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Traces of nonequilibrium dynamics in relativistic heavy-ion collisions
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The impact of nonequilibrium effects on the dynamics of heavy-ion collisions is investigated by comparing
a nonequilibrium transport approach, the Parton-Hadron-String-Dynamics (PHSD), to a 2D+1 viscous
hydrodynamical model, which is based on the assumption of local equilibrium and conservation laws. Starting
the hydrodynamical model from the same nonequilibrium initial condition as in the PHSD, using an equivalent
lQCD equation of state (EoS), the same transport coefficients, i.e., shear viscosity η and the bulk viscosity
ζ in the hydrodynamical model, we compare the time evolution of the system in terms of energy density,
Fourier transformed energy density, spatial and momentum eccentricities, and ellipticity to quantify the traces
of nonequilibrium phenomena. In addition, we also investigate the role of initial pre-equilibrium flow on the
hydrodynamical evolution and demonstrate its importance for final state observables. We find that because
of nonequilibrium effects, the event-by-event transport calculations show large fluctuations in the collective
properties, while ensemble averaged observables are close to the hydrodynamical results.

DOI: 10.1103/PhysRevC.96.024902

I. INTRODUCTION

Relativistic heavy-ion collisions produce a hot, dense
phase of strongly interacting matter commonly known as the
quark-gluon plasma (QGP) which rapidly expands and freezes
into discrete particles [1–7]. Because the QGP is not directly
observable—only final-state hadrons and electromagnetic
probes are detected—present research relies on dynamical
models to establish the connection between observable quanti-
ties and the physical properties of interest. The output of these
dynamical model simulations are analogous to experimental
measurements as they provide final state particle distributions
from which a wide variety of observables related to the
bulk properties of QCD matter can be obtained. In addition,
dynamical models also provide information on the full space-
time evolution of the QCD medium. This information can
be utilized for the study of rare probes, such as jets, heavy
quarks, and electromagnetic radiation that are sensitive to the
properties of the medium either via re-interaction with the
QGP constituents or its production.

There exist a variety of different dynamical models, based
on different transport concepts that have been successful in
describing current data measured at the Relativistic Heavy-Ion
Collider at Brookhaven National Laboratory and at the Large
Hadron Collider at CERN. These models may differ in their
assumptions on the formation of the deconfined phase of QCD
matter, the nature of its dynamical evolution, the mechanism of
hadron formation and freeze-out, and on many other details.
A key question that needs to be addressed is how sensitive
current observables are to these differences and what kind of
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strategy to pursue to ascertain which of these model features
reflect the actual physical nature of the hot and dense QCD
system.

In this paper we perform a comparison of two prominent
models for the evolution of bulk QCD matter. The first one is a
nonequilibrium transport approach, the Parton-Hadron-String-
Dynamics (PHSD) [8–10], and the second one a 2D+1 viscous
hydrodynamical model, VISHNew [11,12] which is based on
the assumption of local equilibrium and conservation laws.

Nonequilibrium effects are considered to be strongest
during the early phase of the heavy-ion reaction and thus may
significantly impact the properties of probes with early produc-
tion times, such as heavy quarks (charm and bottom hadrons),
electromagnetic probes (direct photons and dileptons), and
jets. Moreover, some bulk observables, such as correlation
functions and higher-order anisotropy coefficients, might also
retain traces of nonequilibrium effects [13–15]. In particular,
the impact of the event-by-event fluctuations on the collective
observables was studied by Kodama et al. [14]. Based on the
comparison of the coarse-grained hydrodynamical evolution
with the PHSD dynamics, they find that in spite of large
fluctuations on an event-by-event basis in the PHSD, the
ensemble averages are close to the hydrodynamical limit. A
similar behavior was pointed out before within the PHSD study
in Ref. [8] where a linear correlation of the elliptic flow v2

with the initial spatial eccentricity ε2 was obtained for the
model study of an expanding partonic fireball (cf. Fig. 7 in
Ref. [8]). Such correlations of v2 versus ε2 are expected in
the ideal hydrodynamical case [16]. The large event-by-event
fluctuations of the charge distributions was addressed also in
another PHSD study [17].

In the present paper our focus will be on isolating
differences in the dynamical evolution of the system that can

2469-9985/2017/96(2)/024902(16) 024902-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.024902


XU, MOREAU, SONG, NAHRGANG, BASS, AND BRATKOVSKAYA PHYSICAL REVIEW C 96, 024902 (2017)

be attributed to nonequilibrium dynamics. The groundwork
laid in this comparative study will hopefully lead to the
development of new observables that have an enhanced
sensitivity to the nonequilibrium components of the evolution
of bulk QCD matter and that will allow us to quantify how far
off equilibrium the system actually evolves.

II. DESCRIPTION OF THE MODELS

A. PHSD transport approach

The Parton-Hadron-String Dynamics (PHSD) transport
approach [8–10,18] is a microscopic covariant dynamical
model for strongly interacting systems formulated on the basis
of Kadanoff-Baym equations [19,20] for Green’s functions in
phase-space representation (in first-order gradient expansion
beyond the quasiparticle approximation). The approach con-
sistently describes the full evolution of a relativistic heavy-ion
collision from the initial hard scatterings and string formation
through the dynamical deconfinement phase transition to the
strongly interacting quark-gluon plasma (sQGP) as well as
hadronization and the subsequent interactions in the expanding
hadronic phase as in the Hadron-String-Dynamics (HSD)
transport approach [21]. The transport theoretical description
of quarks and gluons in the PHSD is based on the Dynamical
Quasi-Particle Model (DQPM) for partons that is constructed
to reproduce lattice QCD results for the QGP in thermody-
namic equilibrium [18,22] on the basis of effective propagators
for quarks and gluons. The DQPM is thermodynamically
consistent and the effective parton propagators incorporate
finite masses (scalar mean fields) for gluons and quarks as well
as a finite width that describes the medium dependent reaction
rate. For fixed thermodynamic parameters (T ,μq) the partonic
widths �i(T ,μq) fix the effective two-body interactions that
are presently implemented in the PHSD [23]. The PHSD
differs from conventional Boltzmann approaches in a couple of
essential aspects: (i) it incorporates dynamical quasiparticles
from the finite width of the spectral functions (imaginary part
of the propagators); (ii) it involves scalar mean fields that
substantially drive the collective flow in the partonic phase;
(iii) it is based on a realistic equation of state from lattice
QCD and thus describes the speed of sound cs(T ) reliably;
(iv) the hadronization is described by the fusion of off-shell
partons to off-shell hadronic states (resonances or strings)
and does not violate the second law of thermodynamics;
(v) all conservation laws (energy momentum, flavor currents,
etc.) are fulfilled in the hadronization contrary to coalescence
models; (vi) the effective partonic cross sections are not
given by pQCD but are self-consistently determined within
the DQPM and probed by transport coefficients (correlators)
in thermodynamic equilibrium. The latter can be calculated
within the DQPM or can be extracted from the PHSD by
performing calculations in a finite box with periodic boundary
conditions (shear- and bulk viscosity, electric conductivity,
magnetic susceptibility, etc. [24,25]). Both methods show a
good agreement.

In the beginning of relativistic heavy-ion collisions color-
neutral strings (described by the LUND model [26]) are
produced in highly energetic scatterings of nucleons from

the impinging nuclei. These strings are dissolved into “pre-
hadrons” with a formation time of ∼0.8 fm/c in the rest frame
of the corresponding string, except for the “leading hadrons.”
Those are the fastest residues of the string ends, which can
re-interact (practically instantly) with hadrons with a reduced
cross section in line with quark counting rules. If, however,
the local energy density is larger than the critical value for
the phase transition, which is taken to be ∼0.5 GeV/fm3, the
pre-hadrons melt into (colored) effective quarks and antiquarks
in their self-generated repulsive mean field as defined by
the DQPM [18,22]. In the DQPM the quarks, antiquarks,
and gluons are dressed quasiparticles and have temperature-
dependent effective masses and widths which have been fitted
to lattice thermal quantities such as energy density, pressure,
and entropy density. The nonzero width of the quasiparticles
implies the off-shellness of partons, which is taken into account
in the scattering and propagation of partons in the QGP on the
same footing (i.e., propagators and couplings).

The transition from the partonic to hadronic degrees of
freedom (for light quarks and antiquarks) is described by
covariant transition rates for the fusion of quark-antiquark
pairs to mesonic resonances or three quarks (antiquarks) to
baryonic states, i.e., by the dynamical hadronization. Note that
because of the off-shell nature of both partons and hadrons, the
hadronization process described above obeys all conservation
laws (i.e., four-momentum conservation and flavor current
conservation) in each event, as well as the detailed balance
relations and the increase in the total entropy S. In the
hadronic phase PHSD is equivalent to the hadron-strings
dynamics (HSD) model [21] that was employed in the past
from SchwerIonen-Synchrotron (SIS) to SPS energies. On the
other hand the PHSD approach was applied to p+p, p+A
and relativistic heavy-ion collisions from lower SPS to LHC
energies and was successful in describing a large number of
experimental data including single-particle spectra, collective
flow, as well as electromagnetic probes [9,10,27,28].

B. 2D+1 viscous hydrodynamics

Relativistic hydrodynamical models calculate the space-
time evolution of the QGP medium via the conservation
equations,

∂μT μν = 0, (1)

for the energy-momentum tensor,

T μν = e uμuν − �μν(P + 	) + πμν, (2)

provided a set of initial conditions for the fluid flow velocity
uμ, energy density e, pressure P , shear stress tensor πμν , and
bulk viscous pressure 	. For our analysis, we use VISH2+1
[11], which is an extensively tested implementation of boost-
invariant viscous hydrodynamics that was updated to handle
fluctuating event-by-event initial conditions [12]. We use the
method from Ref. [29] for the calculation of the shear stress
tensor πμν .

This particular implementation of viscous hydrodynamics
calculates the time evolution of the viscous corrections through
the second-order Israel-Stewart equations [30,31] in the
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14-momentum approximation, which yields a set of relaxation-
type equations [32],

τ		̇ + 	 = −ζθ − δ			θ + φ1	
2

+ λ	ππμνσμν + φ3π
μνπμν, (3a)

τπ π̇ 〈μν〉 + πμν = 2ησμν + 2π 〈μ
α wν〉α − δπππμνθ

+φ7π
〈μ
α πν〉α − τπππ 〈μ

α σ ν〉α

+ λπ		σμν + φ6	πμν. (3b)

Here, η and ζ are the shear and bulk viscosities. For
the remaining transport coefficients, we use analytic results
derived for a gas of classical particles in the limit of small but
finite masses [32].

The hydrodynamical equations of motion must be closed by
an equation of state (EoS), P = P (e). We use a modern QCD
EoS based on continuum extrapolated lattice calculations at
zero baryon density published by the HotQCD collaboration
[33] and blended into a hadron resonance gas EoS in the in-
terval 110 � T � 130 MeV using a smooth step interpolation
function [34]. While not identical, this EoS is compatible with
the one that the DQPM model (underlying the PHSD approach)
is tuned to reproduce.

To start the hydrodynamical calculation, an initial condi-
tion needs to be specified. Initial condition models provide
the outcome of the collision’s pre-equilibrium evolution at
the hydrodynamical thermalization time, at approximately
0.5 fm/c. This pre-equilibrium stage is the least understood
phase of a heavy-ion collision. While some hydrodynamical
models explicitly incorporate pre-equilibrium dynamics [35]
starting from a full initial state calculation, others sidestep the
uncertainty associated with this early regime by generating
parametric initial conditions directly at the materialization
time [36–38].

For our study here, we shall initialize the hydrodynamical
calculation with an initial condition extracted from PHSD that
provides us with a common starting configuration for both
models regarding our comparison of the dynamical evolution
of the system.

III. NONEQUILIBRIUM INITIAL CONDITIONS

In this section we describe the construction of the initial
condition for the hydrodynamical evolution from the nonequi-
librium PHSD evolution. One should note that PHSD starts its
calculation ab initio with two colliding nuclei and makes no
equilibrium assumptions regarding the nature of the hot and
dense system during the course of its evolution from initial
nuclear overlap to final hadronic freeze-out. For the purpose
of our comparison we have to select the earliest possible time
during the PHSD evolution where the system is in a state in
which a hydrodynamical evolution is feasible (e.g., the viscous
corrections are already small enough) and generate an initial
condition for the hydrodynamical calculation at that time
(note that this criterion is less stringent than assuming full
momentum isotropization or local thermal equilibrium).

A. Evaluation of the energy-momentum tensor Tμν in PHSD

The energy-momentum tensor T μν(x) of an ideal fluid [by
removing viscous corrections in Eq. (2)] is given by

T μν = (e + P )uμuν − Pgμν, (4)

where e is the energy density, P the thermodynamic pressure
expressed in the local rest frame (LRF), and the 4-velocity
is uμ = γ (1,βx,βy,βz). Here β is the (3-)velocity of the
considered fluid element and the associated Lorentz factor
is given by γ = 1/

√
1 − β2.

To calculate T μν in PHSD which fully describes the
medium in every space-time coordinate, the space time is
divided into cells of size �x = 1 fm, �y = 1 fm (which is
comparable to the size of a hadron) and �z ∝ 0.5 × t/γNN

scaled by γNN to account for the expansion of the system. We
note that choosing a high resolution was shown in Ref. [27] to
lead to very similar results. In each cell, we can obtain T μν in

FIG. 1. Initial conditions for hydrodynamics: the energy density
profiles from a single PHSD event (a) and averaged over 100 PHSD
events (b) taken at t = 0.6 fm/c for a peripheral (b = 6 fm) Au+Au
collision at

√
sNN = 200 GeV.
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the computational frame from

T μν(x) =
∑

i

∫ ∞

0

d3pi

(2π )3
fi(Ei)

p
μ
i pν

i

Ei

, (5)

where fi(E) is the distribution function corresponding to the
particle i, p

μ
i the 4-momentum, and Ei = p0

i is the energy
of the particle i. In the case of an ideal fluid, if the matter
is at rest [uμ = (1,0,0,0)] T μν(x) should only have diagonal
components and the energy density in the cell can be identified
to the T 00 component. However, in heavy-ion collisions the
matter is viscous, anisotropic, and relativistic, thus the different
components of the pressure are not equal and it becomes more
difficult to extract the relevant information. This especially
holds true for the early reaction time at which the initial
conditions for hydrodynamical model are taken. To obtain
the needed quantities (e,β) from T μν for the hydrodynamical
evolution, we have to express them in the local rest frame
(LRF) of each cell of our space-time grid. In the general case,
the energy-momentum tensor can always be diagonalized, i.e.,
presented as

T μν (xν)i = λi (xμ)i = λi gμν (xν)i , (6)

with i = 0,1,2,3, where its eigenvalues are λi and the corre-
sponding eigenvectors (xν)i . When i = 0, the local energy
density e is identified to the eigenvalue of T μν (Landau
matching) and the corresponding timelike eigenvector is
defined as the 4-velocity uν [multiplying (4) by uν]:

T μνuν = euμ = (egμν)uν, (7)

using the normalization condition uμuμ = 1. To solve this
equation, we have to calculate the determinant of the cor-
responding matrix which is the fourth-order characteristic
polynomial associated with the eigenvalues λ:

P (λ) =

∣∣∣∣∣∣∣∣
T 00 − λ T 01 T 02 T 03

T 10 T 11 + λ T 12 T 13

T 20 T 21 T 22 + λ T 23

T 30 T 31 T 32 T 33 + λ

∣∣∣∣∣∣∣∣. (8)

Having the four solutions for this polynomial, we can identify
the energy density being the larger and positive solution, and
the three other solutions are (−Pi) the pressure components
expressed in the LRF. To obtain the 4-velocity of the cell, we
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FIG. 2. Initial conditions of a peripheral Au+Au collision (b=6 fm) at
√

sNN = 200 GeV (calculated within the PHSD). (Top contour)
The local energy density in the transverse plane; (middle contour) quiver plot of initial flow vx,vy in the transverse plane (color map indicates
the magnitude of local initial flow); (bottom contour) initial flow with respect to the distance of the cell from the center of energy density.
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use (7) which gives us this set of equations:

(T 00 − e) + T 01X + T 02Y + T 03Z = 0,

T 10 + (T 11 + e)X + T 12Y + T 13Z = 0,

T 20 + T 21X + (T 22 + e)Y + T 23Z = 0,

T 30 + T 31X + T 32Y + (T 33 + e)Z = 0. (9)

Rearranging these equations, we can obtain the solutions
which are actually for the vector uν = γ (1,X,Y,Z) =
γ (1,−βx,−βy,−βz). To obtain the physical 4-velocity uμ,
we have to multiply by gμνuν = uμ.

B. PHSD initial conditions for hydrodynamics

By the Landau matching procedure described above, we can
obtain the initial conditions such as the local energy density
e and initial flow �β for the hydrodynamical evolution. In the
PHSD simulation the parallel ensemble algorithm is used for
the test particle method, which has an impact on the fluctuating
initial conditions. For a larger number of parallel ensembles
(NUM), the energy density profile is smoother because it
is calculated on the mean-field level by averaging over all
ensembles. From a hydrodynamical point of view, gradients
should not be too large and some smoothing of the initial
conditions is therefore required. Here, we choose NUM = 30,
which provides the same level of smoothing of the initial
energy density as in typical PHSD simulations. In Fig. 1(a)
we show the initial condition at time τ = 0.6 fm/c extracted
from a single PHSD event averaged over (NUM = 30) parallel
events, and averaged over 100 parallel events [Fig. 1(b)]; the
color maps represent the local energy density while the arrows
shows the initial flow at each of the cells. Even though the
initial profiles are averaged over NUM = 30 parallel events,
the distribution still captures the feature of event-by-event
initial state fluctuations.

In Fig. 2 we investigate the dependence of the PHSD
initial conditions on the equilibration time τ0, at which the
nonequilibrium evolution is switched to a hydrodynamical
evolution in local thermal equilibrium. As expected, for larger
initial times τ0, the local initial flow increases and the local
energy density decreases.

IV. MEDIUM EVOLUTION: HYDRODYNAMICS
VERSUS PHSD

In this section we compare the response of the hydrodynam-
ical long-wavelength evolution to the PHSD initial conditions
with the microscopic PHSD evolution itself. To avoid as many
biases as possible we apply the temperature-dependent shear
viscosity as determined in PHSD simulations [24] and shown
in Fig. 3(a): The blue and red symbols correspond to η/s
obtained from the Kubo formalism and from the relaxation
time approximation method, respectively. As discussed in [24]
the result agrees well also with the virial expansion approach
[39]. The black line in Fig. 3 shows the parametrization of the
PHSD η/s(T ), which is used in the viscous hydrodynamics for
the present study. We note that the parametrized curve is very
similar to the recently determined temperature dependence of

(a)

(b)

FIG. 3. η/s and ζ/s versus scaled temperature T/TC . (a) The
symbols indicate the PHSD results of η/s from Ref. [24], calculated
using different methods: the relaxation-time approximation (red
line+diamonds) and the Kubo formalism (blue line+dots); the black
line corresponds to the parametrization of the PHSD results for η/s.
The orange short dashed line demonstrates the Kovtun-Son-Starinets
bound [43] (η/s)KSS = 1/(4π ). The orange dashed line is the η/s

of VISHNU hydrodynamical model that was recently determined by
Bayesian analysis. (b) ζ/s from PHSD simulations from Ref. [24]
and the ζ/s that is adapted in our hydrodynamical simulations.

η/s via the Bayesian analysis of the available experimental
data [40] (the orange dashed line).

While the effect of shear viscosity on the hydrodynamical
evolution was studied extensively for simulations of heavy-ion
collisions, bulk viscosity has not been treated as carefully so
far. This is because at higher temperatures the bulk viscosity
should be very small, and vanish in the conformal limit.
Moreover, an enhanced bulk viscosity at the pseudocritical
temperature causes problems for the applicability for hydro-
dynamics itself. Studies conducted for dynamical quasiparticle
models, like the one used in PHSD, show that the magnitude
and temperature behavior of the bulk viscosity depend on
details of the parametrization of the equation of state and
properties of the underlying degrees of freedom [22,24]. For
the relaxation time approximation in quasiparticle models
slightly different values for the bulk viscosity are obtained
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[41,42]. Given these uncertainties for the values of the bulk
viscosity, we decide to use the bulk viscosity that was recently
determined by the Bayesian analysis of experimental data in
our hydrodynamical simulations [40]. In Fig. 3(b) we compare
the ratio of bulk viscosity to entropy ζ/s that is adapted in our
hydrodynamical simulations and the one extracted from PHSD
simulations. It should be noted that the maximum ζ/s that
the hydrodynamical model can handle is much smaller than
the bulk viscosity from PHSD simulations, and its effect on
the momentum anisotropy will be discussed at the end of this
section.

A. Pressure isotropization

To justify the choice of initial time τ0 = 0.6 fm, we first take
a look at the evolution of the different pressure components in
PHSD. In the pre-equilibrium stage deviations from thermal
equilibrium are very large, however, (PL + 2PT )/e ≈ 1 up tp
0.15 fm/c for all three panels. Without explicit representation
we mention that for t > 0.15 fm/c (PL + 2PT )/e is slightly
lower than P/e from the EoS for some fm/c in case of the
central cell and for x = 3 fm, whereas both quantities are
about equal for z = 5 fm. This deviation we attribute to
pre-equilibrium effects emerging in the PHSD calculations.
According to common understanding one can apply hydrody-
namics once the pressure is isotropic, which implies that both
transverse and longitudinal pressure are about equal PT ≈ PL.

As mentioned in the previous section, the deviations from
equilibrium are strongest at the beginning of the heavy-ion
collision. In this case the viscous corrections can have a
large contribution to the energy-momentum tensor, and the
pressure components can differ substantially from the isotropic
pressure given by the EoS. This situation is illustrated in
Fig. 4 which shows the evolution of the transverse and
longitudinal pressures divided by the local energy density
e in different cells along the x axis extracted from PHSD
as a function of time for a peripheral Au+Au collision at√

sNN = 200 GeV. These pressure components correspond to
the eigenvalues of T μν(x) where the latter have been averaged
in this case over 100 PHSD events to get a smooth evolution.
As seen from Fig. 4, at early reaction times the deviation
between the pressure components is large and the longitudinal

FIG. 4. Evolution of the ratio of the transverse PT and longitudi-
nal PL pressures over the cell energy density e extracted from PHSD
as a function of time for different cells along the x axis in a peripheral
(b = 6 fm) Au+Au collision at

√
sNN = 200 GeV. Note that T μν was

averaged over 100 PHSD events.

pressure dominates. The transverse pressure starts from zero
but grows with time and approximately reaches the isotropic
pressure within a range of 0.3–1 fm/c. On the other hand,
the longitudinal pressure decreases to very low values and
remains small for large times. One of the reasons for this
behavior is that we took only a few cells on the z axis which
correspond to a pseudorapidty gap �η ≈ O(10−2). By taking
into account more cells in the longitudinal direction, the
longitudinal pressure increases but the collective expansion
cannot be removed properly in this case (as it was already
studied in Sec. 7 of Ref. [13]). By looking at more peripheral

FIG. 5. Evolution of the relative value between the transverse pressure extracted from PHSD PT (see also Fig. 4 for the pressure components)
and the pressure P given by the EoS for different times in the transverse plane of a peripheral (b = 6 fm) Au+Au collision at

√
sNN = 200 GeV.

Note that T μν was averaged over 100 PHSD events.
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FIG. 6. Local energy density e(x,y,z = 0) (left column) and the corresponding temperature T (x,y,z = 0) given by the EoS (right column)
in the transverse plane from a PHSD event (NUM = 30) at different times for a peripheral (b = 6 fm) Au+Au collision at

√
sNN = 200 GeV.

cells (bottom panel of Fig. 4), we can see that the pressure
components deviate more from the isotropic pressure given by
the EoS compared to more central cells (top panel of Fig. 4).

We illustrate in Fig. 5 the (non-)equilibrated regions in the
PHSD simulation. We evaluated the relative value between the
transverse pressure extracted from PHSD PT (see Fig. 4 for
the pressure components) and the pressure P given by the EoS
in the full transverse plane. One can see that the central region
in gray is somewhat equilibrated for all times [(PT − P )/P is
around 0]. The peripheral cells have a higher pressure when the

initial condition for the hydrodynamical model is taken (t =
0.6 fm/c), and then fluctuate around the isotropic pressure as
depicted by the red and blue colors. We can therefore conclude
that by averaging over the PHSD events, the medium reaches
with time a transverse pressure comparable to the isotropic one
as given by the lQCD EoS. This statement is of course not valid
for a single PHSD event where the pressure components show
a much more chaotic behavior and where the high fluctuations
in density and velocity profiles indicate that the medium is in
a nonequilibrium state, as we will see in the next section.
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FIG. 7. Local energy density e(x,y,z = 0) (left column) and the corresponding temperature T (x,y,z = 0) given by the EoS (right column)
in the transverse plane from a single hydrodynamical event at different proper times for a peripheral (b = 6 fm) Au+Au collision at

√
sNN =

200 GeV.

B. Space-time evolution of energy density e and velocity �β
Starting with the same initial conditions (as discussed in

Sec. III), the evolution of the QGP medium is now simulated
by two different models: the nonequilibrium dynamics model
(PHSD), and hydrodynamics, (2+1)-dimensional VISHNU.

Figure 6 shows the time evolution of the local energy
density e(x,y,z = 0) (from T μν) (left) and the corresponding
temperature T (right) as calculated using the lQCD EoS

in the transverse plane from a PHSD event (NUM = 30) at
different times for a peripheral (b = 6 fm) Au+Au collision
at

√
sNN = 200 GeV. As seen in Fig. 1 for t = 0.6 fm/c, the

energy density profile is far from being smooth. Note also that
the energy density decreases rapidly as the medium expands
in the transverse and longitudinal direction. By converting the
energy density to the temperature given by the lQCD EoS, we
can see that the variations are less pronounced in that case.
Figure 7 shows the same quantities for a single event evolved
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FIG. 8. Contour plots of the local energy density e in the transverse plane from the PHSD simulation of one event, for a peripheral Au+Au
collision (b = 6 fm) at

√
sNN = 200 GeV.

through hydrodynamics. In particular for the energy density
at later times one can already observe a significant smoothing
compared to the PHSD evolution.

Figure 8 shows the time evolution of the local energy
density e(x,y) in the transverse plane from a single PHSD
event (NUM = 30) at different proper times for a peripheral
Au+Au collision at

√
sNN = 200 GeV, while Fig. 9 shows

the same time evolution of e(x,y) from a hydrodynamical
evolution using the same initial condition as the PHSD event
above. A comparison of the two medium evolutions shows
distinct differences: In PHSD the energy density retains many
small hot spots during its evolution because of its spatial
nonuniformly. In hydrodynamics, the initial hot spots of
energy density quickly dissolve and the medium becomes
much smoother with increasing time. Moreover, as a result
of the initial spatial anisotropy, the pressure gradient in the x
direction is larger than that in the y direction, resulting in a
slightly faster expansion in the x direction. We attribute these

differences directly to the nonequilibrium nature of the PHSD
evolution.

In Figs. 10 and 11 we show the time evolution of the velocity
�β = (βx,βy,βz) in the transverse plane for the same PHSD
initial condition evolved through PHSD and hydrodynamics.
The longitudinal velocity βz shown in the PHSD event remains
on average approximately 0 and much smaller than the
transverse flow because we only consider a narrow interval in
the z direction. At τ0 = 0.6 fm/c, transverse flow has already
developed and the transverse velocity can reach values of 0.5
at the edge of the profile. Even though the velocity increases
with time in both PHSD and hydrodynamical events, it is
clearly seen that the development of flow in a hydrodynamical
event is much faster than in a PHSD event. In addition, local
fluctuations in a single event are more visible in the PHSD
event. Moreover, the velocity in the x direction is slightly
larger than the one in the y direction in both events, as a
result of the initial spatial anisotropy of the energy density, and
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FIG. 9. Contour plots of the local energy density e in the transverse plane from the hydrodynamical simulation starting from the same
initial conditions as in Fig. 8 including initial flow.
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FIG. 10. Components of the 3-velocity (βx,βy,βz) in the transverse plane from a single PHSD event (NUM = 30) at a different proper time
for a peripheral (b = 6 fm) Au+Au collision at

√
sNN = 200 GeV. βz is scaled differently from βx,βy for better orientation.

that spatial anisotropy is converted into momentum anisotropy,
which increases with time.

C. Fourier images of energy density

The inhomogeneity of a medium can be quantified by
the Fourier transform of the energy density, ẽ(kx,ky). For a
discrete spatial grid with an energy distribution as e(x,y)m×n,
the Fourier coefficients are given by

ẽ(kx,ky) = 1

m

1

n

m−1∑
x=0

n−1∑
y=0

e(x,y)e2πi( xkx
m

+ yky
n

). (10)

The zero mode ẽkx=0,ky=0 is the total sum of the energy
density, while higher-order coefficients contain information
about the correlations of the local energy density on different
length scales. For a medium with large wave-length structures
the higher-order coefficients should be suppressed and the
typical global shape of the event should dominate. Given
that our simulations in both PHSD and hydrodynamics
are performed for the same centrality classes, we expect
these structures to give similar Fourier coefficients for lower
modes. However, if structures are dominated by smaller

length scales, the higher Fourier modes are excited as
well.

In Figs. 12 and 13 we present the Fourier transform
ẽ(kx,ky) for a medium evolved by PHSD and hydrodynamics,
respectively, for different stages of the evolution. For the
hydrodynamical evolution of medium only the dominant
lower Fourier modes survive in the later stages and shorter
wavelength irregularities are washed out. The microscopic
transport evolution of PHSD generates the same level of short
wavelength phenomena at all times of the evolution; only the
overall dilution of the medium reduces the strength.

This difference can be identified more easily in Fig. 14,
where we plot the distribution of the Fourier coefficients
〈ẽ(

√
k2
x + k2

y)〉 for different evolution times. For the lower
order Fourier modes, which carry the information about the
global event scale, the microscopically evolving medium
and the hydrodynamical medium are practically identical.
We observe that the strength of the shorter wavelength
modes rapidly decreases with respect to the zero mode at
the beginning of the hydrodynamical evolution. Higher-order
Fourier modes survive in PHSD for longer times which
should be attributed to dynamical fluctuations not incorpo-
rated in the present hydrodynamic calculations. Note that in
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FIG. 11. Components of the velocity (βx,βy) in the transverse plane from a single hydrodynamical event (taking the same initial condition
as the PHSD event above) at a different proper time for a peripheral (b = 6 fm) Au+Au collision at

√
sNN = 200 GeV.

thermodynamic equilibrium these fluctuations should not
vanish according to the fluctuation-dissipation theorem (FDT)
in case of a finite viscosity. In principle one might check
within PHSD if the FDT holds in the late phase of the
reaction, however, this question is beyond the scope of the
present study. For a general formulation of hydrodynamics
with dynamical fluctuations on the basis of the FDT we
refer the reader to Ref. [44]. A numerical implementation
[45] of linearized hydrodynamical fluctuations was studied
in [46]. We note that a full numerical realization including
the nonlinearities in the hydrodynamical equations is very
challenging [47].

D. Time evolution of the spatial and momentum anisotropy

Much interest is given to the medium’s response to initial
spatial anisotropies. For the hydrodynamical models the spatial
anisotropies lead to substantial collective flow, measured by
Fourier coefficients of the azimuthal particle spectra. Initial
spatial gradients are transformed into momentum anisotropies
via hydrodynamical pressure. While experimentally only the
final state particle spectra are known, models for the space-time
evolution of the medium can give insight into the evolution of
the spatial and the momentum anisotropy. For hydrodynamical
models the latter is directly related to the elliptic flow
v2. Similar statements apply to the transport models where
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FIG. 12. Contour plots of the Fourier transform of the energy density ẽ(x,y,z = 0) for the simulation obtained within PHSD as shown in
Fig. 8.
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FIG. 13. Contour plots of the Fourier transform of the energy density ẽ(x,y,z = 0) for the simulation obtained within hydrodynamics as
shown in Fig. 9.

the initial spatial anisotropies are converted to momentum
anisotropies [8].

The spatial anisotropy of the matter distribution is quanti-
fied by the eccentricity coefficients εn defined as

εn exp(in�n) = −
∫

rdrdφrn exp(inφ)e(r,φ)∫
rdrdφrne(r,φ)

, (11)

where e(r,φ) is the local energy density in the transverse plane.
The second-order coefficient ε2 is also called ellipticity and

to leading order the origin of the elliptic flow v2. It can be
simplified to

ε2 =
√

{r2 cos(2φ)}2 + {r2 sin(nφ)}2

{r2} , (12)

where {...} = ∫
dxdy(...)e(x,y) describes an event-averaged

quantity weighted by the local energy density e(x,y) [48].
The importance of event-by-event fluctuations in the initial

state was realized in particular for higher-order flow harmonics
but also as a contribution to the elliptic flow and was
extensively investigated both experimentally and theoretically
[49–51]. As shown earlier, the PHSD model naturally produces
initial state fluctuations because of its microscopic dynamics.
We therefore apply event-by-event hydrodynamics and all
subsequent quantities are averaged over many events.

In Fig. 15 we show the time evolution of the ellipticity 〈ε2〉
for both medium descriptions. For the PHSD simulations we
observe large oscillations in 〈ε2〉 at the beginning of the evo-
lution from the initialization geometries and formation times.
After sufficient overlap of the colliding nuclei at the initial time

FIG. 14. Radial distribution of the Fourier modes of the energy density for a different proper time in both PHSD and hydrodynamical
events. The red lines correspond to the PHSD simulations and the black line corresponds to the hydrodynamical simulations.
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FIG. 15. Event-by-event averaged spatial eccentricity ε2 of 100
PHSD events and 100 VISHNU events with respect to proper time,
for a peripheral Au+Au collision (b = 6 fm) at

√
sNN = 200 GeV.

The green dots show the distribution of each of the 100 PHSD events
used in this analysis. The solid red line is the average over all the green
dots. The blue, yellow, and black lines correspond to hydrodynamical
evolution taking different initial condition scenarios.

τ0 the average 〈ε2〉 is stabilized in PHSD. There are, however,
still significant event-by-event fluctuations of this quantity at
later times and strong variations between individual events.

In contrast, in a single hydrodynamical event εp deviates
from the average, but remains a smooth function of time. Be-
cause of the faster expansion in the x direction the initial spatial
anisotropy decreases during the evolution for both medium
descriptions. However, the spatial anisotropy decreases faster
when initial pre-equilibrium flow βi (extracted from the
early PHSD evolution) is included in the hydrodynamical
evolution. In this case, the time evolution of the event-by-event
averaged spatial anisotropy is very similar in PHSD and in
hydrodynamics. Initializing with the shear-stress tensor π

μν
i

may have slight effects on the spatial eccentricity but not large
enough to be visible.

A similar feature is also seen in the evolution of the mo-
mentum ellipticity, which is directly related to the integrated
elliptic flow v2 of light hadrons. The total momentum ellipticity
is determined from the energy-momentum tensor as [29,52]

εp =
∫

dxdy(T xx − T yy)∫
dxdy(T xx + T yy)

. (13)

Here the energy-momentum tensor includes the viscous
corrections from πμν and 	.

In Fig. 16(a) we show the time evolution of the event-
by-event averaged 〈ε(p)〉 for the hydrodynamical medium
description with and without pre-equilibrium flow in the
initial conditions. Including the initial flow leads to a finite
momentum anisotropy at τ0 which subsequently increases as
the pressure transforms the spatial anisotropy in collective
flow. Consequently, εp is larger than in the scenario without
initial flow throughout the entire evolution of the medium
and an enhanced elliptic flow can be expected. Given the
unresolved question of bulk viscosity in heavy-ion collisions,
we investigate the effect of tuning the bulk viscosity from the
standard value discussed at the beginning of this section to
four times this value, which comes closer to the bulk viscosity
found in different quasiparticle calculations [41,42]. We see
that for an enhanced bulk viscosity around Tc the momentum
anisotropy develops a bump at later times, which is more
pronounced for larger bulk viscosity.

In Fig. 16(b) the hydrodynamical simulation is compared
to the results from PHSD, again for event-by-event averaged
quantities and the event-by-event fluctuations indicated by the
spread of the cloud. The PHSD momentum eccentricity is
constructed by Eq. (13) where T μν is evaluated from Eq. (5).
It can be observed that before τ0 the averaged momentum
anisotropy in PHSD develops continuously during the initial
stage, before it reaches the value which is provided in the initial

FIG. 16. Event-by-event averaged total momentum anisotropy of 100 PHSD events and 100 VISHNU events with respect to proper time,
for a peripheral Au+Au collision (b = 6 fm) at

√
sNN = 200 GeV. (a) The total momentum eccentricity of hydrodynamical evolution for

different initial scenarios, as well as different bulk viscosity adapted in the hydrodynamical simulation. (b) Comparison of the total momentum
eccentricity from PHSD events compared with the standard hydrodynamical events. The green dots show the distribution of each of the
100 PHSD events used in this analysis. The solid red line is an average over the green dots. The black line corresponds to the standard
hydrodynamical evolution taking the 100 initial conditions which are generated from PHSD events.
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conditions for hydrodynamics. Despite the seemingly large
bulk viscosity, as discussed in the beginning of this section,
the momentum anisotropy in PHSD does not show any hint of
a bump like in the hydrodynamical calculation. The response
to intrinsic bulk viscosity in a microscopic transport model
does not seem to be as strong as in hydrodynamics.

V. SUMMARY

In this paper, we have compared two commonly used
descriptions of the evolution of a QGP medium in heavy-
ion collisions, the microscopic off-shell transport approach
PHSD and a macroscopic hydrodynamical evolution. Both
approaches give an excellent agreement with numerous exper-
imental data, despite the very different assumptions inherent in
these models. In PHSD, quasiparticles are treated in off-shell
transport with thermal masses and widths which reproduce
the lattice QCD equation of state and are determined from
parallel event runs in the simulations. Hydrodynamics assumes
local equilibrium to be reached in the initial stages of heavy-
ion collisions and transports energy-momentum and charge
densities according to the lattice QCD equation of state and
transport coefficients such as the shear and bulk viscosity. We
have tried to match the hydrodynamical evolution as closely
as possible to these quantities as obtained within PHSD.

(1) By construction the equation of state in PHSD is
compatible with the lQCD equation of state used in
the hydrodynamical evolution.

(2) A new Landau-matching procedure was used to de-
termine initial conditions for hydrodynamics from the
PHSD simulation.

(3) The hydrodynamical simulations utilize the same
η/s(T ) as obtained within PHSD.

(4) Different bulk viscosity parametrizations have been
introduced in the hydrodynamical simulation that
resemble those obtained in (dynamical) quasiparticle
models, which are the basis for PHSD simulations.

In general we find that the ensemble averages over PHSD
events follow closely the hydrodynamical evolution. The major

differences between the macroscopic near-(local)-equilibrium
and the microscopic off-equilibrium dynamics can be summa-
rized as the following.

(1) A strong short-wavelength spatial irregularity in PHSD
at all times during the evolution versus a fast smoothing
of initial irregularities in the hydrodynamical evolution
such that only global long-wavelength structures sur-
vive. These structures have been calculated on the level
of the fluid velocity and energy density and quantified
in terms of the Fourier modes of the energy density.
Because of the QCD equation of state the irregularities
imprinted in the temperature are smaller than in the
energy density itself.

(2) The hydrodynamical response to changing transport
coefficients, especially the bulk viscosity, has a strong
impact on the time evolution of the momentum
anisotropy. In PHSD these transport coefficients can
be determined but remain intrinsically linked to the
interaction cross sections. Although there are indica-
tions for a substantial bulk viscosity in PHSD, it does
not show the same sensitivity to the momentum space
anisotropy as in hydrodynamical simulations.

(3) Event-by-event fluctuations might be of similar mag-
nitude in quantities like the spatial and momentum
anisotropy but while they remain smooth functions
of time in hydrodynamics significant variations are
observed within a single event in PHSD as a function
of time.

After having gained an improved understanding of the
similarities and differences in the evolution of bulk QCD
matter between the nonequilibrium PHSD and the equilibrium
hydrodynamic approach, we plan to utilize our insights in
future projects regarding the development of observables
sensitive to nonequilibrium effects and the impact these effects
may have on hard probe observables.
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APPENDIX

1. Fourier transform of energy density

For a discrete 2D Fourier transform, we have

X̃(k,l) =
M−1∑
m=0

N−1∑
n=0

x(m,n)e−2πi mk
M e−2πi nl

N , (A1)

x(m,n) = 1

MN

M−1∑
m=0

N−1∑
n=0

X̃(k,l)e2πi( mk
M

+ nl
N

) (A2)
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= 1

MN

M−1∑
m=0

N−1∑
n=0

X̃(k,l)

[
cos

(
2π (

mk

M
+ nl

N
)

)
+ i sin

(
2π

(
mk

M
+ nl

N

))]
(A3)

= 1

MN

M−1∑
m=0

N−1∑
n=0

[
X̃real(k,l) cos

(
2π

(
mk

M
+ nl

N

))
− X̃imag(k,l) sin

(
2π

(
mk

M
+ nl

N

))]
. (A4)

X̃real and X̃imag are the real and imaginary part of Fourier transform coefficients X̃,

X̃real(k,l) =
M−1∑
m=0

N−1∑
n=0

x(m,n) cos

(
2π

(
mk

M
+ nl

N

))
, (A5)

X̃real(k,l) = −
M−1∑
m=0

N−1∑
n=0

x(m,n) sin

(
2π

(
mk

M
+ nl

N

))
. (A6)

Therefore, FT is defined as ∣∣X̃(k,l)
∣∣2 = ∣∣X̃real(k,l)

∣∣2 + ∣∣X̃imag(k,l)
∣∣2

(A7)

=
M−1∑
m=0

N−1∑
n=0

x2(m,n) (A8)

+
∑

m
=m′,n
=n′
x(m,n)x(m′,n′), (A9)

cos

(
2π (

(m − m′)k
M

+ (n − n′)l
N

)

)
. (A10)
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