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Generalized Nambu-Goldstone pion in dense matter: A schematic Nambu–Jona-Lasinio model
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Chiral symmetry is always broken in cold, dense matter, by chiral condensation at low densities and by
diquark condensation at high density. We construct here, within a schematic Nambu–Jona-Lasinio model, the
corresponding generalized Nambu-Goldstone pion, πG. As we show, the πG mode naturally emerges as a linear
combination of the 〈q̄q〉 vacuum pion π and the 〈qq〉 diquark-condensate pion π̃ , with q the quark field, and
continuously evolves with increasing density from being π -like in the vacuum to π̃-like in the high density
diquark pairing phase. We calculate the density-dependent mass, decay constant, and coupling to quarks of the
πG, and derive a generalized Gell-Mann–Oakes–Renner relation in the presence of a finite bare quark mass mq .
We briefly discuss the implications of the results to possible Bose condensation of πG in more realistic models.
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I. INTRODUCTION

Chiral symmetry, spontaneously broken in the vacuum and
in low-density nuclear matter by chiral condensation—with
order parameter 〈q̄q〉—gives rise to the pseudoscalar octet of
Nambu-Goldstone (NG) bosons: pions, kaons, and eta. In the
quark matter regime at densities well above normal nuclear
matter density, BCS diquark pairing is predicted [1], either
in a color-flavor-locked (CFL) phase or a partially paired
phase dependent on the density and the u, d, and s quark
masses; the resulting diquark condensates 〈qq〉 continue to
break chiral symmetry at high density1 [5–8], even though
the chiral condensates 〈q̄q〉 gradually disappear. As a result,
the vacuum meson modes, corresponding to fluctuations of
the 〈q̄q〉 order parameter, become replaced with diquark
condensate meson modes corresponding to fluctuations of the
〈qq〉 order parameter in dense quark matter [9,10]. Between
low-density nuclear matter and high-density quark matter,
we expect an extensive coexistence region of finite 〈q̄q〉
and 〈qq〉, in which the NG modes are a combination of the
vacuum meson modes and diquark-condensate meson modes
[11–13]. As the density increases, the chiral NG modes evolve
from vacuum mesons to diquark-condensate mesons, and their
physical properties such as masses, decay, and interaction with
quarks are modified as the 〈q̄q〉 condensates are gradually
replaced by the 〈qq〉 condensates.

While chiral NG mesons have been studied in the limits of
low-density (non-BCS paired) q̄q condensed matter [14–18]
and high-density pure-BCS qq paired matter [11,19–21] using
the Nambu–Jona-Lasinio (NJL) model [22–24], a quantitative
description of NG mesons at intermediate densities remains an

1Depending on the specific diquark condensation at different
densities [2–4], the SU (3)L ⊗ SU (3)R chiral symmetry may only
be partially broken. In the partially paired 2SC isoscalar phase, likely
favored at moderate density where only up and down quarks pair, the
isospin subgroup SU (2)L ⊗ SU (2)R of the chiral symmetry remains
unbroken by the 2SC diquark condensate. On the other hand, in the
CFL phase at high density, all eight axial generators of the chiral
symmetry are broken by the CFL diquark condensate, in which all
quark flavors are paired.

open problem. Such a description requires adopting specific
models to describe the changing phase structure with increas-
ing density, itself an unresolved issue [5]. In this paper, we
study the chiral structure of a simplified single-flavor, single-
color NJL model that includes both scalar and pseudoscalar
condensates. Such a model has a single chiral NG mode,
which we refer to as the generalized pion,2 πG, corresponding
to simultaneous fluctuations of the 〈q̄q〉 and 〈qq〉 order
parameters. The resulting phase diagram, with properly chosen
model interaction parameters, mimics the more realistic QCD
phase diagram in terms of chiral symmetry breaking by the
low- and high-density condensates, which are here connected
smoothly by a coexistence region (for sophisticated NJL con-
structions of QCD phase diagram, see, e.g., Refs. [3,25–36]).
The generalized pion continuously evolves from the vacuum
pion, π , in the low-density chirally broken phase to the
diquark-condensate pion, π̃ , in the high-density BCS phase;
its mass and decay constant are continuous functions of quark
density, and obey a generalized Gell-Mann–Oakes–Renner
(GMOR) relation, which we calculate to second order in mq .
Its coupling vertex to the quark field also changes continuously
with increasing density.

The present study is a first step in understanding in detail
the density-dependent properties of the pseudoscalar mesons
extrapolated into high-density quark matter, and is readily
generalized to more realistic models with multiple flavors
and colors to quantitatively study the meson mass ordering
reversal problem [9]. In addition to clarifying the QCD phase
diagram in terms of generalized meson condensation, the study
of the πG mode also contributes to understanding the thermo-
dynamics of dense matter, and thus eventually the interiors and
cooling of neutron stars [37].

2The name “generalized mesons” was used, e.g., in Ref. [12], to
describe the q̄q̄qq modes corresponding to fluctuations of the diquark
condensates at high density. For clarity, we refer in this paper to the
NG modes (a combination of q̄q and q̄q̄qq modes) as “generalized
mesons,” the q̄q̄qq modes as “diquark-condensate mesons,” and the
usual q̄q modes as “vacuum mesons.”
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In Sec. II of this paper we introduce the model NJL La-
grangian, analytically solve it in the mean-field approximation,
and discuss the quasiparticle spectrum and energy eigenvec-
tors, while in Sec. III we compute the quark propagator as well
as the gap equations in the even parity, spin-singlet, or scalar,
ground state, without pion condensation. Then, in Sec. IV we
investigate the phase diagram and thermodynamic stability
of the system as a function of the model chiral and diquark
coupling strengths, which enables us to restrict the parameter
space in terms of an ultraviolet cutoff, in order that the resulting
phase diagram includes a chirally broken vacuum phase and a
high-density BCS phase, connected by a coexistence phase at
intermediate density, thus mimicking the more realistic phase
diagrams in NJL studies of cold dense matter.

We next discuss the collective modes in detail in Sec. V.
We first identify all the six collective modes in the chiral limit
in Sec. V A corresponding to fluctuations of the chiral and
diquark order parameters 〈q̄q〉 and 〈qq〉. We then focus on
the two pseudoscalar pionic modes π and π̃ in particular,
calculating their mixing mass matrix in Sec. V B and their
decay constants in Sec. V C, relating them to the mass and
decay constant of the rediagonalized NG mode πG, and we
then derive the density-dependent coupling vertex of πG to
quarks in the medium. In Sec. V D we look at the modifications
introduced by a finite bare quark mass mq , e.g., its effect
on the πG mass. We derive the matrix generalization of the
GMOR relation, deriving the two masses of the two pionic
modes to second order in mq , and discuss their behavior with
varying density. Finally, in Sec. VI we briefly comment on
the implications of possible condensates of the NG mode in
quark matter, together with several other open questions, such
as the possible roles of a new massive mode corresponding to
the phase difference between scalar and pseudoscalar diquark
condensates.

Throughout we assume zero temperature unless stated
otherwise, and use units h̄ = c = 1.

II. LAGRANGIAN, GAP EQUATIONS, QUASIPARTICLE
DISPERSION RELATIONS, AND ENERGY EIGENSTATES

We focus on the Lagrangian,

L = q̄(i∂/ − mq + γ0μ)q + G[(q̄q)2 + (q̄iγ5q)2]

+H [(qT iγ5Cq)(q̄iγ5Cq̄T ) + (qT Cq)(q̄Cq̄T )], (1)

where q is the quark field with bare mass mq and quark
chemical potential μ; γ μ are Dirac γ matrices and γ 5 =
iγ 0γ 1γ 2γ 3,C = iγ 0γ 2 is the charge conjugate matrix, G is
the coupling strength for the four-quark chiral interaction term,
and H is the strength of the spin-singlet pairing interaction; G
and H are model parameters. The four-quark interaction terms
exhibit equal coupling in the scalar and pseudoscalar channels.
As a result, the model for vanishing mq has a U (1)L ⊗ U (1)R
chiral symmetry3 of the quark field. Finally, as the four-
fermion interaction in this model is not renormalizable, we will

3In our single-flavor schematic model we call the U (1)L ⊗ U (1)R =
U (1)V ⊗ U (1)A symmetry simply the chiral symmetry, in contrast to
realistic NJL models with Nf > 1, where the SU (Nf )L ⊗ SU (Nf )R

adopt a three-momentum cutoff � to regulate the momentum
integrals throughout this work.

We solve this model in the mean-field approximation.
We define the vacuum expectation value of the composite
operators,4

σ = 2G〈q̄q〉, π = 2G〈q̄iγ5q〉,
�s = 2H 〈q̄iγ5Cq̄T 〉, �ps = 2H 〈q̄Cq̄T 〉; (2)

here �s is the pairing amplitude in scalar channel, and �ps in
pseudoscalar channel. The condensates σ and π serve as the
order parameters of spontaneous chiral symmetry breaking
at low density; the fluctuations of σ and π around their
ground-state values correspond to the NG boson (the vacuum
pion) and the massive Higgs-like mode. Also, under axial
U (1)A rotation �s and �ps rotate into each other; thus, a
nonvanishing expectation value of either of these diquark
operators also indicates broken chiral symmetry. We work in
the homogeneous phase, so that the mean fields are constant
in space.

We use the Nambu-Gor’kov formalism, defining the
charge conjugate quark field qC = Cq̄T , and forming the
Nambu-Gor’kov spinor ψ ≡ (q,qC)T /

√
2. Keeping leading-

order fluctuations of the composite operators around their
expectation values, we arrive at the mean-field Lagrangian,

LMF = ψ̄S−1
MF ψ − σ 2 + π2

4G
− |�s|2 + |�ps|2

4H
, (3)

with the fermion inverse propagator

S−1
MF =

(
i∂/ − M̂ + γ 0μ iγ5�

∗
s + �∗

ps

iγ5�s + �ps i∂/ − M̂ − γ 0μ

)
, (4)

where the effective quark mass matrix is M̂ = mq − σ − iγ5π .
The quark eigenstates are quasiparticles of momentum p with
dispersion relation ω( p), given by the solution of

det S−1
MF (ω( p), p) = 0 (5)

in frequency-momentum space. The result is

ω( p) = ±[(mq−σ )2+π2+ p2+μ2+|�s|2+|�ps|2±2δ( p)]
1
2 ;

δ( p) ≡ {(| p|μ ± Im[�s�
∗
ps])

2 + μ2[(mq − σ )2 + π2]

+ |(mq − σ )�ps − π�s|2} 1
2 . (6)

The leading ± sign in ω( p) is the degeneracy introduced
by the Nambu-Gor’kov formalism; the second ± sign in front
of δ( p) corresponds to the particle-hole branches; and the
last ± sign within δ( p) is a splitting caused by a relative
phase between �s and �ps. All three ± signs are independent
of each other, making a total of eight eigenvalues [or four
physical ones, after removing the Nambu-Gor’kov degeneracy

symmetry is the chiral symmetry and U (1)A is the U (1) axial
symmetry.

4Our definition of diquark pairing amplitude has iγ5 between the
quark fields, compared with γ5 alone, which is often used, e.g., in
Ref. [12].
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and keeping only positive ω( p)]. In the chiral limit mq = 0,
all four of the combinations

|�s|2 + |�ps|2, Im(�s�
∗
ps), σ

2 + π2, and |σ�ps + π�s|2
(7)

are fully invariant under U (1)L ⊗ U (1)R rotations, so that
ω( p) is always invariant under the full symmetry group of
the Lagrangian.

In terms of the different quasiparticle eigenvalues ω( p),
the grand thermodynamic potential per unit volume �(T ,μ) is
given by

� = − T

4∑
i=1

∫
p

[
ln(1 + e−ωi/T ) + 1

2T
(ωi − ωi0)

]

+ σ 2 + π2

4G
+ |�s|2 + |�ps|2

4H
. (8)

We use
∫

p to denote
∫

d3p/(2π )3, and the summation is over
the four positive eigenvalues ωi . The eigenvalues ωi0 are given
by the ωi with the mean fields set equal to zero and μ = 0,
and thus the free energy � vanishes in the vacuum with no
condensates. The value of the mean fields are self-consistently
determined by minimizing �, resulting in a total of six
equations:

∂�

∂σ
= ∂�

∂π
= ∂�

∂�s
= ∂�

∂�∗
s

= ∂�

∂�ps
= ∂�

∂�∗
ps

= 0, (9)

which we simply refer to as “gap equations.” Only five are
independent; they determine the two chiral fields and the two
complex pairing gaps (to within an overall phase). In the chiral
limit, only four of the gap equations are independent.

III. SCALAR CHIRAL AND DIQUARK CONDENSATES

Owing to the symmetries of the Lagrangian (1), the
solutions to the gap equations (9) are degenerate. We focus
on the particular choice in chiral limit mq = 0:

σ = −M, π = 0, �s = −i�, �ps = 0. (10)

This scalar state describes an even-parity, spin-singlet ground
state without pion condensation. In this state, the NG boson
corresponding to chiral symmetry breaking originates from
fluctuations in π and �ps, which are pseudoscalar. There
are two reasons for the choice (10): as in realistic chiral
symmetry breaking in QCD, the NG boson for chiral symmetry
breaking is pseudoscalar. In addition the favored diquark
pairing channel in ground state at high density is likely to be
scalar [1]. Therefore, we focus on the quasiparticle properties
and collective modes of this particular state.

The quark inverse propagator in the scalar state takes the
form

S−1
0 (ω, p) =

(
p/ − M + γ0μ −γ5�

γ5� p/ − M − γ0μ

)
. (11)

The effective mass M and BCS gap � are real. By choosing
�s to be purely imaginary as in Eq. (10), the eigenvectors of
the Hamiltonian can be chosen to be entirely real. In the scalar

state the two distinct positive eigenvalues have the familiar
form:

ω±( p) =
√

(ε±( p) − μ)2 + �2, ε±( p) = ±
√

p2 + M2,

(12)

each with spin degeneracy two, giving four positive eigenval-
ues in total. The corresponding normalized eigenvectors are

λ±(ω±( p),s) = R±( p)

(
v±( p)r( p)
u±( p)t( p)

)
,

(13)
r( p) ≡

(
s

P̂ s

)
, t( p) ≡

(−P̂ s
s

)
,

where s = (1,0)T or (0,1)T are spin-1/2 spinors, R2
±( p) ≡

[ε±( p) + M]/2ε±( p) defines the normalization constant, and
P̂ ≡ σ · p/[ε±( p) + M] is a projection operator in spinor
space; and the coherence functions v±( p),u±( p) are exactly
analogous to the nonrelativistic BCS results:

v±( p) =
√

ω±( p) + ε±( p) − μ

2ω±( p)
,

u±( p) =
√

ω±( p) − ε±( p) + μ

2ω±( p)
; (14)

they satisfy

v±( p)2 + u±( p)2 = 1; v±( p)u±( p) = �

2ω±( p)
. (15)

The eigenvectors corresponding to the remaining four negative
eigenvalues, coming from the charge conjugate fields, are
instead

λ̃±(−ω±( p),s) =
(

u±( p)r( p)

−v±( p)t( p)

)
. (16)

In our notation, “+” corresponds to the particle-antihole
branch, and “−” to the hole-antiparticle branch.

With these explicit eigenvalues and eigenvectors, the quark
propagator can be written as

S0(ω, p) =
∑
±,s

[
λ±[ω±( p),s]λ†

±[ω±( p),s]
1

ω − ω±( p)

+ λ̃±[−ω±( p),s]λ̃†
±[−ω±( p),s]

1

ω + ω±( p)

]
γ0,

(17)

where all eight eigenvalues are summed over. This form is
useful for computing various correlation functions. Lastly,
the gap equations (9) in the scalar phase reduce to the two
independent equations:

M

2G
= M

∑
±

∫
p

1

ω±( p)

(
1 ∓ μ√

p2 + M2

)
, (18)

�

2H
= �

∑
±

∫
p

1

ω±( p)
. (19)
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IV. PHASE DIAGRAM AND STABILITY OF THE MODEL
IN THE SCALAR STATE

The structure of the phase diagram in the scalar state,
which is obtained by solving the gap equations (18) and
(19), depends on the choice of G, H , and the cutoff �.
In realistic NJL parameter fitting, these model parameters
are partially controlled by fitting model predictions to lattice
results, nuclear matter, and meson properties at low baryon
density. Since our model is purely schematic and has reduced
color and flavor degrees of freedom, we base our choice
of G and H , in terms of �, on only two requirements:
(i) there emerges a relatively extensive coexistence phase
connecting the vacuum chiral symmetry-breaking phase and
high-density BCS phase, in order to mimic the realistic QCD
phase diagram, and (ii) the system remains stable throughout
the phase diagram. After discussing the ranges of G and H
consistent with these requirements, we construct the phase
diagram in the end of this section.

We first address constraints on G in the absence of pairing,
i.e., H = 0, � = 0. Then, for M 	= 0 Eq. (18) becomes:

1

2G
= 1

π2

∫ �

pF

p2dp√
M2 + p2

. (20)

The integral has an upper bound for all M . Therefore, at any
given Fermi momentum pF , there is a minimum value for G,
below which the chiral condensate ∼M cannot develop; the
minimum value can be evaluated by taking the limit M → 0
in Eq. (20) while regarding G as a function of pF :

G = π2

�2 − p2
F

. (21)

In particular, in the vacuum, pF = 0, one must have G >
π2/�2 to have a nonvanishing M . We denote this lower bound
as Gc1 = π2/�2.

In addition the requirement of stability under density
fluctuations places an upper bound on G. Such stability
requires ∂μ/∂n > 0 where n = p3

F /3π2 is the quark density.
This condition can be related to the solution for M(μ) in
Eq. (20). Differentiating pF (μ)2 = μ2 − M(μ)2 with respect
to μ we find

∂n

∂μ
= pF

π2

(
μ − M

∂M

∂μ

)
, (22)

which must remain positive to ensure stability. From the plots
of the solutions M(μ) as a family of curves given for varying
G in Fig. 1, we see that above a certain value of G, the M(μ)
curve begins to bend back.5 When back-bending begins with
increasing G, ∂M/∂μ, at first finite and negative, becomes
−∞, turns to +∞ and then becomes finite and positive. During
back-bending, Eq. (22) cannot remain positive. As a result,
the system becomes unstable against density perturbations,
and a homogeneous mean-field solution for the scalar state is
unphysical.

5A similar instability related to back-bending of 〈q̄q〉(μ) also
appears in lattice gauge analyses of chiral restoration, e.g., [38].

FIG. 1. Solutions to gap equation M(μ) for varying G. Back-
bending indicating instability first occurs at Gc2.

To compute this upper bound Gc2 for G above which back-
bending of M(μ) happens, we observe that the stability is first
violated, with increasing G, for M → 0. In this limit, ∂M/∂μ
can be calculated by differentiating Eq. (20) with respect to μ,
with the result

M
∂M

∂μ
=

(
1 − ln

�

pF (μ)

)−1

μ. (23)

The back-bending-related divergence of ∂M/∂μ then appears
at critical Fermi momentum pFc obeying 1 − ln �/pFc = 0,
i.e., pFc = �/e where e is Napier’s constant. Substituting pFc

back into Eq. (20) together with M → 0, we find the critical
value,

Gc2 = π2

(1 − e−2)�2
. (24)

Finally, we plot the stability of the system at varying Fermi
momentum and G in Fig. 2. In the range Gc1 < G < Gc2, the
system always undergoes a smooth second-order transition

FIG. 2. Stability of the system at varying Fermi momentum pF

and G, in terms of �. In the range Gc1 < G < Gc2, the system is
stable with a chirally broken vacuum.
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from the chirally broken region M 	= 0 to the restored region
M = 0.

We now turn to constraints on H . Unlike in Eq. (18) for
M , the integral in Eq. (19) for � does not have an upper
bound with varying �, owing to the singularity in 1/ω+( p) at
the Fermi surface | p| = pF when � → 0. As a result, at any
density Eq. (19) always has a nontrivial solution for all H , as
in nonrelativistic BCS theory. Thus, diquark pairing always
appears at finite densities; neither a lower nor upper bound for
H is imposed by requiring diquark pairing in the model.

The requirement of emergence of a coexistence phase,
however, does constrain H . For nonzero M and �, one can
divide the gap equation (18) by M and (19) by �, and subtract
one from the other, to find

1

2H
− 1

2G
=

∫
p

μ√
p2 + M2

(
1

ω+( p)
− 1

ω−( p)

)
. (25)

The right side of Eq. (25) is always positive since ω+( p) <
ω−( p). As a consequence, one must have H < G to have a
coexistence region.

For H 	= 0 and G = 0, the system is always stable as in non-
relativistic BCS. For finite G, however, proving stability be-
comes subtle and unfortunately too algebraically overwhelm-
ing to analyze by hand. Numerical calculation suggests that
instability could still develop when H becomes comparable
to G, but for relatively small H , � G/2, a stable coexistence
region can be achieved. Figure 3 shows the phase structure of
the model at varying pF plotted for a good choice G = 11�−2

and H = 6�−2. In the following we discuss the collective
modes of the system assuming a phase structure as in Fig. 3.

V. COLLECTIVE MODES: MASS SPECTRA
AND DECAY CONSTANTS

In this section we identify the collective excitations present
in the model system. The following discussion is valid for gen-
eral phase between the scalar and pseudoscalar condensates,

FIG. 3. The evolution of |〈q̄q〉| = M/2G and |〈qq〉| = �/2H

against quark density n with G = 11�−2 and H = 6�−2. The phase
diagram can be roughly divided into the chirally broken vacuum
(χSB) with � ≈ 0, M 	= 0, the coexistence (COE) phase where M

and � are both finite and comparable, and the high-density BCS limit
where � 	= 0 but M ≈ 0.

TABLE I. Six normal collective modes of the system.

Mode Description Parity

θB phonon; NG boson of broken U (1)V +
θπ + θd pionic mode; NG boson of broken U (1)A −
θπ − θd massive chiral oscillation between π and �ps −
M Higgs-like; breaks U (1)A +
� Higgs-like; breaks U (1)V and U (1)A +
φ relative phase oscillation between �s and �ps +

not just for the scalar state. In the chiral limit, the collective
excitations include two NG modes associated with the spon-
taneous breakings of the U (1)L ⊗ U (1)R = U (1)V ⊗ U (1)A
symmetries—the pionic mode πG, which is a linear combina-
tion of the vacuum pion mode π and the diquark-condensate
pion mode π̃ , and a phonon mode corresponding to fluctuations
of the overall phase of the scalar and pseudoscalar pairing gaps,
�s and �ps. In addition the system has four massive modes, one
corresponding to the other linearly independent mixture of π
and π̃ , two Higgs-like modes corresponding to the fluctuations
of the magnitudes of the chiral and diquark condensates, and
finally one corresponding to the relative phase of the scalar
and pseudoscalar condensates. The modes are summarized in
Table I.

A. General parametrization of the collective modes

The collective modes in the model system can be directly
obtained via the variation of � under small fluctuations of the
mean fields. To parametrize the modes, we write the mean
fields in terms of the chiral sector axial U (1)A angle θπ , the
diquark sector U (1)A angle θd , the relative phase angle φ
between �s and �ps, and the overall U (1)V phase angle θB :

σ = −M cos θπ ,

π = −M sin θπ ,

�s = −i�eiθB eiφ/2 cos θd,

�ps = i�eiθB e−iφ/2 sin θd . (26)

The oscillations of θπ correspond to the usual pion mode, π ,
while those of θd correspond to the diquark-condensate pion,
π̃ . We choose � > 0, M > 0, and thus σ < 0 at θπ = 0 (see
Sec. V D). The U (1)V transformation is trivial, with both �s

and �ps picking up the same phase θB → θB + θV . On the
other hand, when rotating the system by a U (1)A angle θA, the
σ and π fields transform as

σ → σ cos θA − π sin θA

π → π cos θA + σ sin θA

}
⇒ θπ → θπ + θA. (27)

However, the transformation of �s and �ps is more
complicated:

�s → �s cos θA + �ps sin θA

= −i�

[
cos

φ

2
cos (θd + θA) + i sin

φ

2
sin (θd − θA)

]

≡ −i�eiφ′/2 cos θ ′
d ,
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�ps → �ps cos θA − �s sin θA

= −i�

[
− cos

φ

2
sin (θd + θA) + i sin

φ

2
sin (θd − θA)

]

= i�e−iφ′/2 sin θ ′
d , (28)

that is, both the relative phase φ and the chiral angle θd change
under the chiral transformation. When the two condensates
are in phase, i.e., φ = 0, the result reduces to θd → θd + θA

and θπ → θπ + θA. In this case, the diquark-condensate pion
corresponds to oscillations of the product of the two diquark
terms, �s�

∗
ps. For nonzero φ, we have

cos θd → cos θ ′
d =

[
cos2 φ

2
cos2(θd + θA)

+ sin2 φ

2
sin2(θd−θA)

] 1
2

,

φ → φ′ = 2 tan−1

[
tan(φ/2) sin(θd − θA)

cos(θd + θA)

]
. (29)

In terms of the parametrization (26), the four invariants (7)
become

σ 2 + π2 = M2,

|�s|2 + |�ps|2 = �2, (30)

Im[�s�
∗
ps] = �2

2
sin 2θd sin φ,

and

|σ�ps + π�s|2

= M2�2

[
sin2(θπ − θd ) − 2 sin θπ sin θd sin2 φ

2

]
. (31)

From the six independent real degrees of freedom,
M,�,θπ ,θd,θB,φ, we identify the six independent normal
modes:

(i) The massless phonon mode, corresponding to
fluctuations of θB . This mode is massless since
the free energy does not depend on this angle.

(ii) The massless pionic mode, πG, identified with
fluctuations of the angle θG ≡ (θπ + θd )/2.
Again the free energy does not depend on θG.
This mode describes the simultaneous chiral
rotation of σ and �s in the same direction and
is the NG mode.

(iii) A massive pionic mode, denoted as πM , identi-
fied with fluctuations of θM ≡ (θπ − θd )/2. This
mode does not correspond to a U (1)A rotation
of the system and is thus always massive. The
stiffness term for this mode is

∂�

∂ sin2 (θπ − θd )
= −

∑
±

∫
p

M2�2

±δ( p)ω±

=
∫

p

M2�2

μ
√

p2 + M2

(
1

ω+
− 1

ω−

)
, (32)

which is always positive in the coexistence
phase, where M2�2 	= 0. The squared mass
of the massive mode, proportional to the stiff-
ness term, ∼M2�2, indicates that the mixing
naturally occurs as long as there is a coexis-
tence phase, even without any explicit q̄q-qq
coupling interactions at mean-field level in
the Lagrangian. This massive excitation always
accompanies the chiral NG mode πG; however,
it becomes unstable against decay into πG when
higher-order fluctuations of the fields are taken
into account. The mixing of the π and π̃ modes
to form the massless πG and the massive πM

modes is a concrete example of the mechanism
described in Ref. [12]. Here mixing results from
the term |σ�ps + π�s|2, which leads to terms
∼ππ̃ .

(iv and v) The two massive modes corresponding to fluc-
tuations of � and M . These modes can be as-
sociated with oscillations in the radial direction
of Mexican hat potentials describing the broken
symmetry state. In particular, the fluctuations of
M are related to the heavy σ meson in nuclear
matter.

(vi) The massive mode associated with fluctuations
of the relative phase φ. This mode is generally
not discussed in NJL investigations of the phase
diagram. If one starts in the scalar state with
φ = 0, a axial rotation θA will leave this angle
untouched, as seen from Eq. (29). Note that
if either �s or �ps vanishes, this mode is not
present.

Having delineated the modes, we study in detail the
transition from the vacuum pion mode π associated with θπ

to the diquark pion mode π̃ in BCS phase at high density
associated with θd . We consider the fluctuations of the system
about the scalar state fixing φ = 0, and neglect the phonon
mode as well as the massive modes M and �; the latter of
positive parity do not mix with the pionic modes.

B. Mass matrix for π and π̃

We first calculate the two-by-two mass matrix � relating the
π and π̃ modes in an effective Lagrangian. To do so we expand
the free energy � in terms of θπ and θd to second order. As
discussed earlier, of the two new linearly independent modes,
πG and πM , the NG mode πG remains massless while πM must
be massive. In fact, Eq. (32) shows that

� = �0 + 1

2
θ2
M

∫
p

∑
±

1

ω±( p)ε±( p)μ
+ . . .

≡ �0 + 1

2
�θ T ��θ + . . . , (33)

where the vector �θ ≡ (θπ ,θd )T , and �0 = �(θπ = θd = 0).
Equation (33) immediately indicates that the stiffness matrix
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for the angles �θ is

� = M2�2a

(
1 −1

−1 1

)
, (34)

where

a(μ) ≡
∫

p

∑
±

1

ω±( p)ε±( p)μ
, (35)

which is always positive. The matrix � is related to the mass
matrix � for the two pionic fields, i.e., the vacuum pion π =
fπθπ and the diquark-condensate pion π̃ = fπ̃θd (fπ and fπ̃

being their decay constants), by

� = F−1�F−1 = M2�2a

(
1/f 2

π −1/fπfπ̃

−1/fπfπ̃ 1/f 2
π̃

)
, (36)

where F = diag(fπ, fπ̃ ) is a simple invertible matrix relating
π and π̃ to θπ and θd :

�π ≡
(

π
π̃

)
= F

(
θπ

θd

)
. (37)

The mass matrix � in Eq. (36) is diagonalized by the
transformation(

π
π̃

)
= 1√

f 2
π + f 2

π̃

(
fπ fπ̃

fπ̃ −fπ

)(
πG

πM

)
, (38)

directly relating the πG and πM modes to the initial π
and π̃ modes, with the expected mixing ratio described in
Ref. [12]. The two eigenvalues of �, m2

G = 0 and m2
M =

M2�2a(f −2
π + f −2

π̃ ), give the masses of πG and πM .
The off-diagonal terms in �, corresponding to mixing of the

π and π̃ modes, can also be understood in terms of perturbing
the correlation functions in the chiral and diquark channel.
Essentially, the corresponding off-diagonal term in � can be
written as

�12 = ∂

∂θd

(
∂�

∂θπ

)
= −iM

∂〈ψ̄�πψ〉
∂θd

= M�
∂〈ψ̄�πψ〉
∂〈ψ̄��psψ〉 ∼ ∂〈q̄iγ5q〉

∂〈qq〉
∣∣∣∣
θπ

, (39)

where we have defined the matrices in Nambu-Gor’kov-Dirac
space

�π ≡ 1

M

∂S−1

∂θπ

=
(

iγ5 0
0 iγ5

)
,

(40)

��ps ≡ 1

i�

∂S−1

∂θd

=
(

0 0
1 0

)
,

with 1 the 4 × 4 identity matrix in Dirac space.
It is instructive to compare the results (34) and (36) with the

general discussion in Ref. [12], where the pion mass matrix
for π and π̃ was constructed from a general Ginzburg-Landau
expansion of the free energy based on symmetry principles.
Up to fourth-order terms in the mean fields, we see that the
existence of the mixing terms, i.e., the off-diagonal terms in �,
∼M2�2 falls naturally out of the present expansion of the free
energy. The existence of these terms can be understood as a
consequence of Goldstone’s theorem, since only the NG boson

mode should remain massless; individual fluctuations of θπ and
θd no longer correspond to a global U (1)A transformation of
the system, thus they cannot remain massless in the coexistence
phase. Only the rediagonalized mode πG corresponding to the
simultaneous rotation of θπ and θd is massless, i.e., the mode
θG = (θπ + θd )/2.

C. Decay constant of the chiral NG mode πG

Having identified the mass matrix, we next study the decay
constant of the NG mode πG, which can be identified as the
kinetic energy coefficient of θG in the effective Lagrangian of
the bosonic fields in the long wavelength limit. To do so, we
consider spatially dependent fluctuations of θπ and θd . We first
apply a Hubbard-Stratonovich transformation of the original
quark system into a coupled system of quark fields and bosonic
fields corresponding to the fluctuations of all the mean fields σ ,
π , �s, and �ps. We denote these fluctuations by σ̂ , π̂ , �̂s, and
�̂ps, where the hat distinguishes the bosonic field fluctuations
from their corresponding mean-field values.

The partition function can be computed from the functional
path integral:

Z =
∫

dq dq̄ dσ̂ dπ̂ d�̂s d�̂∗
s d�̂ps d�̂∗

ps

× exp

{
i

∫
d4x[q̄S−1q − V (σ̂ ,π̂ ,�̂s,�̂ps)]

}
, (41)

where t = iτ , with 0 � τ � β, β being the inverse tempera-
ture. The inverse quark propagator S−1 is perturbed from that
in the scalar state S−1

0 , defined in Eq. (11), by the bosonic
fields:

S−1 = S−1
0 + x̂, (42)

where

x̂ =
(

σ̂ + iγ5π̂ iγ5�̂
∗
s + �̂∗

ps

iγ5�̂s + �̂ps σ̂ + iγ5π̂

)
. (43)

The potential term is

V (σ̂ ,π̂ ,�̂s,�̂ps) = 1

4G
[(σ̂ − M)2 + π̂2]

+ 1

4H
[|�̂s − i�|2 + |�̂ps|2]. (44)

Integrating out the quark fields to obtain the determinant of
S−1, and then reexponentiating we find the effective action A
involving only the bosonic fields:

A = −iTr ln S−1 +
∫

d4x V

= −iTr ln S−1
0 − iTr

[
S0x̂ − (S0x̂)2

2

]
+

∫
d4x V + · · · ,

(45)

where Tr denotes the sum over all indices, including position
(or equivalently, momentum). In the following we drop the
constant term −iTr ln S−1

0 as it does not involve the bosonic
fluctuations. We write the bosonic field fluctuations in terms
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of the spatially dependent real bosonic fields θ̂π and θ̂d , as in
Eq. (26):

−M cos θ̂π = σ̂ − M,

−M sin θ̂π = π̂ ,

−i� cos θ̂d = �̂s − i�,

i� sin θ̂d = �̂ps. (46)

As a result, to leading order in θ̂π and θ̂d ,

σ̂ ≈ 1

2
Mθ̂2

π , π̂ ≈ −Mθ̂π, �̂s ≈ i

2
�θ̂2

d , �̂ps ≈ i�θ̂d ;

(47)

using this equation we expand A up to second order in θ̂π and
θ̂d , writing first,

x̂ ≈ M

(
1
2 θ̂2

π − iγ5θ̂π 0

0 1
2 θ̂2

π − iγ5θ̂π

)

+ �

(
0 1

2γ5θ̂
2
d − iθ̂d

− 1
2γ5θ̂

2
d + iθ̂d 0

)

≡ M

(
1

2
θ̂2
π�σ − θ̂π�π

)
+ �

(
1

2
θ̂2
d �σ̃ − θ̂d�π̃

)
, (48)

where the matrices �σ , �σ̃ , and �π̃ in Nambu-Gor’kov-Dirac
space are

�σ =
(

1 0
0 1

)
, �σ̃ =

(
0 γ5

−γ5 0

)
, �π̃ =

(
0 i1

−i1 0

)
,

(49)

while �π is already defined in Eq. (40).

In terms of real vector field �θ ≡ (θ̂π ,θ̂d )
T

, the quadratic
effective action becomes

A ≈ 1

2
βV

∫
d4k

(2π )4
�θ (−k)TD−1

θ (k)�θ(k), (50)

where

D−1
θ (k) =

(
M2(Bππ (k) − 1/2G) M�Bπd (k)

M�Bπd (k) �2(Bdd (k) − 1/2H )

)

(51)

is a two-by-two matrix, and V is the spatial volume of the
system. The bubbles are defined by6

Bππ (k) = i

∫
d4p

(2π )4
tr[S0(p)�πS0(p − k)�π ],

Bπd (k) = i

∫
d4p

(2π )4
tr[S0(p)�πS0(p − k)�π̃ ], (52)

Bdd (k) = i

∫
d4p

(2π )4
tr[S0(p)�π̃S0(p − k)�π̃ ],

6Note that with the u, d quarks replaced by protons and neutrons the
bubble Bππ is simply the self-energy of the conventional in-nuclear
medium pion Green’s function.

where tr denotes the Dirac and Nambu-Gor’kov trace. The
factors 1/2G and 1/2H result from using the gap equations
(18) and (19). Note that by the definition (50), D−1

θ (0) simply
reduces to −� at zero momentum k = 0.

At finite density, D−1
θ is generally not a function of the

Lorentz scalar k2.7 Thus the temporal and spatial decay
constants need not be equal at finite density. To second order
in k,

D−1
θ (k) ≈ −� + Qk2

0 − Qvk2, (53)

where Q and Qv are also two-by-two matrices. The dispersion
relations of the modes are given by the eigenvalues of D−1

θ ,
the decay constants are contained in the matrix Q, and the
mode velocities are included in Qv . As we show shortly, after
keeping only the leading-order logarithm divergencies, Q is
related to the matrix F as defined in Eq. (37) by Q = F2,
while Qv = diag(v2

π ,v2
π̃ )Q [see Eq. (60)] where vπ and vπ̃ are

the mode velocities of π and π̃ .
The bubbles (52) can be directly calculated from Eq. (17).

To calculate the decay constant matrix Q, we choose k =
(k0,0), and then take derivatives of the bubbles with regard
to k0. The p0 integrals are Matsubara frequency summations
with p0 → iων = 2πiT ν and

∫
dp0 → 2πiT

∑
ν , where ν =

±1/2, ± 3/2, . . .. In terms of the quasiparticle spectrum ω±,
the free particle dispersion ε±, and the coherence functions
v± and u± defined in Sec. III—all functions of the three-
momentum integration variable p—the bubbles are

Bππ

(
k2

0

) =
∫

p

∑
j,�=±

(ujv� − vju�)2

(
1− M2 + p2

εj ε�

)
Aj�(k0),

Bdd

(
k2

0

) =
∫

p

∑
j,�=±

(vjv� + uju�)2

(
1 −M2 − p2

εj ε�

)
Aj�(k0),

Bπd

(
k2

0

) =
∫

p

∑
j,�=±

(vjv� + uju�)(vju� − ujv�)

× M(ε� − εj )

ε�εj

Aj�(k0), (54)

where

Aj�(k0) = 1

2

(
− 1

k0 − ωj − ω�

+ 1

k0 + ωj + ω�

)
. (55)

The physical interpretation of Eqs. (54) for the bubbles
is the following. The first factor, sums of products be-
tween coherence functions, indicates whether the quark loop
connects the quark field with the quark field or with the
charge-conjugate quark field. The second factor, involving
ε’s, M2 and p2, depends on whether the quark loop connects
particle-antihole states with particle-antihole states, or with
antiparticle-hole states. Both the first and second factors are
at most of order unity. The final factor Aj�, Eq. (55), reveals
the pole structure of the external frequency k0; it contains a
pair of poles located at ±(ωj + ω�) with opposite signs for

7Even in the vacuum use of a three-momentum cutoff violates
Lorentz invariance.
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FIG. 4. Characteristic diagrams corresponding to the bubbles
(54). The direct (a) π -π and (b) π̃-π̃ bubbles correspond to Bππ and
Bdd , while the π -π̃ mixing bubbles such as (c) and (d) correspond to
Bπd . Due to the breaking of U (1)V by diquark pairing, quark number
is not conserved.

the corresponding residues, representing the pion state and
antipion state described by the bubble. In our model the pion
is only neutral, thus they represent the same pion state. In
Nf = 2 models where charged pions are present, the dual
poles would represent the π+ and the π− state separably.

For example, consider the Bππ bubble; the factor (ujv� −
vju�)2 involves products between v and u, indicating that the
quark loop connects the quark field with the charge-conjugate
field; the factor 1 − (M2 + p2)/εj ε� vanishes unless j = −�,
indicating that the particle-antihole state is connected to the
antiparticle-hole state. Altogether, the quark field particle-
antihole state is connected to the charge-conjugate antiparticle-
hole state (or equivalently, to the quark field particle-antihole
state itself), and the quark field antiparticle-hole state is
connected to the charge-conjugate particle-antihole state (or
equivalently, to the quark antiparticle-hole state).

Furthermore, the mixing bubble �πd can be further sim-
plified by using the properties, Eq. (15), of the coherence
functions; we find

Bπd

(
k2

0

) = −M�

∫
p

∑
j,�=±

(εj − ε�)2

2εj ε�ωjω�

Aj�(k0). (56)

This bubble, connecting the chiral pion mode and diquark
mode, is nonvanishing only in the coexistence region M 	= 0
and � 	= 0. The bubbles are summarized diagrammatically in
Fig. 4.

In terms of the bubbles, the matrix � is given by −D−1
θ (k =

0), as in Eq. (51). We find explicitly,

M2

(
Bππ (0) − 1

2G

)
= �2

(
Bdd (0) − 1

2H

)

= −M�Bπd (0) = −M2�2a, (57)

[a is given by Eq. (35)] confirming the expected form (34) of
�.

From Eq. (54) we calculate the Q matrix:

Q11 = M2
∫

p

∑
j,�=±

(ujv� − vju�)2

(
1 − M2 + p2

εj ε�

)
Wj�,

Q22 = �2
∫

p

∑
j,�=±

(vjv� + uju�)2

(
1 − M2 − p2

εj ε�

)
Wj�,

Q12 = −2M2�2
∫

p

1

ω+ω−(ω+ + ω−)3
= Q21, (58)

where

Wj�( p) ≡ 1

[ωj ( p) + ω�( p)]3
. (59)

The results (34) and (58) show that both � and the diagonal
elements Q11 and Q22 are logarithmically divergent (of order
ln �/M or ln �/�), while the off-diagonal elements Q12

are finite. In the following, we drop the finite off-diagonal
terms, following the standard prescription of considering only
the ultraviolet-divergent pieces up to logarithmic accuracy
of the bubble diagrams in effective bosonized theories (see,
e.g., Refs. [39–41]). The dropped Q12 terms would result in
anomalous crossing terms ∼∂μθ̂π∂μθ̂d , which are absent in
general parametrizations of pionic mode kinetic energies (up
to second order in the pionic fields) in the literature, e.g.,
Ref. [12]. After this procedure, we identify the remaining
diagonal elements of Q as the squared decay constants for
the vacuum pion and the diquark-condensate pion:

f 2
π = Q11, f 2

π̃ = Q22; (60)

that is, Q = F2 = diag(f 2
π ,f 2

π̃ ), where F = diag(fπ,fπ̃ ) as in
Eq. (37). Similarly dropping the finite off-diagonal terms of
the velocity matrix Qv , we obtain Qv = diag(v2

π ,v2
π̃ )Q, where

the velocities are

v2
π = Qv11 = f −2

π

∂Bππ (0)

∂k2
,

v2
π̃ = Qv22 = f −2

π̃

∂Bdd (0)

∂k2
. (61)

In terms of the pion fields π (x) = fπ θ̂π (x) and π̃ (x) =
fπ̃ θ̂d (x), the effective Lagrangian density is now

1
2
�θ T

(−Q∂2
t + Qv

�∂ 2 − �
)�θ

≡ 1
2 �πT

(−∂2
t + diag

(
v2

π ,v2
π̃

)�∂ 2 − �
)�π, (62)

where �π (x) ≡ [π (x), π̃ (x)]T = F �θ (x). The inverse propaga-
tor in Eq. (62) is again diagonalized by Eq. (38), in terms of
the NG mode πG and the massive mode πM . Furthermore, in
terms of θ̂π and θ̂d , we write

πG = f 2
π θ̂π + f 2

π̃ θ̂d√
f 2

π + f 2
π̃

≡ fGθ̂G, (63)

where θ̂G, the chiral NG boson degree of freedom, is the
fluctuation corresponding to the universal axial U (1)A rotation
of the whole system from the scalar state; such rotation
corresponds to the simultaneous rotation of θ̂π and θ̂d , therefore
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FIG. 5. Decay constants fG, fπ and fπ̃ as functions of quark
density n, with G = 11�−2 and H = 6�−2.

θ̂G = θ̂π = θ̂d . As a result,

f 2
G = f 2

π + f 2
π̃ , (64)

thus relating the decay constant of the NG boson fG to
the decay constants fπ and fπ̃ for the corresponding chiral
rotations of the 〈q̄q〉 and 〈qq〉 order parameters. As Eq. (63)
shows f 2

π and f 2
π̃ can be understood as the weight functions of

π and π̃ within the NG mode πG.
The plot of fG, fπ and fπ̃ as functions of quark density in

Fig. 5 shows that the decay constant of the NG pion, fG, always
increases with increasing quark density, whereas fπ decreases
with density; the behavior of fπ is in agreement with the
prediction of in-medium chiral perturbation theory [42] that to
leading order in the density the pion decay constant decreases
from its vacuum value linearly.8 The different behavior of
fG and fπ arises from the presence of diquark pairing at all
densities in our schematic model; even at low density, the BCS
gap causes fG to increase with increasing density despite 〈q̄q〉
(and thus fπ ) gradually shrinking at the same time.9

The low-density behavior of fπ̃ and � can be derived from
the pairing gap equation (19) and the bubble results Eq. (58).
Isolating the divergent part 1/ω+ in the gap equation integral,
one can show that in the limit n → 0, the gap behaves like

�

�
∼ pF

M
e−π2/HMpF , (65)

indicating that �/n goes to 0 as n goes to 0. Similarly, by
isolating the divergent piece of the bubble integral in Eq. (58)

8Unlike NJL discussions of quark matter, reference [42] discusses
only a nucleon medium. Although the vacuum cannot be described
by deconfined NJL quark matter, the behavior of its chiral NG mode
under modification of the density does connect qualitatively well
with such nuclear matter models, a similarity suggesting that the
transition from nuclear matter to high-density quark matter could
have continuous dynamic chiral symmetry breaking.

9Realistically, the homogeneous diquark pairing described in the
present model does not appear in the low-density QCD phase diagram,
owing to the onset of confinement.

in the (j,�) = (+,+) part of the sum, one can show that in the
limit n → 0, fπ̃ ∼ √

n/M , and �2/f 2
π̃ ∼ �2M/n → 0.

The decay constant fG can be equivalently parametrized
as the vector transition amplitude from a state with one
generalized pion to the vacuum via the time component of
the axial current J

μ
A ≡ ψ̄iγ μγ 5ψ/2, in the same way as in the

vacuum pion treatment [24] in NJL models:

ifGk0 =〈0|J 0
A|πG〉 = 1

fG

〈0|J 0
A|fππ + fπ̃ π̃〉

= 1

fG

i
(
f 2

π + f 2
π̃

)
k0, (66)

again confirming Eq. (64).
The density-dependent Nambu-Gor’kov interaction ver-

tices coupling πG and πM to the Nambu-Gor’kov quark field ψ
can also be written in terms of the decay constants. Using the
perturbed quark inverse propagator with the bosonized fields
in Eqs. (42) and (43), and the transformation Eq. (38), we write
the bosonized interaction as

Lint = ψ̄

(
M

fπ

�ππ + �

fπ̃

�π̃ π̃

)
ψ

= ψ̄(�GπG + �MπM )ψ, (67)

where the interaction vertices,

�G(μ) ≡ 1

fG

(M�π + ��π̃ ),

�M (μ) ≡ 1

fG

(
fπ̃

fπ

M�π − fπ

fπ̃

��π̃

)
, (68)

are matrix functions of μ, describing the coupling of πG and
πM to the chiral q̄q and diquark pairing qq sectors of the quark
medium. Figure 6 shows the diagrammatical representation
of the decomposition of �G. The coupling strengths to the
chiral sector and the diquark sector are given by the weightings
M/fG and �/fG; in the vacuum limit �/fG = 0, and the
former simply reduces to gπ , the residue of the pion pole in
the q̄q-q̄q scattering T matrix, related to M and fπ via the
familiar Goldberger-Treimann relation gπ = M/fπ .

In more realistic NJL models with multiple flavors present,
possible asymmetric chiral and diquark pairings due to the
heavy strange quark, and the Kobayahsi-Miskawa-’t Hooft
six-quark instanton interaction [43–45] provide additional
q̄q-qq mixing, with further modifications of �G and �M . We
leave this topic to future research.

D. Finite bare quark mass mq �= 0

We now turn on a finite but small bare quark mass mq ,
explicitly breaking the chiral symmetry, to investigate its effect
on the mass matrix �. We obtain the perturbed � by directly
taking second order derivatives of � with respect to θπ and θd ,
using Eq. (8).

We first review the familiar σ -π sector alone, where there
is only one mode π present. As seen from the quasiparticle
spectrum, ω±( p), Eq. (6), mq slightly shifts σ , causing the
system to favor a negative value for σ (whence the sign in
the parametrization σ = −M cos θπ ). In the vacuum scalar
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FIG. 6. (a) Diagrammatic decomposition of quark-πG coupling
�G into chiral �π and diquark �π̃ vertices. The (green) dashed
double line represents the πG field. The Nambu-Gor’kov field ψ

(black double line) contains both the quark and charge-conjugate
quark fields, thus including the quark field (black, solid, arrowed
line) propagating in either time direction; �π is the coupling matrix
between vacuum pion π (red dashed line) and the pseudoscalar
q̄q quark sector, and �π̃ is the coupling matrix between diquark-
condensate pion π̃ (blue double line) and the pseudoscalar qq

sector. (b) Characteristic bubble diagrams contributing to the resulting
self-energy of πG in the Nambu-Gor’kov formalism, including both
direct bubbles, Bππ and Bdd , and mixing bubbles, Bπd .

state, the eigenvalues expanded to leading order in mq are:

ω±( p) = ∣∣±(
p2 + m2

q + σ 2 + π2 − 2mqσ
)1/2 − μ

∣∣
= ω±( p)mq=0+

(
± μ√

p2+σ 2+π2
−1

)
σmq

ω±( p)mq=0
.

(69)

As a result, the free energy becomes

� = �mq=0 + σmq

∑
±

∫
p

1

ω±

(
1 ∓ μ√

p2 + σ 2 + π2

)

≈ �mq=0 + σmq

2G
, (70)

where we have used the gap equation Eq. (18) in writing the
second line, up to linear order in mq . With the parametrization
(26), this term effectively adds a positive stiffness term for
θ2
π ∼ π2, since σ = −M(1 − θ2

π/2 + . . .). We thus retrieve
the GMOR result for the vacuum pion mass,

f 2
π m2

π = M

2G
mq = −〈q̄q〉mq, (71)

to leading order linear in mq .
We also consider the pure BCS limit without the chiral σ -π

sector, setting M = 0, and assuming zero phase difference φ
between �s and �ps. The quasiparticle spectrum becomes

ω2
±( p) = p2 + μ2 + �2 ∓ 2

√
(| p|μ)2 + m2

q |�ps|2. (72)

The pseudoscalar diquark NG mode π̃2 ∼ θ2
d ∼ |�ps|2 picks

up a mass, given by

f 2
π̃ m2

π̃ = a�2m2
q, (73)

as one sees from the leading-order correction to �, of order
m2

q , instead of mq for the π :

� = �mq=0 + 1
2am2

q |�ps|2 + O
(
m4

q

)
. (74)

Unlike in the σ -π sector, the diquark mean fields �s and �ps

are neither coupled directly nor offset by mq at the level of the
mean-field Lagrangian; instead, the diquark fields indirectly
couple to mq via the mixing term |(mq − σ )�ps − π�s|2. This
term is the key to generating the mass of the NG mode in the
BCS phase.

The difference in the leading-order dependence on mq of
the GMOR relations in the vacuum phase and the high-density
BCS phase, which is also present in the more realistic Nf = 3,
Nc = 3 case, can be understood as originating from the U (1)A
axial symmetry. Specifically, when one writes down a general
Ginzburg-Landau effective Lagrangian in terms of the chiral
and diquark condensates, the term of lowest nonzero order in
mq and the diquark condensates that respects U (1)A symmetry
is of order m2

q [9,12]. As a result, at high density, where diquark
pairing dominates, the chiral NG bosons should obey a GMOR
relation ∼m2

q . A subtle complication in more realistic models is
that the axial U (1)A symmetry is explicitly broken by quantum
effects (the axial anomaly) at lower densities, which permits
an additional mass term for the diquark condensates of order
mq . In this case, the chiral NG bosons might still obey a
GMOR relation ∼mq in leading order even with dominating
diquark condensates at moderate densities. Nevertheless, it
is known that at high density the axial anomaly is heavily
suppressed [46,47] greatly reducing such a U (1)A-violating
term; the GMOR relation is then restored to ∼m2

q in leading
order.10

Finally, we calculate the perturbed mass of πG and πM ,
in the intermediate-density coexistence phase. The two limits
considered above—the pure σ -π sector limit and the pure BCS
limit—indicate that we must keep effects of mq up to second
order, and allow fluctuations in both π and �ps, achieved by
small fluctuations of �θ = (θπ ,θd )T . Expanding � in terms of
�θ up to second order, we find

�(θπ ,θd ) = �(0,0) + 1
2
�θ T �(mq)�θ + . . . , (75)

where [cf. Eq. (34)]

�(mq) =
(

bMmq + aM2�2 −aM�2(M + mq)

−aM�2(M + mq) a(M + mq)2�2

)
;

(76)

10Diquark pairing is not the only known mechanism that can modify
the meson mass GMOR relation. The asymmetry in quark flavors
could have a similar effect of inducing higher-order GMOR relations,
such as pions in an isospin-asymmetric medium [48,49].
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here

b =
∫

p

∑
±

1

ω±

(
1 − μ

ε±

)
, (77)

the integral on the right side of the gap equation (18), is a
function of M , �, μ, and mq . In the chiral limit mq = 0 in
the chirally broken phase with M 	= 0, b reduces to 1/2G. In
terms of the mass matrix � = F−1�F−1 for the pion fields �π ,
we obtain the following matrix generalization of the GMOR
relation encompassing both modes:

F�F = M2a�2

(
1 −1

−1 1

)
+ Mmq

(
b −a�2

−a�2 2a�2

)

+ a�2m2
q

(
0 0
0 1

)

≡ � + Mmq�I + a�2m2
q�II. (78)

Equation (78) can be readily generalized to systems with more
complex chiral order parameters than 〈q̄q〉 and 〈qq〉. Despite
appearances Eq. (78) is not actually a series expansion in mq ,
since a, b, fπ , fπ̃ , � and M are themselves functions of mq .

The structure of Eq. (78) clearly reflects the underlying
physics. The leading term � is a consequence of Goldstone’s
theorem, as argued before. The perturbations to the stiffness
matrix δ� ≡ Mmq�I + a�2m2

q�II contain combinations of
order parameters that violate the U (1)A chiral symmetry, such
as σ |�s|2 and σ ; they are results of mq explicitly breaking
chiral symmetry.

For nonzero mq , to leading order in δ� the perturbed
squared masses are given by

m2
G ≈ bMmq + a�2m2

q

f 2
G

,

m2
M ≈ aM2�2

(
1

f 2
π

+ 1

f 2
π̃

)
+ Mmq

(
bf 2

π̃

f 2
Gf 2

π

+ 2a�2

f 2
π̃

)

+ m2
q

a�2f 2
π

f 2
Gf 2

π̃

. (79)

Figure 7 shows mG and mM as functions of the quark density
n. In the relatively high-density BCS regime, mG decreases
with increasing density as a consequence of the increasing
BCS pairing 〈qq〉 taking on the role of chiral order parameter;
fπ̃ increases while fπ vanishes. From the mixing, Eq. (38),
one sees that the πG mode is mainly composed of π̃ -like
fluctuations, while the massive mode is mainly π -like, being
heavy due to vanishing 〈q̄q〉. The NG-mode mass obeys the
diquark-condensate pion GMOR relation [cf. Eq. (73)]:

f 2
Gm2

G ≈ am2
q�

2. (80)

At low density, the πG mode is primarily π -like, and one
recovers the vacuum pion GMOR relation [cf. Eq. (71)]:

f 2
Gm2

G ≈ bMmq ≈ Mmq

2G
≈ −〈q̄q〉mq (81)

to leading order in mq .
On the other hand, since the heavy mode πM is π̃ -like at

low density, mM vanishes in the limit n → 0, crossing with

FIG. 7. The perturbed masses of the NG mode, mG, and of the
heavy mode, mM , as functions of quark density, n. Here we take
G = 11�−2, H = 6�−2, and mq = 0.01�. With decreasing density,
mM rapidly decreases as the Fermi surface vanishes, eventually cross-
ing the NG-mode mass mG; this is an artifact of our simplified NJL
model, which does not take confinement into account. Realistically
this low-density regime is instead described by nuclear matter; the
boundary of the transition from quark matter to nuclear matter drawn
in the plot is only illustrative.

mG in the process. Such behavior is an artifact of the present
schematic model: since diquark pairing is present at arbitrarily
low densities in the model, the π̃ -like mode, corresponding to
chiral fluctuations of pairing amplitude 〈qq〉 mainly near the
Fermi surface, has a cost of free energy that goes to zero as
the Fermi surface vanishes. In the vacuum this mode is simply
not present.

The density at which mM crosses mG can be roughly
estimated using Eq. (79) and the fact that � � fπ̃ at low
density [see Eq. (65) and its comments] to show that when
mG ∼ mM , the decay constants are comparable with each
other: fπ ∼ fπ̃ . Since f 2

π̃ ∼ n/M at low density, fπ ∼ fπ̃

implies n ∼ f 2
π M , a characteristic density scale for chiral

symmetry breaking via 〈q̄q〉. Using values from realistic NJL
models where the effective quark mass M is ∼300 MeV
and the experimental fπ is ∼ 92 MeV, we find that n is of
order nuclear matter density, n0 ≈ 0.16 fm−3. In this density
regime, QCD confinement binds quarks into nucleons, and
the homogeneous diquark pairing picture in the schematic
model at these densities is no longer physical. Nevertheless,
the πG mode does obey the well-known vacuum pion GMOR
relation in the low-density limit, allowing this pionic mode to
be smoothly interpolated between nuclear matter and quark
matter at high density, where chiral symmetry remains broken
throughout.

VI. OUTLOOK

Having elaborated the construction and the density-
dependent behavior of the generalized pion πG, we briefly
discuss several implications of the results obtained so far, and
open questions for future research.
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1. Bose-Einstein condensation of the generalized pion πG.
The existence of the light πG mode at all densities, as detailed
in Sec. V, raises the interesting possibility of the modes
becoming Bose condensed. Homogeneous condensates of the
pionic NG modes have been considered, within NJL, in both
the low-density non-BCS (e.g., Ref. [50]) and high-density
BCS (e.g., Ref. [51]) limits. In the present schematic model,
however, such condensation is trivial, since it merely corre-
sponds to a global axial U (1)A rotation of the system from the
scalar state. In the chiral limit, the chiral symmetry is respected
by the Lagrangian, and such rotation does not cost any free
energy; the rotated system is energetically equivalent to the
original scalar state. With a finite mq breaking chiral symmetry,
the scalar state is the unique ground state with the lowest free
energy, since there are no forces driving condensation, and
homogeneous pion condensates are unstable.

In more realistic NJL models, however, where multiple
flavors and charge neutrality are taken into account, several
factors driving pionic condensation emerge. For example,
the mismatched Fermi surfaces of up and down quarks
and an electric charge chemical potential translate directly
into an effective chemical potential of the charged pions
(see discussions of pion condensation in NJL models in
Refs. [17,50,52–57]). When the effective pion chemical
potential overwhelms the pion mass, even homogeneous pion
condensation can occur. Furthermore, as the pions directly
couple to the quarks in the pseudoscalar q̄q and qq channels
as discussed in Sec. V C, more types of pionic condensates
could be favored by the pion interacting with the quark
matter medium at different densities, such as inhomogeneous
meson condensates (e.g., Refs. [58,59]) or condensation
into states with finite momenta. Other exotic phases
involving inhomogeneous chiral or diquark condensates (e.g.,
Refs. [60,61]) could also affect pion condensation. These
possibilities are a subject for future research.

2. Generalized meson mass ordering reversal. Reproducing
the mass ordering reversal phenomenon as discussed in Ref. [9]
again requires generalizing the present schematic model to
three flavors and colors, with the strange quark heavier than
the up and down quarks, and allowing for asymmetric pairing
between the three flavors and colors due to mismatched
Fermi surfaces at intermediate density. The masses and decay
constants of the generalized meson octet as functions of density
can then be computed in the same way to study the density-
dependent meson mass spectrum throughout different phases,

and how those mass curves depend on model parameters. Such
an analysis is required for further study of generalized meson
condensation in realistic quark matter.

3. Connection to nuclear matter pions. The interaction
between vacuum pion mode π and the quarks are the same
as the nucleon-pion interaction in the σ model. When diquark
pairing is taken into account, the pion-quark interaction is
modified into the density-dependent generalized �G vertex,
which significantly reduces the generalized pion mass at higher
density (see Fig. 7). It is thus natural to ask whether nucleon-
nucleon pairing at relatively high density (but still within the
nuclear matter regime) would result in a similar modification to
the generalized pion properties; as a consequence a one-to-one
mapping between chirally broken nuclear matter to chirally
broken quark matter in terms of generalized pions may
be formed. Such a continuity in chiral symmetry breaking
would provide further insight into possible continuity between
nuclear matter and quark matter.

4. Possible role of the φ̂ mode. This mode, discussed in
Sec. V, could also play a role in a realistic phase diagram
(a possibility that has not received attention in present NJL
studies). Although the φ̂ mode, not being a NG mode, is
always massive, there may be density regions where its mass
is significantly reduced. This observation comes from the fact
that the φ̂ mode corresponds to a relative phase oscillation
between the scalar diquark condensate �s and the pseudoscalar
�ps. Specifically, its stiffness term,

∂2�

∂ sin2 φ
= �4

16
sin2 2θd

∑
±

∫
p

1

ω3±
> 0, (82)

(calculated here, for simplicity, in the pure BCS limit with a
finite θd chiral rotation from the scalar state in our model) can
be made small if either the BCS gap � or the (homogeneous
generalized pion condensation) θd is small. The possible role
of the φ mode in the low-energy physics of dense quark matter
and its coupling to the pseudoscalar �ps fluctuations and thus
its coupling to the generalized pion is also a subject for future
research.
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