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Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory
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Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in
view of a global description of the existing data and predictions for future work at the Antiproton Annihilation
at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson
model earlier developed, with mesonic and baryonic degrees of freedom in s, t , and u channels, is applied here to
π 0π 0 production. Form factors with logarithmic s and t(u) dependencies are applied. A fair agreement with the
existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular
distributions for π 0η and ηη production in the same energy range. A good agreement is generally obtained with
all existing data.
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I. INTRODUCTION

In a previous paper [1] we proposed an effective Lagrangian
model with meson and baryon exchanges in s, t , and u channels
(s, t , and u are standard kinematical Mandelstam variables)
to describe the exclusive annihilation reaction of antiproton-
proton annihilation into charged pion and kaon pairs in the en-
ergy domain 2.25(1.5) � √

s(pL) � 5.47(15) GeV (GeV/c)
where

√
s(pL) is the total energy (the beam momentum) in the

laboratory frame. This is the domain relevant to the Antiproton
Annihilation at Darmstadt (PANDA) experiment at the Facility
for Antiproton and Ion Research (FAIR) [2]. Data in this energy
range are scarce, poorly constraining the models. To validate
our approach we considered also pion-proton elastic scattering
data through crossing symmetry.

We focus here on p̄p annihilation into two neutral light
mesons (for a review, see [3,4]). A large amount of data
on light meson production is expected in the near future.
In the PANDA energy range, exclusive charged and neutral
pion pair productions in p̄p collisions bring information
on the nonperturbative structure of the proton and on the
hadronization mechanisms.

In the low-energy region, particularly studied at the Low
Energy Antiproton Ring (LEAR) at CERN, the angular
distributions show a series of oscillations, typically reproduced
by Legendre polynomials, describing contributions of higher
excitation L waves. Antinucleon-nucleon potentials have been
developed, using G-parity transformation of the nucleon-
nucleon potential and adding an absorptive part in form of
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an imaginary Woods-Saxon potential [5–7]. In a microscopic
approach, this process is understood as proceeding from the
p̄p annihilation into the vacuum, 3P0 state with spin-parity
JP = 0+, I = 0 followed by momentum transfer with another
quark or antiquark, and the 3S1 state with spin-parity JP =
1−, I = 0 (the quantum numbers of a gluon) [8]. At low
energies baryon exchange potential models have been applied
successfully also for polarization observables at low energies
[9]; however, the formalism becomes too complicated when
the total energy is larger than 1 GeV. Effective Lagrangian
models apply to a wide domain of reactions and kinematics,
due also to the fact that beyond the exchanged particles, one
may have freedom to choose ingredients as constants and
form factors. The comparison with a quark exchange model in
Ref. [1] shows that the experimental angular distributions are
not reproduced satisfactorily in the considered energy range.

Increasing the energy, the angular distributions lose pro-
gressively their oscillating behavior. Above

√
s = 2 GeV,

two-body processes become mostly peripheral and the angular
distributions are peaked forward or backward, corresponding
to small values of t or u, respectively. The cross section for
pions emitted at cos θ = 0 [θ is the emission angle in the
center-of-mass system (CMS)] shows a scaling behavior as a
power of s, near to s−8. This is consistent with QCD quark
counting rules [10,11] that reproduce the measured energy
dependences of exclusive hadron-hadron and meson-hadron
cross sections in scattering as well as in annihilation regions,
over a large range of θ , provided that the effective QCD scale
�2 is assumed small (� � 0.1 GeV).

We extend here the model developed in Ref. [1] to p̄p
annihilation into neutral meson pairs. As in Ref. [1], t and
u exchanges of nucleon and � are considered. First-order
Born diagrams are calculated and form factors are added.
Rather than monopole, dipole, or exponential form factors,
i.e., the functional forms that can be found in the literature,
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we propose s and t dependent logarithmic form factors,
after being convinced that the Regge regime is not yet
applicable in the considered energy region. Compared to
charged pion production, the necessary modifications are the
symmetrization of the final state for identical mesons and the
nature of the exchanged meson in the s channel. Since a ρ
meson cannot decay in a neutral pion pair, the lighter mesons
that can be exchanged are the scalar f0 and f2 mesons, with
masses and widths as [12]

f0(500)IG(JPC) = 0+(0++),

mf0 = (400–550) MeV,

�f0 = (400–700) MeV,

f0(980)IG(JPC) = 0+(0++),

mf0 = (990 ± 20) MeV,

�f0 = (40–100) MeV,

f2(1270)IG(JPC) = 0+(2++),

mf2 = (1275,5 ± 0.8) MeV,

�f2 = (186.7 ± 2.5) MeV. (1)

Pion emission around cos θ = 0 is driven by s-channel
exchange. We limit our considerations to s-channel f0- and
f2-meson exchange. In the case of f0 we take “an effective
f0” with mass M = 600 MeV and width � = 700 MeV. In
principle, other higher mass resonances that decay into π0π0

may be considered. However, they are suppressed outside the
resonance peak due to the Breit-Wigner representation of the
corresponding amplitudes. An additional suppression of radial
excitations of these mesons is expected because their spatial
density is less compact, making less probable the formation of
a pion pair. Exclusive pion pairs are formed with the largest
probability when the two qq̄ pairs emerge from the vacuum
in a physical space-time region with small dimension. It has
been suggested that a Flatté distribution is more convenient
for a light neutral scalar, in particular for f0(980) near the
KK̄ threshold [13]. In the present case, the contribution of
the scalar mesons is not very large and the use of different,
reasonable functions would change the final parameters within
their errors. As we look for a simple parametrization with
minimal number of parameters, a Breit-Wigner function is
taken to reproduce the light scalar mesons.

We compare our calculation to the data on neutral pion
(and other neutral meson) production, published by the
FermiLab E760 Collaboration in the energy range 2.911 �√

s � 4.274 GeV [14]. The primary aim of that work was
to study heavy meson resonances that couple to N̄N , as
charmonium. Moreover the study of the s dependence in terms
of power laws showed that an approximate scaling is reached,
but with a lower exponent than predicted. The measured
angular distributions are limited to a central angular range,
| cos θ | � 0.66. At the lowest energies, the π0π0 angular
distribution shows a bump at | cos θ | = 0, which gradually
disappears from 2.9 to 3 GeV, and can be reproduced including
higher L multipolarities, only. To our knowledge, at present,
no calculation attempting to reproduce the whole set of data
from Ref. [14] exists in the literature.

Our aim is to build a reliable and coherent model that
reproduces the basic features of neutral meson production in
the energy range that will be investigated by the future PANDA
experiment at FAIR. With the help of SU(3) symmetry, we
apply our model to other neutral channels ηη and π0η, where
data are present. The model should have minimal ingredients
and analytical expressions convenient to be included in the
PANDARoot Monte Carlo simulation program.

II. FORMALISM

A. Kinematics and cross section

We consider the annihilation reaction

p̄(p1) + p(p2) → π0(k1) + π0(k2) (2)

in CMS. The notation of four-momenta is shown in the
parentheses. The following notations are used: qt = −p1 + k1,
q2

t = t , qu = −p1 + k2, q2
u = u, and qs = p1 + p2, q2

s = s,
s + t + u = 2M2

N + 2m2
π , MN (mπ ) is the nucleon (pion) mass

[for reactions (20) and (21) the corresponding mass should be
substituted]. The useful scalar product between four-vectors
are explicitly written as

2p1k2 = 2k1p2 = M2
N + m2

π − u,

2p1k1 = 2k2p2 = M2
N + m2

π − t,

2p1p2 = s − 2M2
N,

2k1k2 = s − 2m2
π ,

p2
1 = p2

2 = M2
N = E2 − | �p|2,

k2
1 = k2

2 = m2
π = ε2 − |�k|2. (3)

In particular,the final particle mass-shell conditions fix the
energies E1,2, velocity β1,2, and modulus of the momentum �k
of the final particles (where “1” refers to the detected particle,
and “2” to the partner):

E1,2 = s + M2
1,2 − M2

2,1

2
√

s
, β1,2 = λ1/2

(
s,M2

1,2,M
2
2,1

)
s + M2

1,2 − M2
2,1

,

|�k| = 1

2
√

s
λ1/2

(
s,M2

1 ,M2
2

)
, (4)

where λ(x,y,z) is the so-called triangle function:

λ(x,y,z) = x2 + y2 + z2 − 2 xy − 2 xz − 2 yz. (5)

The general expression for the differential cross section in the
CMS of reaction (2) is

dσ

d
= 1

28π2

1

s

βπ

βp

|M|2, dσ

d cos θ
= 2E2βpβπ

dσ

dt
, (6)

whereM is the amplitude of the process, βp (βπ ) is the velocity
and E (ε) is the energy of the proton (pion) in CMS. The
phase volume can be transformed as d → 2π d cos θ due to
the azimuthal symmetry of binary reactions. The total cross
section then reads as

σ =
∫ |M|2

64π2s

| �p|
|�k| d, (7)
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where | �p| is the initial momentum and |�k| the momentum of the
final detected particle in CMS. In the case of identical particles
one should integrate only on half of the phase volume. |M|2
is the squared matrix element of the process averaged over the
spins of the initial particles.

B. Reaction mechanism

The formulas written above are model independent, i.e.,
they hold for any reaction mechanism. To calculate M,
one needs to specify a model for the reaction. In this
work we consider the process (2) within the formalism
of effective meson Lagrangian. The following contributions

to the cross section for reaction (2) are calculated as illustrated
in Fig. 1:

(i) Baryon exchange: t-channel nucleon (neutron) and �+
exchange, Fig. 1(a), and the corresponding u-channel,
crossed-leg diagrams, Fig. 1(b).

(ii) s-channel f0, f2 exchange, Fig. 1(c).

After the calculation of the coupling constant and matrix
elements, the total matrix element squared averaged over the
spin states of the initial particles is obtained as the sum of
the squared of the matrix element for the individual contri-
butions and the interferences among them. Identical particles
in the final channel (π0π0 or ηη) require us to symmetrize the
amplitudes. The matrix element squared, obtained from the
coherent sum of the amplitudes, is

|M|2 = 1√
2
|Mp(t) + M�+ (t) + Mf (s) + Mp(u) + M�+ (u)|2. (8)

Explicitly,

|M(p̄p → π0π0)|2 = |Mf0 (s)|2 + |Mf2 (s)|2 = {|Mp(t)|2 + |M�(t)|2 + |Mp(u)|2 + |M�(u)|2

+ 2Re[Mp(t)∗Mp(u) + Mp(t)∗M�(t) + Mp(t)∗M�(u) + Mp(u)∗M�(t) + Mp(u)∗M�(u)]
}

+
√

2Re[M∗
f0

(s)Mf2 (s) + Mp(t)M∗
f0

(s) + Mp(u)M∗
f0

(s) + M�(t)M∗
f0

(s) + M�(u)M∗
f0

(s)

+M∗
p(t)Mf2 (s) + M∗

p(u)Mf2 (s) + M∗
�(t)Mf2 (s) + M∗

�(u)Mf2 (s)]. (9)

Taking into account the phase space and the flux, the expression
for the total cross section is

dσ

d
(p̄p → π0π0) = 1

28π2

1

s

βπ

βp

|M(p̄p → π0π0)|2, (10)

or

dσ

d cos θ
(p̄p → π0π0) = 1

27π

1

s

βπ

βp

|M(p̄p → π0π0)|2.

(11)

For the explicit expressions of the t- and u-channel N and
� amplitudes, in Eq. (9) we refer to the Appendix of Ref. [1].
Coupling constants are fixed from the known decays of the
particles when possible, otherwise values from the effective
potentials as in [15] are used. Values for x and widths are taken
from the PDG [12]. The relevant formulas for the amplitudes
and their interferences are given in Appendixes A and B.

Let us consider f0(500) also called the σ meson, the lowest
isoscalar scalar particle, with spin zero and positive parity, and
the next higher L contributions, the f2(1270) with spin 2 and
positive parity. Both decay dominantly into two neutral pions
(see Fig. 2).

The f0,2 propagators are taken as a Breit-Wigner function

1

q2
s − m2

f0,2
+ i

√
q2

s �f0,2

(
q2

s

) , (12)

and the transferred momentum is qs = p1 + p2 = k1 + k2,
q2

s = s.

The f0ππ vertex is −igf0ππ , with gf0ππ the constant for
the decay f0 → π0π0 (see Appendix A). The final expression
for the width is

�f0 = 1

16mf0π
g2

f0ππ

√
1 − 4m2

π

m2
f0

, (13)

where by taking the value �f0 = 700 ± 150 MeV (in the range
suggested by PDG [12]), one finds gf0ππ = 4.08 ± 1.3 GeV.

The f0NN vertex is −igf0NN where gf0NN = 5 GeV is the
coupling constant from Ref. [15].

The expression for the width of the decay f2 → ππ is (see
Appendix B)

�f2 = g2
f2ππ

16mf2π
|M(f2 → ππ )|2

√
1 − 4m2

π

m2
f2

. (14)

Taking the value �f2 = (0.1867 ± 0.0025) GeV, one finds
gf2ππ = (19 ± 0.26) GeV−1.

The vertex f2 → pp then is written as

(−i)gf2ppγμ(p1 − p2)νχ
μν, (15)

where gf2pp is considered as a fitting parameter and χμν is
defined in Appendix B.

III. RESULTS

The following procedure was applied in order to reproduce
the collected data basis. The data on neutral pion angular
distributions from Ref. [14] were first reproduced best, with
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FIG. 1. Feynman diagrams for different exchanged particles for the reaction p̄ + p → π 0 + π 0.

particular attention to the s dependence of the cross section.
The necessary number of parameters is very limited and we
checked that the results are quite stable toward a change of the
parameters in a reasonable interval.

The composite nature of the hadrons should be taken into
account in the calculation of the observables. To find the best
description of the data in wide energy and angular ranges,
different choices for form factors can be found in the literature:
monopole, dipole, exponential, etc. In Ref. [1] a function of
the logarithmic type turned out to reproduce best the measured
angular and energy dependencies. The background of this
choice is a QCD derivation from Refs. [16,17] that relates
the asymptotic behavior of form factors to the quark contents
of the participating hadrons. It is also known that a logarithmic
dependence of the p̄p cross section reproduces quite well the
background for resonant processes [18,19].

The logarithmic functional form is

FL
N,�(x) = NN,� M4

0[(
x − �2

N,�

)
ln

(x−�2
N,�)

�2
QCD

]2
, x = s,t,u,

M0 = 3.86 GeV, �QCD = 0.3 GeV, (16)

where M0 is a scale parameter that has been inserted to
conserve units, �QCD is the QCD scale parameter. NN,(�) =
0.361 ± 0.006(0.041 ± 0.003) is a normalization constant.
�N,(�) = 2.25 ± 0.09(1.05 ± 0.04) GeV is a “slope” param-
eter which values were determined from a fit on the available
data on charged pion production. A summary of parameters is
listed in Table I for nucleon and � exchange.

For neutral pion pair production, the first attempt was to
apply the same form factors and the same parameters as for
the charged pion data for t(u) N and � exchanges from [1],
the s channel being calculated apart because physics requires
the exchange of different mesons. Similar to charged meson

2
 f

0
f

)
1

(k0π

)
2

(k0π

μγ
0,2

fππ
ig

FIG. 2. f0 and f2 decay into a pion pair.

production, first we apply the form factor FL
N,� (Eq. 16) which

depends on momentum transfer (t or u) to take into account
the composite nature of the particle in the interaction point.
Second, we use the factor FL

N,�(s) which effectively takes into
account pre-Regge regime excitations of higher resonances in
the intermediate state. This leads to an effective form factor as
the product:

F̃N,�(s,t) = FL
N,�(s)FL

N,�(t)

or F̃N,�(s,u) = FL
N,�(s)FL

N,�(u), (17)

containing the same set of parameters for the s and t (u)
dependencies, but different for N and � exchanges. The
fit does not require independent parameters for s and t (u)
dependencies. The behavior of the total cross section for
charged and neutral pion pair production is, however, very
different. A possibility for recovering the π0π0 data is to
modify the s-dependent part of the logarithmic form factors
by adding an additional energy dependence to the parameters:

N (s)p,� → N (s)p,� − e
pN
p,�

(s)
√

s ,

�(s)2
p,� → �(s)2

p,� − e
p�
p,�

(s)
√

s . (18)

In Fig. 3 one can see the effect of the introduced s
dependence. The parameters converge at high energies,
whereas for

√
s � 3.5 GeV they deviate essentially, giving

further reduction of the cross section. The s-independent
parameters are fixed as in Table II.

The form factor for the f0NN vertex is taken of monopole
form:

Ff0 (s) = F 2
f0

F 2
f0

+ (
m2

f0
− s

) , (19)

TABLE I. Parameters for the logarithmic form factors of Eq. (17).

Parameter Value

NN 0.361 ± 0.006
N� 0.041 ± 0.003

�2
N (2.25 ± 0.09) GeV2

�2
� (1.05 ± 0.04) GeV2
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 GeV s 

2 2.5 3 3.5 4 4.5 5

NL
F

0

0.1

0.2

0.3

0.4
 (e)N

LF

N
LF

FIG. 3. Energy dependence of the logarithmic form factors
without (red, dashed line) and with (black, solid line) exponential
correction.

TABLE II. Parameters for the s-dependent term of the logarithmic
form factors for p̄p → π 0π 0.

Parameter Value (GeV)

pN
p (s) −3.013 ± 0.210

pN
� (s) −5.959 ± 0.205

p�
p (s) 4.047 ± 0.019

p�
�(s) 3.141 ± 0.002

with Ff0 = 1.17 ± 0.051 GeV. In addition, similar to the
charged pion calculation, the phase �f = eiπφf is added for
the exchanged meson in the s channel with φf equal to unity.

IV. COMPARISON WITH EXISTING DATA

The fitted plots and data from Ref. [14] are shown in
Fig. 4, in the energy range 2.911 � √

s � 3.686 GeV. The data
were measured in regular intervals, with a gap between 3.097
and 3.526 GeV which separates the data into a lower energy
region (2.911 � √

s � 3.097 GeV) and a higher energy region
(3.526 � √

s � 3.686 GeV). In the lower energy region,
a bump produced by higher L resonances appears around
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FIG. 4. Angular distribution for the reaction p̄p → π 0π 0 in CMS in the energy range 2.911 � √
s � 3.686 GeV. The data (open circles)

are from Ref. [14]:
√

s = 2.911 GeV (a); 2.950 GeV (b); 2.975 GeV (c); 2.979 GeV (d); 2.981 GeV (e); 2.985 GeV (f); 2.990 GeV (g);
2.994 GeV (h); 3.005 GeV (i); 3.050 GeV (j); 3.097 GeV (k); 3.524 GeV (l); 3.526 GeV (m); 3.556 GeV (n); 3.591 GeV (o); 3.595 GeV (p);
3.613 GeV (q); 3.616 GeV (r); 3.619 GeV (s); 3.621 GeV (t), 3.586 GeV (u). The calculation is the solid, red line.
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] 2s [GeV
10 15 20

 [n
b]

σ

1

10

210

310

410

FIG. 5. Integrated cross section for the reaction p̄p → π 0π 0.
The data are obtained by the integration of the partial differential
cross section in the available range: 0 < cos θ < 0.48 up to

√
s =

3.2 GeV, and 0 < cos θ < 0.66 above
√

s = 3.6 GeV, Ref. [14]. The
present calculation covering the range 0 < cos θ < 0.48 (blue dash-
dotted line) and 0 < cos θ < 0.66 (red dashed line) is also shown.
The integration in the whole angular range is shown as a black, solid
line.

cos θ = 0. It cannot be reproduced by the f0 and f2 mesons
considered in the s channel, and it disappears at higher
energies. We did not attempt to add higher resonances. More
precise data are expected from PANDA in a larger angular
range, better constraining the model.

Note that good agreement can be found when neglecting
the f2 contribution. The s dependence for the cross section of
neutral pion production from 5 to 20 GeV2 is shown in Fig. 5,
where the experimental point is obtained integrating the data
from Ref. [14] in the available angular range. The calculation
is integrated in the same angular range 0 < cos θ < 0.66 or
0.48. The calculation reproduces well the integrated data. Note
that the available data cover a reduced angular distribution,
whereas the very forward and backward regions give the largest
contribution to the total cross section.

To appreciate the the sensitivity of the calculation to a
selected choice of parameters, in Fig. 6 the cross section,
integrated for 0 < cos θ < 0.66, is reported (black solid line)
together with the result of the calculation when decreasing
by 10% the parameters of f0 (red dashed line) and of the
logarithmic form factor (blue dash-dotted line).

A. Higher energy set

The case of the set of data at
√

s = 4.274 GeV is peculiar.
The data correspond to the higher energy available, and show
a discontinuity with respect to the other sets. In particular the
bump for cos θ = 0 evolves definitely into a dip. To reproduce
this dip, the L = 2 f2 meson is added. The form factor of
f2NN is taken as a monopole, Eq. (19), similar to f0, and
the relative phase is also taken as unity. Concerning the higher
energy, the contribution from the f0 meson is suppressed by
the fitting procedure. The new parameters for the s channel

]2s [GeV
6 8 10 12 14 16 18 20

 [n
b]

σ

1

10

210

310

410

510 Model

Model (90% f0 par)

Model (90% Log pars)

FIG. 6. Parameter dependence of the cross section for the reaction
p̄p → π 0π 0, integrated for | cos θ | � 0.66. The calculation with the
nominal parameter is shown (black solid line), together with the
calculation corresponding to 10% decrease of the f0 parameters (red
dashed line) and to 10% decrease of the logarithmic form factor
parameters (blue dash-dotted line).

are listed in the Table III, the other parameters are fixed as in
Tables I and II.

The different components are visible in Fig. 7. One
can see that the shape of the angular distribution is very
well reproduced by the f2 contribution. The � contribution
overcomes the N term. The angular distribution is limited
and one cannot draw firm conclusions on the t- and u-channel
interplay of the different contributions. A very good agreement
is obtained by fitting this set of data with the present model.

Applying SU(3) symmetry, one can connect other neutral
channels. As we see in the next section, it works relatively
well.

B. Reactions p̄ + p → π 0 + η and p̄ + p → η + η

The two-body channels

p̄(p1) + p(p2) → η(k1) + η(k2), (20)

p̄(p1) + p(p2) → η(k1) + π0(k2) (21)

involve mesons that are related by SU(3) symmetry, as π ,
η, and η′ are members of a single nonet. Having a model
that reproduces consistently angular distributions and cross
sections for π0 + π0, based on s, t , and u channels, the

TABLE III. Parameters of form factors for f0 and f2 mesons at√
s = 4.274 GeV.

Parameter Value

Ff0 0.870 ± 0.014 GeV
Ff2 0.187 ± 0.001 GeV

χ 2/ndf 0.787
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FIG. 7. Angular distribution for reaction p̄p → π 0π 0 at
√

s =
4.274 GeV [14] with the different components. The parameters are
listed in Table III.

amplitudes for the decay to the channels of reactions (2),
(20), and (21) are related by the SU(3) symmetry. Taking into
account that, in principle, p̄p does not couple directly to ss̄,

the following relations hold:

f (π0η) = f (π0 + π0) cos �,

f (ηη) = f (π0 + π0) cos2 �, (22)

where � � 45◦ is the pseudoscalar mixing angle [20].
The procedure follows the one derived above for π0π0. The

masses have to be changed correspondingly in the calculation
of the kinematics and amplitudes. Moreover, in the case of
reaction (21) the fact that the final state is not symmetric
induces a backward-forward asymmetry. Applying SU(3)
symmetry and taking into account the kinematics difference
due to the masses, the model is applied in the energy range
2.911 � √

s � 3.617 GeV. The results are shown in Figs. 8
and 9 for reactions (20) and (21), respectively. The agreement
is very good without readjusting the parameters. The model is
able to reproduce the data in the backward and forward regions.
Similar to π0π0 it is expected that the bump around cos θ =
0 is not described, because it needs to include additional
contributions. For the higher energy

√
s = 4.274 GeV, the

data sets for ηη and ηπ0 production have large error bars and
a few points are measured. Precise data are expected from the
PANDA experiment to fill this region.

V. CONCLUSIONS

A model built on the effective meson Lagrangian has been
applied to two neutral pion production in proton-antiproton
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FIG. 8. Angular distribution for p̄p → ηη in CMS in the energy range 2.911 � √
s � 3.617 GeV. The data (open circles) are from Ref. [14]:√
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FIG. 9. Same as Fig. 8, but for the reaction p̄p → ηπ 0.

annihilation in the energy range 2.2 � √
s � 4.4 GeV. Note

that the present work is the first attempt to describe such
large set of data in the considered energy range. Previous
approaches based on (relativistic) quark models that were
mostly developed in connection with the LEAR experiments
(see, for example, Refs. [8,21–24]) pointed out the complicated
features of the annihilation and of the nonperturbative structure
of hadrons. The present model, based on baryon and meson
exchanges, is an effective way to take into account the quark
dynamics. In this energy range, we are convinced that such
an approach is convenient and has a certain predictive power
as long as a reasonable number of exchanged particles and
diagrams is sufficient to describe that experimental data. The
main advantages is that the number of parameters can be
limited and these parameters have generally a physical mean-
ing. The logarithmic expression for s- and t (u)-dependent
form factors is shown to be convenient in this nonperturbative
region, where the Regge description does not apply yet and
the exponential dependence does not fit to the experimental
data. Note that a logarithmic expression is what reproduces
best the time-like form factor of the proton. In Ref. [25] it was
suggested that it is related to the time scale of the hadronization
process.

Coupling constants are fixed from the properties of the
known decay width. The agreement with the existing data from
Ref. [14] is satisfactory for the angular dependence as well
as for the energy dependence of the cross section, especially
at high energy. In particular the model is able to describe

very nicely the available data for π0π0 production at
√

s =
4.274 GeV.

Around cos θ = 0, the model follows naturally the expected
behavior from quark counting rules, concerning the s depen-
dence. However, the bump in the central region, present at
low energies, is missed by the model. Possible improvement
is foreseen by adding other components that, however, should
vanish as the energy increases. A fine tuning is desirable, and
will be more meaningful when more data will be available at
PANDA, in a larger and more complete angular and energy
range. The implementation to Monte Carlo simulations for
predictions and optimization to the forthcoming PANDA
experiment is foreseen for this aim, too.

Using SU(3) symmetry, without any change of parameters,
the angular distributions are recovered for p̄ + p → η + η and
for the asymmetric reaction p̄ + p → π0 + η.
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APPENDIX A: s-EXCHANGE OF NEUTRAL SCALAR MESONS: f0 CONTRIBUTION

The matrix element is written as

iMf0 = − gf0NNgf0ππ

q2
s − m2

f0
+ i

√
q2

s �f0

(
q2

s

) v̄(p1)u(p2). (A1)

Squaring the amplitude one finds

|M|2 = g2
f0NNg2

f0ππ∣∣q2
s − m2

f0
+ i

√
q2

s �f0

(
q2

s

)∣∣2 2(s − 4M2). (A2)

1. f0ππ coupling constant

The decay width of the f0 meson in the system where it is at rest is given by

d�(f0 → ππ ) = 1

2mf0

|M(f0 → ππ )|2d�2, (A3)

with the phase space

d�2 = �1/2(mf0 ,mπ,mπ )

25π2m2
f0

d, �1/2(mf0 ,mπ,mπ ) = M2

√
1 − 4m2

π

M2
p

. (A4)

Therefore

�2 = �1/2(mf0 ,mπ,mπ )

23π

√
1 − 4m2

π

M2
p

. (A5)

The matrix element for the decay f0 → ππ is (see Fig. 2)

M(f0 → ππ ) = 1

(2π )4
gf0ππ . (A6)

2. f0 interferences

N -f0 interference:

2Re[M∗
NMf0 ] = 2Re

gf0NNgf0ππg2
πNN[

s − m2
f0

− i
√

s�f0 (s)
](

t − M2
p

)Tr[(p̂1 − Mp)(−q̂t + Mp)(p̂2 + Mp)]. (A7)

�-f0 interference:

2Re[M∗
�Mf0 ] = 2Re

gf0NNgf0ππg2
�NN[

s − m2
f0

− i
√

s�f0 (s)
](

t − M2
�

)
× Tr[(p̂1 − Mp)(−q̂t + M�)P̃αβ(p̂2 + Mp)]kα

1 k
β
2 . (A8)

APPENDIX B: s-EXCHANGE OF NEUTRAL SCALAR MESONS: f2 CONTRIBUTION

Let us consider f2(1270) with spin 2 and positive parity that decays ∼100% into two neutral pions.

1. f2 propagator

The f2 propagator is

χμνχαβ

q2
s − m2

f2
+ i

√
q2

s �f2

(
q2

s

) , (B1)

where the width of the f2 is taken into account by the Breit-Wigner function and the transferred momentum is qs = p1 + p2 =
k1 + k2, q2

s = s.
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2. Vertex f2 → pp

The Lagrangian for the decay f2 → pp is written as

Lf2p̄p = gf2ppp̄
(
γμi∂ν + γνi∂μ + 2

3ημνi∂̂
)
pT μν. (B2)

The last term in Eq. (B2) vanishes since it is the product of an antisymmetric and a symmetric tensor.
The vertex f2 → pp then is written as [see Fig. 1(c)]

(−i)gf2ppγμ(p1 − p2)νχ
μν, (B3)

where the symmetric tensor χμν has the following properties:

χμν = χνμ, χμνg
μν = 0, χμνq

ν = 0; χμνχαβ = 1
2 (ηανηνβ + ημβηνα) − 1

3ημνηαβ, (B4)

with ημν = −gμν + qμqν

q2
, and q is the f2 meson four-momentum.

3. Vertex f2ππ

The amplitude for the f2 → ππ decay is

M(f2 → ππ ) = − −1

(2π )4
(−i)gf2ππχμν�π

μν, (B5)

where gf2ππ is the constant for the decay f2 → ππ and

�π
μν = 1

2ημν(∂απ )2 − (∂μπ )(∂νπ ), (B6)

which results in

M(f2 → ππ ) = (−i)
1

2
gf2ππχμν

[
2

1

2
ημν(k1k2) − k1μk2ν − k1νk2μ

]
= i

2
gf2ππχμν

[
k1μk2ν + k1νk2μ − (k1k2)ημν

]
. (B7)

The matrix element for the f2 s-channel exchange in p̄p → π0π0 is

Mf2 = gf2ppgf2ππ

2
[v̄(p1)γμ(p2 − p1)νu(p2)]

Fμναβ

s − m2
f2

+ i
√

s�f2

[k1αk2β + k1βk2α − (k1k2)ηαβ],

M∗
f2

= gf2ppgf2ππ

2
[ū(p2)γρ(p2 − p1)σ v(p1)]

Fρσγ δ

s − m2
f2

− i
√

s�f2

[k1γ k2δ + k1δk2γ − (k1k2)ηγ δ],

where Fμναβ = χμνχαβ . The matrix element squared is

|Mf2 |2 = g2
f2ppg2

f2ππ

4

FμναβF ρσγ δ∣∣s − m2
f2

+ i
√

s�f2

∣∣2 Tr[(p̂1 − M)γμ(p2 − p1)ν(p̂2 + M)γρ(p2 − p1)σ ]

× [k1αk2β + k1βk2α − (k1k2)ηαβ][k1γ k2δ + k1δk2γ − (k1k2)ηγ δ]. (B8)

The decay width of the f2 meson in the system where it is at rest is given by

d�(f2 → ππ ) = g2
f2ππ

2mf2

|M(f2 → ππ )|2d�2, (B9)

with the phase space

d�2 = �1/2(mf2 ,mπ,mπ )

25π2m2
f2

d, �1/2(mf2,mπ,mπ ) = m2
f2

√
1 − 4m2

π

m2
f2

. (B10)

Therefore

�2 = �1/2(mf2,mπ,mπ )

23π

√
1 − 4m2

π

m2
f2

. (B11)
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The matrix element for the decay f2 → ππ is [see Fig. 2(c)]

|M(f2 → ππ )|2 = 1

4

FμναβF ρσγ δ∣∣s − m2
f2

+ i
√

s�f2

∣∣2 [k1αk2β + k1βk2α − (k1k2)ηαβ][k1γ k2δ + k1δk2γ − (k1k2)ηγ δ], (B12)

�f2 = g2
f2ππ

16mf2π
|M(f2 → ππ )|2

√
1 − 4m2

π

m2
f2

. (B13)

Taking the value � = (0.1867 ± 0.0025) GeV, one finds gf2ππ = (19 ± 0.26) GeV−1.

4. f2 interferences

f0-f2 interference:

2Re[M∗
f0
Mf2 ] = −Re

gf0NNgf0ππgf2NNgf2ππ[
s − m2

f0
− i

√
s�f0 (s)

][
s − m2

f2
+ i

√
s�f2 (s)

]Fμναβ[k1αk2β + k1βk2α − (k1k2)ηαβ]

× Tr[(p̂1 − Mp)γμ(p2 − p1)ν(p̂2 + Mp)]. (B14)

N -f2 interference:

2Re[Mf2M∗
N ] = Re

gf2NNgf2ππg2
πNN[

s − m2
f2

+ i
√

s�f2 (s)
](

t − M2
p

)Fμναβ[k1αk2β + k1βk2α − (k1k2)ηαβ]

× Tr[(p̂1 − Mp)γμ(p2 − p1)ν(p̂2 + Mp)(−q̂t + Mp)]. (B15)

�-f2 interference:

2Re[M∗
�Mf2 ] = −Re

gf2NNgf2ππg2
N�Nπ[

s − m2
f2

+ i
√

s�f2 (s)
](

t − M2
�

)Fμναβ[k1αk2β + k1βk2α − (k1k2)ηαβ]

× Tr[(p̂1 − Mp)γμ(p2 − p1)ν(p̂2 + Mp)Pρσ (q)(q̂t + M�)]kσ
1 kδ

2. (B16)
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