.1103/PhysRevC.95.065210
https://doi.org/10.1007/BF02748863
https://doi.org/10.1007/BF02748863
https://doi.org/10.1007/BF02748863
https://doi.org/10.1007/BF02748863
https://doi.org/10.1103/PhysRevD.77.034001
https://doi.org/10.1103/PhysRevD.77.034001
https://doi.org/10.1103/PhysRevD.77.034001
https://doi.org/10.1103/PhysRevD.77.034001
https://doi.org/10.1016/0550-3213(74)90196-5
https://doi.org/10.1016/0550-3213(74)90196-5
https://doi.org/10.1016/0550-3213(74)90196-5
https://doi.org/10.1016/0550-3213(74)90196-5
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1103/PhysRevD.95.074034
https://doi.org/10.1103/PhysRevD.95.074034
https://doi.org/10.1103/PhysRevD.95.074034
https://doi.org/10.1103/PhysRevD.95.074034
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1103/PhysRevD.11.633
https://doi.org/10.1103/PhysRevD.11.633
https://doi.org/10.1103/PhysRevD.11.633
https://doi.org/10.1103/PhysRevD.11.633
https://doi.org/10.1103/PhysRevLett.25.1223
https://doi.org/10.1103/PhysRevLett.25.1223
https://doi.org/10.1103/PhysRevLett.25.1223
https://doi.org/10.1103/PhysRevLett.25.1223
https://doi.org/10.1103/PhysRevC.63.025203
https://doi.org/10.1103/PhysRevC.63.025203
https://doi.org/10.1103/PhysRevC.63.025203
https://doi.org/10.1103/PhysRevC.63.025203



