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In this paper we discuss the R-matrix approach to treat the subthreshold resonances for the single-level and
one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic
normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the
only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very
important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We
present the relationship between the resonance width and the ANC for the general case and consider two limiting
cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R-matrix approach
are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are
obtained using the surface-integral formalism and the generalized R-matrix approach for the three-body resonant
reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms
of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the
THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α, n)16O in low-mass
AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level
1/2+,Ex = 6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body
effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.
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I. INTRODUCTION

A subthreshold bound state (which is close to threshold)
reveals itself as a subthreshold resonance in low-energy scat-
tering or reactions. Subthreshold resonances play an important
role in low-energy processes, in particular, in astrophysical
reactions. In this paper we present new R-matrix equations for
the reaction amplitudes and astrophysical S factors for analysis
of reactions proceeding through subthreshold resonances.
We consider elastic scattering and resonant reactions for
subthreshold resonance coupled with open resonance channels
for single- and two-level cases. All the equations are expressed
in terms of the formal and observable reduced widths.
The observable reduced width is expressed in terms of the
asymptotic normalization coefficient (ANC). As a new result,
we obtain a new equation for the connection of the ANC with
the observable reduced width of the subthreshold resonance,
which is coupled with a resonance channel. This equation is
extremely important taking into account a crucial role of the
ANC in nuclear astrophysics. We also derive equations for
the Trojan horse method (THM) reaction amplitude, triple-
and double-differential cross sections in the presence of
the subthreshold state using a generalized R-matrix method
and the surface-integral method. The THM is a powerful
indirect technique to treat resonances. We show that the
THM can equally well incorporate the subthreshold and real
resonances.
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†shub.shubhchintak@tamuc.edu
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The Trojan horse (TH) double-differential cross section
is expressed in terms of the on-the-energy-shell (OES) as-
trophysical factor, which can be contributed to by both the
subthreshold and resonance states. It is also demonstrated
how the developed theory can be used to calculate the
astrophysical S factor of the reaction 13C(α, n)16O, which is
a neutron generator for s processes in low-mass AGB stars.
A special attention is given to the threshold level 1/2+ in
17O = (α13C). There are few papers where S factors have
been calculated for 13C(α, n)16O, but the equations were not
described. Our theory, especially the new Trojan horse equa-
tions, provide a very useful tool for experimentalists to treat
resonances.

The paper is organized as follows. In Sec. II first we
consider the single-channel, single-level elastic scattering just
to demonstrate how to relate the ANC and the reduced width
for the subthreshold resonance. After that the two-channel
case is introduced, in which the subthreshold bound state is
coupled with an open channel. The connection between the
ANC and the reduced width obtained for the single-channel
case is generalized for the two-channel case, when one of the
channels is closed and the second one is open. In Sec. III
we consider the resonant reaction proceeding through the
subthreshold state. Generalization of the standard R-matrix
equations for the reaction amplitudes is presented. We also
give the explicit R-matrix equations for astrophysical factors
obtained for different cases, which we need in order to analyze
the 13C(α, n)16O reaction. To follow the results obtained in
Secs. II and III the reader is supposed to be familiar with the
classical R-matrix review [1]. In Sec. IV we derive the reaction
amplitude, triple- and double-differential cross sections for
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the indirect TH reactions proceeding through the intermediate
resonances within the framework of the generalized R-
matrix approach. Finally, in Sec. V we present the analysis
of the astrophysical factor for the 13C(α, n)16O reaction, which
is the neutron generator in the AGB stars. Throughout the paper
the system of units in which h̄ = c = 1 is used.

II. ELASTIC SCATTERING

A. Single-channel, single-level

First we consider the single-level, single-channel R-matrix
approach in the presence of the subthreshold bound state (also
called subthreshold resonance). The resonant elastic scattering
amplitude in the channel i = x + A with the partial wave li
can be written in the standard R-matrix form [1]

Tii = −2 i e−2 i δhs
i

Pi (γ (s)
i )2

E1 − Ei − [Si(Ei) − Bi + i Pi] (γ (s)
i )2

.

(1)

Here, γ
(s)
i is the reduced width amplitude of the subthreshold

bound state F s = (x A)(s) with the binding energy ε
(s)
i =

mx + mA − mF (s) , mj is the mass of the particle j , Ei ≡ ExA

is the x − A relative kinetic energy, E1 is the R-matrix energy
level, Si(Ei) = Ri Re[d lnOli (ki,ri)/dri |ri=Ri

] is the R-matrix
shift function in channel i, Oli is the outgoing spherical
wave, ri ≡ rxA is the radius connecting centers of mass of the
particles in the channel i, and ki ≡ kxA is the x − A relative
momentum. Bi ≡ Bli is the energy-independent R-matrix
boundary condition constant, Pi ≡ Pli (Ei, Ri) and Ri ≡ RxA

are the penetrability factor and the channel radius in the
channel i, δhs

i ≡ δhs
xA li

is the hard-sphere scattering phase shift
in the channel i.

If we choose the boundary condition parameter Bi =
Si(−ε

(s)
i ) in the low-energy region where the linear approx-

imation is valid, that is,

Si(Ei) − Si(−ε
(s)
i ) ≈ d Si(Ei)

dEi

∣∣∣
Ei=−ε

(s)
i

(
Ei + ε

(s)
i

)
, (2)

then at small Ei

Tii = 2 i e−2 i δhs
i Pi

(
γ̃

(s)
i

)2

ε
(s)
i + Ei + i Pi

(
γ̃

(s)
i

)2 , (3)

which has a pole at Ei = −ε
(s)
i because Pi vanishes for

Ei � 0. Here, γ̃
(s)
i is the observable reduced width of the

subthreshold resonance. The observable reduced width (γ̃ (s)
i )2

is related to the formal R-matrix reduced width (γ (s)
i )2 as

(
γ̃

(s)
i

)2 =
(
γ

(s)
i

)2

1 + (
γ

(s)
i

)2
[dSi(Ei)/dEi]|Ei=−ε

(s)
i

. (4)

Determining the asymptotic normalization coefficient as the
residue in the pole of the scattering amplitude corresponding
to the bound-state pole [2], we get for the ANC of the

subthreshold state,

[
C

(s)
i

]2 = 2 μi Ri

(
γ̃

(s)
i

)2

W 2
− η

(s)
i , li+1/2

(
2 κ

(s)
i Ri

) , (5)

where W−i η
(s)
i , li+1/2( 2 κ

(s)
i Ri) is the Whittaker function, η(s)

i =
(Zx ZA/137)μi/κ

(s)
i and κ

(s)
i are the x − A Coulomb parame-

ter and the bound-state wave number of the subthreshold state
F (s), μi is the reduced mass of x and A, and Zj e is the charge
of nucleus j . We established the relationship between the ANC
and the observable reduced width earlier in [2], but in the next
section Eq. (5) will be generalized for the two-channel case.

The observable partial resonance width of the subthreshold
resonance is given by

�̃
(s)
i (Ei) = 2 Pi

(
γ̃

(s)
i

)2

= Pi

[
C

(s)
i W− η

(s)
i li+1/2

(
2 κ

(s)
i Ri

)]2

μi Ri

. (6)

Equation (6) is of a fundamental importance. It shows that the
subthreshold bound state at Ei behaves as a resonance with the
resonance width expressed in terms of ANC and the Whittaker
function of this bound state taken on the border Ri . We have
considered the connection between the ANC and the reduced
width amplitude for the bound states. In the next section we
consider the connection between the ANC and the observable
resonance width for real resonances.

B. Two-channel, single-level

Now we consider the elastic scattering x + A → x + A
in the presence of the subthreshold bound state F (s) in the
channel i = x + A which is coupled with the second channel
f = b + B. The relative kinetic energies in the channels i,
Ei ≡ ExA, and channel f , Ef ≡ EbB , are related by

Ef ≡ EbB = Ei + Q, Q = mx + mA − mb − mB > 0.

(7)

We assume that Q > 0, that is, the channel f is open for
Ei � 0. The resonance part of the elastic scattering amplitude
in the channel i = x + A in the single-level, two-channel R
matrix approach is

Tii = −2 i e−2 i δhs
i

× Pi (γ (s)
i )2

E1 − Ei − ∑
n=i,f

[Sn(En) − Bn + i Pn] γ 2
n

, (8)

where γn is the formal reduced width in the channel n =
i, f . Note that γi ≡ γ

(s)
i . Pn ≡ Pln (En,Rn) and Rn are the

penetrability factor and the channel radius in the channel
n. There are two fitting parameters, γ

(s)
i and γf , in the

single-level, two-channel R-matrix fit at fixed channel radii.
Again, we use the boundary condition Bn = Sn(−ε

(s)
i ) and

E1 = −ε
(s)
i . The energy Ei = −ε

(s)
i in the channel i and

corresponds to Ef = Q − ε
(s)
i in the channel f . Assuming

024623-2



SUBTHRESHOLD RESONANCES AND RESONANCES IN THE . . . PHYSICAL REVIEW C 96, 024623 (2017)

a linear energy dependence of Sn(En) at small Ei , we get

Tii ≈ 2 i e−2 i δhs
i

Pi

(
γ̃

(s)
i

)2

ε
(s)
i + Ei + i

∑
n=i,f

Pn γ̃ 2
n

, (9)

where the observable reduced width in the channel n is

γ̃ 2
n = γ 2

n

1 + ∑
t=i,f

γ 2
t [dSt (Et )/dEt ]|Et=E

(s)
t

, (10)

again noticing that E
(s)
i = −ε

(s)
i and E

(s)
f = Q − ε

(s)
i . Cor-

respondingly, the observable partial resonance width in the
channel n is

�̃n(En) = 2 Pn γ̃ 2
n , (11)

with the total width �̃(Ei) = �̃
(s)
i (Ei) + �̃f (Ef ).

The presence of the open channel coupled to the elastic
scattering channel generates an additional term n = f in the
denominators of Eqs. (8)–(10). The resonant elastic scattering
amplitude in channel f in the presence of the subthreshold
bound state channel i can be obtained from Eq. (8) by replacing
i ↔ f .

Although the scattering amplitude vanishes at Ei = 0 it
can be extrapolated to the bound-state pole bypassing Ei = 0
using

Tii

Ei→−ε
(s)
i≈ 2 κ

(s)
i (−1)li+1 ei π η

(s)
i

× Ri

W 2
η

(s)
i ,li+1/2

(
2 κ

(s)
i Ri

)
(
γ̃

(s)
i

)2

ε
(s)
i + Ei + i Pf γ̃ 2

f

,

(12)

where Pf = Pf (Q − ε
(s)
i ,Rf ). Again, the ANC, as a residue in

the pole of the scattering amplitude, is related to the observable
reduced width (γ̃ (s)

i )2 of the subthreshold state by Eq. (5), in
which now (γ̃ (s)

i )2 is determined by

(
γ̃

(s)
i

)2 =
(
γ

(s)
i

)2

1 + ∑
t=i,f

γ 2
t [dSt (Et )/dEt ]|Et=E(s)

. (13)

The derivation of the connection between the ANC and the
reduced width of the subthreshold resonance in the presence
of an open channel f is a generalization of Eq. (5) and is one
of the main results obtained in this paper.

It follows from Eq. (12) that in the presence of the open
channel f coupled with the channel i, the elastic scattering
amplitude has the bound-state pole shifted into the Ei complex
plane, i.e., E

(p)
i = −ε

(s)
i − i Pf (Q − ε

(s)
i ,Rf ) (γ̃f )2.

We have established a connection between the ANC, the
observable reduced width, and the observable resonance width
(at Ei > 0) of the subthreshold resonance state. But, besides
the subthreshold bound state in the channel i, in Eq. (9) we have
also a real resonance in the channel f . In [2–4] the definition
of the ANC was also extended for real resonances. Here we
recall the connection between the resonance width, the ANC,
and the reduced width for the real resonance in the channel f
whose real part of the complex resonance energy is located at

E
(R)
f . The ANC for the resonance state is determined as the

amplitude of the outgoing resonance wave [4], which is the
generalization of the ANC definition for the bound state. Then
the general expression connecting the observable resonance
width and the ANC is [3]

C2
f = 2 (−1)lf

k
(0)
f ρ e

i[2δlf
(k(0)

f )−arctan(ρ)/2]

(1 + ρ2)1/4 + (1 + ρ2)−1/4
, (14)

where ρ = �̃f (E(R)
f )/(2ER

f ),

k
(0)
f =

√
2 μf

(
E

(R)
f − i �̃f

(
E

(R)
f

))
/2

= k
(R)
f − i k

(I )
f (15)

is the complex resonant-state momentum in the channel f , and
�̃f (E(R)

f ) is the observable resonance width at the resonance

energy. δlf (k(0)
f ) is the potential (nonresonant) scattering

phase shift in the channel f taken at the complex resonant
momentum k

(0)
f . Thus, if the resonance is not Breit-Wigner

type [E(R)
f >> �̃f (E(R)

f )/2], then to calculate the ANC from
the resonance width one needs to calculate the nonresonant
scattering phase shift at the complex energy, which is quite
far from the real kf axis. It makes the quantity δlf (k(0)

f ) and,
correspondingly, the ANC extremely model dependent. Hence,
it does not make sense to use the ANC for non-Breit-Wigner,
i.e., for broad resonances. However, for narrow resonances
from Eq. (14) we get [2,3]

C2
f ≈ μf �̃f

(
E

(R)
f

)
k

(R)
f

e
i[2 δlf

(k(R)
f )−i π lf ]

. (16)

III. RESONANT REACTIONS

We present in this section equations for the reaction
amplitudes proceeding through the subthreshold resonance
with the standard R-matrix equations generalized for the
subthreshold state. Based on these amplitudes we obtain the
corresponding astrophysical S factors which can be used
to analyze the experimental data obtained from direct and
indirect measurements. Note that here the expressions for the
astrophysical factors are written in the convenient R-matrix
form and can be used by experimentalists for the analysis
of similar reactions proceeding through the subthreshold
resonance.

Let us consider the resonant reaction

x + A → F (s) → b + B (17)

with Q > 0, proceeding through an intermediate resonance,
which is a resonance in the exit channel f and the subthreshold
bound state F (s) = (x A)(s) in the initial channel i. We assume
also that Q − ε

(s)
i > 0, that is, the channel f is open at

Ei = −ε
(s)
i .

The single-level, two-channel R-matrix amplitude describ-
ing the resonant reaction, in which in the initial state the
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colliding particles x and A have a subthreshold bound state
and the resonance is in the final channel f = b + B, can be

obtained by generalizing the corresponding equations from
Refs. [1,5]:

Tf i = 2 i e− i
(
δhs
i +δhs

f

) √
Pf γf

√
Pi γ

(s)
i

ε
(s)
i + Ei + ∑

n=i,f

[Sn(En) − Sn

(
E

(s)
n

) + i Pn] γ 2
n

. (18)

Here we recall that E
(s)
i = −ε(s) and E

(s)
f = Q − ε(s). The astrophysical factor S(Ei) is given by

S(Ei)(keV b) = ĴF (s)

Ĵx ĴA

ν2
N E2

N e2 π ηi
20 π

μi

Pf Pi γ
2
f

(
γ

(s)
i

)2

(
ε

(s)
i + Ei + ∑

n=i,f

[Sn(En) − Sn

(
E

(s)
n

)
] γ 2

n

)2

+
[ ∑

n=i,f

Pn γ 2
n

]2 , (19)

where ηi is the Coulomb parameter in the channel i, JF (s) is the spin of the subthreshold state in the channel i = x + A, which is also
the spin of the resonance in the channel f = b + B, Jj is the spin of the particle j , Ĵ = 2 J + 1, νN = 0.2118 fm is the nucleon
Compton wavelength, and EN = 931.5 MeV is the atomic unit mass. All the reduced width amplitudes are expressed in MeV1/2.

Assume now that the low-energy binary reaction (17) is contributed to by a few noninterfering levels. The subthreshold
resonance in the channel i = x + A, which is coupled to the open channel f = b + B, is attributed to the first level, λ = 1,
while other levels with λ > 1 are attributed to two open coupled channels i and f of higher energy levels Eλ and spins JFλ . The
astrophysical factor S(Ei) is given by

S(Ei)(keV b) =
N∑

λ=1

Sλ(Ei)(keV b), (20)

Sλ(Ei)(keV b) = ν2
N E2

N

20 π

μi

e2 π ηi
ĴF (λ)

Ĵx ĴA

Pfλ
Piλ γ 2

fλ
γ 2

iλ(
Eλ − Ei − ∑

n=i,f

[Sn(En) − Bn] γ 2
n λ

)2

+
[ ∑

n=i,f

Pn λ γ 2
n λ

]2 . (21)

Here, all the quantities with the subscripts n,λ correspond
to the channel n and level λ, γi λ and γf λ are the reduced
width amplitudes of the resonance F (λ) in the initial and
final channels, γi 1 ≡ γ

(s)
i , and Eλ is the energy level in the

channel λ.
Now we consider two interfering levels, λ = 1 and 2,

and two channels in each level. All the quantities related
to the levels λ = 1 and 2 have additional subscripts 1 or 2,
correspondingly. We assume that the level λ = 1 corresponds
to the subthreshold state in the channel i = x + A, which
decays to a resonant state corresponding to the level λ = 1 in
the channel f = b + B. Level 2 describes the resonance
in the channel x + A, which decays into the resonant state
in the channel f = b + B. Level λ = 2 lies higher than level
λ = 1 but both levels do interfere. The reaction amplitude is
given by

Tf i = −2 i e−i(δhs
f +δhs

i )
√

Pf

√
Pi

∑
λ τ

γfλ
Aλ τ γiτ . (22)

Here, A is the level matrix in the R-matrix method,

(A−1)λ τ = ( − ε
(s)
i − Ei

)
δλ τ

−
∑
n=i,f

γn λ γn τ

[
Sn(En) − Sn

(
E(s)

n

) + i Pn

]
.

(23)

The corresponding astrophysical S(Ei) factor is

S(ExA)(keV b) = 20 π ν2
N E2

N

ĴF (s)

Ĵx ĴA

1

μi

e2 π ηi

×Pf Pi

∣∣∣∑
λ τ

γfλ
Aλ τ γiτ

∣∣∣2
. (24)

IV. TROJAN HORSE

One of the most striking methods of treating low-energy
resonances and subthreshold resonances is the Trojan horse
method, which is a powerful indirect technique allowing one to
determine the astrophysical factor for rearrangement reactions
[6]. While in direct measurements, owing to the presence of
the Coulomb barrier, it is difficult or practically impossible
to reach the region where the peak in the astrophysical factor
is generated by the low-energy resonances or subthreshold
resonance reveals itself, the THM is the only method that
allows one not only to observe the peak from these resonances
at Ei > 0 but even to trace this peak down to the subthreshold
bound state at ExA = −ε

(s)
i . The THM involves obtaining

the cross section of the binary process (17) at astrophysical
energies by measuring the Trojan horse reaction [the two-body
to three-body process (2 → 3 particles)] in the quasifree (QF)
kinematics:

a + A → s + F ∗ → s + b + B. (25)
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FIG. 1. Pole diagram describing the TH reaction mechanism

The Trojan horse particle, a = (s x), which has a dominant
s-wave cluster structure, is accelerated at energies above the
Coulomb barrier. After penetrating the barrier, the TH nucleus
a undergoes breakup leaving particle x to interact with target
A while projectile s, also called a spectator, flies away. From
the measured cross section of the TH reaction, the energy
dependence of the astrophysical factor of the binary subprocess
(17) is determined. Since the transferred particle x in the TH
reaction is virtual, its energy and momentum are not related
by the OES equation, that is, Ex �= k2

x/(2 mx). The main
advantage of the THM is that the penetrability factor Pi in the
entrance channel of the binary reaction (17) is not present in the
expression for the TH cross section [7]. It allows one to study
resonant reactions (17) at astrophysically relevant energies

for which direct measurements are impossible or extremely
difficult to perform because of the very small value of Pi . The
second advantage of the THM is that it provides a possibility
to measure the cross section of the binary reaction (17) at
negative Ei owing to the off-shell character of the transferred
particle x in the TH reaction.

A. Trojan horse reaction amplitude

The details of the THM are addressed in the review
paper [6]. The expression for the amplitude of the reaction
(25) (for x = n), which is described by the diagram of
Fig. 1, in the surface-integral approach and distorted-wave
Born approximation (DWBA) has been derived in [8]. In
the THM the absolute cross section of the reaction (25) is
not measured and is determined by normalizing the THM
cross section to available direct experimental data at higher
energies. That is why it makes sense to use the plane-wave
approximation to get the THM amplitude. The expression
for the prior form of the THM resonant reaction amplitude
in the plane-wave approximation was derived in [6] using
the generalized R-matrix approach for three-body reactions.
The derived expression is valid for the reactions proceeding
through the real and subthreshold resonances and takes the
form (with fixed projections of the spins of the initial and final
particles)

M
Ms Mb MB

Ma MA
= i 2 π2

√
1

μf kf

ϕa(psx)
∑

JF (s) lf li

ilf +li
∑

Mx MF (s) mji
mjf

mlf
mli

e−i δhs
f Ylf mlf

(−k̂f )

√
Ri

μi

e−i δ
(hs)
i

×Y ∗
li mli

(p̂i) 〈jf mjf
lf mlf |JF (s) MF (s)〉〈ji mji

li mli |JF (s) MF (s)〉〈Jb Mb JB MB |jf mjf
〉 〈Jx Mx JA MA|ji mji

〉
× 〈Js Ms Jx Mx |Ja Ma〉P

−1/2
li

Tlf li M̃li . (26)

Here

M̃li = jli (pi Ri)[(Bi − 1) − Di]

+ 2Zx ZA μxA

137

∫ ∞

Ri

dri

Oli (ki, ri)

Oli (ki,Ri)
jli (pi, ri), (27)

with

Di ≡ Dli (pi, Ri) = Ri

∂jli (pi,ri)/∂ri |ri=Ri

jli (pi,Ri)
,

Bi ≡ Bli (ki, Ri) = Ri

∂Oli (ki,ri)/∂ri |ri=Ri

Oli (ki,Ri)
. (28)

Note that i = x + A and f = b + B determine the en-
try and exit channels of the subreaction (17) rather than
the entry and exit channels of the TH reaction (25). In
Eq. (26) 〈j1 mj1 j2 mj2 |j mj 〉 is the Clebsch-Gordan coeffi-
cient, Jj (Mj ) is the spin (its projection) of particle j , jn(mjn

)
is the channel spin (its projection) in the channel n = i, f , and
mln is the projection of ln; the sum over projection MJF (s) of
the spin JF (s) is added formally and can be dropped because
the projections of the spins of the final particles b and B are
fixed. Also, ϕa(psx) is the Fourier transform of the s-wave

bound-state wave function of nucleus a; because we included
the sum over li we replaced Pi by Pli ; Oli (ki, ri) is the
outgoing spherical wave, and jli (pi,Ri) is the spherical Bessel
function. We also recall that ri ≡ rxA is the radius connecting
x and A, ki = kxA is the conjugated OES x − A relative
momentum, that is, Ei ≡ ExA = 2 k2

i /(2 μi), μi = μxA is the
reduced mass of particles x and A, and kf ≡ kbB . pi ≡ pxA

and psx are the off-shell x − A and s − x relative momenta,
correspondingly.

We see that the THM reaction amplitude is expressed
in terms of the binary subreaction OES amplitude Tlf li in
the R-matrix form. We slightly modified the notation of the
binary subreaction amplitude adding the subscripts li and lf
to underscore explicitly a dependence of the binary reaction
amplitude on the x − A and b − B relative orbital angular
momenta in the entry and exit channels, correspondingly, of the
reaction (17). Tlf li is given by any of the resonance amplitudes
derived above.

The possibility to express the TH reaction amplitude in
terms of the R-matrix OES amplitude Tlf li is the result of using
the surface-integral formalism and the generalized R-matrix
approach for three-body reactions [6,8]. The most important
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feature of the THM providing its success as an indirect
technique for the analysis of low-energy resonances, which
are not reachable by direct measurements, is the absence of
the penetrability factor Pli in the entry channels of the binary
subreaction (17). The absence of Pli is evident because Pli

containing in Tlf li is compensated by the factor P −1
li

in front
of Tlf li .

However, we pay a price for using the three-body reaction
to obtain information about the two-body subreaction. Two
additional factors appear in the TH reaction amplitude. The
first factor is M̃li . This factor contains the logarithmic
derivatives of the spherical Bessel function jli (pi,ri) and
the outgoing spherical wave Oli (ki, ri) taken at the channel
radius Ri . These logarithmic derivatives are a result of the
generalized R-matrix approach. In addition, M̃li contains the
radial integral whose integrand behaves asymptotically (at
ri → ∞) as ∼ sin(pxA ri − liπ/2)(pxA ri)−1r

−iηxA

i . Such an
integral is not converging in the usual sense and requires a
regularization to provide convergence at large ri . This integral
was not taken into account in previous THM publications.

Another important factor appearing from the consideration
of the three-body TH reaction is the Fourier transform of the
bound-state wave function of the TH particle ϕa(psx), which
plays an important role in the determination of TH reaction
kinematics. As we have underscored, in the THM the selected
loosely bound TH particle a = (s x) has a dominant s-wave
cluster structure. It is necessary for the following reasons:

(i) The Fourier transform of the s-wave bound-state wave
function has a peak at psx = 0. The reaction kinematics for
which psx = 0 is called a quasifree (QF) one. In the practical
application to cover some energy interval ExA at fixed EaA,
one needs to select the THM reaction events with different
psx . The larger psx the smaller ϕa(psx) and, hence, the smaller
the TH cross section. But for a loosely bound TH particle
a = (s x) the decay of ϕa(psx) with increase of psx is much
smaller than for strongly bound particles. Typically in the
THM a variation of psx is carried out in the interval psx � κsx ,
where κsx = √

2 μsx εsx is the TH particle wave number, εsx

is the binding energy of a with respect to the virtual decay
a → s + x, and μs x is the reduced mass of s and x. Hence, in
the THM with loosely bound TH particles one has the privilege
to deviate from the QF kinematics within the interval psx � κsx

without losing significantly the value of the TH cross section.
(ii) There is another important reason of choosing a loosely

bound TH particle. At psx � κsx the probable distances
between s and x are rsx � 1/κsx . The smaller κsx the larger rsx .
At large rsx one can treat the outgoing particle s as a spectator
which causes a minimal disturbance to the binary subreaction
(17).

The factor M̃li depends on the relative x − A momentum
pxA. From momentum conservation we get (see Fig. 1)

pxA = mA px − mx kA

mxA

, (29)

where px = ka − ks is the momentum of the virtual particle x
and kj is the momentum of the real particle j , mij = mi + mj .
It is convenient to consider the system in which the TH particle

a is at rest, that is, ka = ks + px = 0. Then

pxA = −mA ks + mx kA

mxA

(30)

and psx = ks .
There is another THM important relation: the particle x

is virtual. Hence, Ex − p2
x/(2 mx) �= 0. From the momentum-

energy conservation in the three-ray vertices a → s + x and
x + A → F in Fig. 1 we get

ExA = p2
xA

2 μxA

− p2
sx

2 μsx

− εsx. (31)

From this equation we can conclude that always p2
xA/2 μxA >

ExA. Moreover, the binding energy of the TH particle a plays
an important role in decreasing ExA allowing one to measure
the TH cross section at lower energies even if the beam energy
is higher than the Coulomb barrier in the initial channel a + A
of the TH reaction (25) [6]. It is convenient to rewrite Eq. (31)
in the system where ka = 0. In this system Eq. (31) can be
reduced to

ExA = mx

mxA

EA + ks · kA

mxA

− k2
s

2 μsx

− εsx. (32)

B. Triple- and double-differential cross sections
of Trojan horse reaction

The TH triple-differential cross section is given by

d3σ

d�kbB
d�ksF

dExA

= μaA μsF μbB

(2 π )5

ksF kbB

kaA

1

Ĵa ĴA

×
∑

Ma MA Ms Mb MB

∣∣MMs Mb MB

Ma MA

∣∣2
. (33)

We recall that EbB and ExA are related by Eq. (7). That is
why we replaced dEbB by dExA. For practical applications
it is more convenient to use the TH double-differential cross
section, which is obtained by integration of the the triple-
differential cross section over �kbB

. Using the orthogonality
of the Clebsch-Gordan coefficients and integrating over �kbB

we get for the TH double-differential cross section

d2σ

d�ksF
dExA

= e−2 π ηxAϕ2
a (psx)

160 π3 ν2
N E2

N

RxA μaA μsF

ksF

kaA

×
∑

li

P −1
li

Sli (ExA)
∣∣M̃li

∣∣2
. (34)

We recall that li ≡ lxA. Thus the TH double-differential
cross section is expressed in terms of the OES astrophysical
factors Sli (ExA). By measuring the energy dependence of
the TH double-differential cross section we actually measure
the energy dependence of the OES astrophysical factor. We
underscore again that in the THM only the energy dependence
of the double-differential cross section on ExA is measured.

To extract the astrophysical factor from the TH experiment
we assume, for simplicity, that in the region where direct data
are available only one li gives a dominant contribution. Then
expressing the astrophysical factor in terms of the TH double-
differential cross section and introducing normalization factor
of the TH astrophysical factor to the available experimental
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data at higher energies, at which penetrability factor Pli is not
an issue and direct measurements are available, we get the TH
astrophysical factor

Sli (ExA) = NF e2 π ηxA
kaA

ksF

160 π3 ν2
N E2

N

RxA μaA μsF

×Pli

1

ϕ2
a (psx) |M̃li |2

d2σ

d�ksF
dExA

. (35)

Here, NF is the energy-independent TH normalization factor.
After the NF has been determined at higher energy, one can
determine the astrophysical factor at lower energies using the
experimental TH double-differential cross section.

Assume that at low energies only one li does contribute,
then Eq. (35) can be used to determine Sli at lower energies. If
there are two or more interfering resonances then all of them
have the same li . If, for example, two resonances contribute
with different li then one can find a region where one of these
resonances dominates. Once the astrophysical factor for one
of the resonances is determined, the astrophysical factor for
the second one can be also determined.

V. ASTROPHYSICAL FACTOR OF 13C(α, n)16O REACTION

The 13C(α, n)16O reaction is considered to be the main
neutron supply to build up heavy elements from iron-peak seed
nuclei in AGB stars. At temperature 0.9 × 108 K, the energy
range where the 13C(α, n)16O reaction is most effective, the
so-called Gamow window [9,10] is within ≈ 140−230 keV
with the most effective energy at ≈ 190 keV. This reaction
was studied using both direct and indirect (TH) methods.
Direct data, owing to the small penetrability factor, were
measured with reasonable accuracy down to Eα 13C ≈ 400 keV.
Data in the interval 300–400 keV were obtained with much
larger uncertainty [11–15]. In the paper [15] the unprecedented
accuracy of 4% was achieved at energies Eα 13C > 600 keV.
The dominant contribution to the 13C(α, n)16O reaction at
astrophysical energies comes from the state 17O(1/2+,Ex =
6356 ± 8 keV), where Ex is the excitation energy. Taking into
account that the α-13C threshold is located at 6359.2 keV one
finds that this 1/2+ level is the located at Eα 13C = −3 ± 8 keV,
that is, it can be a subthreshold bound state or a resonance
[16]. This location of the level 17O(1/2+) was adopted in
the previous analyses of the direct measurements including
the latest one in [17]. If this level is the subthreshold bound
state, then its reduced width is related to ANC of this
level.

However, in a recent paper [18] it has been determined
that this level is actually a resonance located at Eα 13C = 4.7 ±
3 keV with the total observable width of �̃ = 136 ± 5 keV.
Note that �̃α of this resonance with li = 1 is negligibly small
because it contains the penetrability factor P1. Hence, �̃ = �̃n.
The result obtained in [18] is a very important achievement in
the long history of hunting for this near-threshold level. If
this level is actually a resonance located slightly above the
threshold then the reduced width is related to the resonance
partial α width rather than to the ANC. Evidently that this
resonance is not a Breit-Wigner type and it does not make
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FIG. 2. S factors for the 13C(α, n)16O reaction as a function
of the α-13C relative kinetic energy proceeding through four reso-
nances: black dotted-dashed line ( 5/2−, li = 2, Ex = 7.165 MeV);
solid red line ( 3/2+, li = 1, Ex = 7.216 MeV); dashed brown
line (5/2+, li = 3, Ex = 7.379 MeV); dotted blue line (5/2−, li =
2, Ex = 7.382 MeV). All the resonant parameters are taken from
[17].

sense to use the ANC as characteristics of this resonance [see
Eq. (14)].

Here we present the calculations of the astrophysical S
factors for the 13C(α, n)16O using the equations derived above.
We fit the latest TH data [19] using both assumptions that the
threshold level 1/2+ is the subthreshold state located at −3 keV
and the resonance state at 4.7 keV. For the subthreshold state
we use parameters from [17] while for the resonance state
we adopted parameters from [18]. The resonances included
in the analysis of this reaction are ( 1/2+, li = 1, Ex =
6.356 MeV), ( 5/2−, li = 2, Ex = 7.165 MeV), ( 3/2+, li =
1, Ex = 7.216 MeV), (5/2+, li = 3, Ex = 7.379 MeV), and
(5/2−, li = 2, Ex = 7.382 MeV). Only two resonances, the
second and the last one have the same quantum numbers and
do interfere. Their interference can be taken into account using
the S factor given by Eq. (24). For noninterfering resonances
we use Eq. (20).

In Fig. 2 we presented the S factors contributed by
four different resonant states located at Eα 13C > 0. All the
parameters of these resonances are taken from [17]. We only
slightly modified the α-particle width of the wide resonance
at Eα 13C = 0.857 MeV taking it to be 0.12 keV. The adopted
channel radii are Rα 13C = 7.5 fm and Rn 16O = 6.0 fm.

As we see from Fig. 2, the contributions of all the narrow
resonances are negligible compared to the wide one (red solid
line in Fig. 2). That is why we do not take into account
the interference between two narrow 5/2− resonances. Thus
eventually we can take into account only the wide resonance
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( 3/2+, li = 1, Ex = 7.216 MeV) and the near-threshold level
( 1/2+, li = 1, Ex = 6.356 MeV).

A. Threshold level 1/2+, li = 1, Ex = 6.356 MeV

Here we discuss the threshold level Ex = 6.356 MeV. Until
the work of Ref. [18] this level was considered to be the
subthreshold resonance located at Eα 13C = −3 keV. However,
as we have mentioned, in [18] this level now was shifted to
the continuum and is found to be a real resonance located
at Eα 13C = 4.7 keV. The astrophysical factor contributed by
this 1/2+ state depends on the reduced width in the entry
channel α-13C of the 13C(α, n)16O reaction and the reduced
width in the exit channel n-16O. The latter is determined with
an acceptable accuracy, for example, in [17,18]. If we assume
that the level Ex = 6.356 MeV is the subthreshold resonance,
then its reduced width in the α channel is expressed in terms
of the ANC for the virtual decay 17O(1/2+,Eα 13C =
−3 keV) → α + 13C. This ANC was found in a few papers
[20–22]. The latest measurement of this ANC was published
in [23]: C̃

(s)
α 13C

= 3.6 ± 0.7 fm−1, which is the Coulomb
renormalized ANC. The problem is that at very small binding
energies the ANC of the subthreshold state becomes very large
due to the Coulomb-centrifugal barrier. That is why in [4,24]
the Coulomb renormalized ANC was introduced in which the
Coulomb-centrifugal factor was removed:

C̃
(s)
i = li!

�(1 + li + η
(s)
i )

C
(s)
i . (36)

Here, �(x) is the gamma function, li is the orbital angular mo-
mentum of the bound state, and η

(s)
i is the Coulomb parameter

of the subthreshold bound state. At small binding energies of
the bound state, that is, at large η

(s)
i , the factor �(1 + li + η

(s)
i )

becomes huge. Usually we are used to seeing the barrier factor
decrease the cross section, but here we see the opposite effect.

However, in the R-matrix approach the quantity which we
need in order to calculate the astrophysical S factor is the
reduced width. The observable reduced width of the bound
state is expressed in terms of the ANC by the equation

γ̃
(s)2

i =
C

(s)2

i W 2
−η

(s)
i , li+1/2

(
2 κ

(s)
i Ri

)
2 μi Ri

. (37)

The Coulomb-barrier factor, which significantly en-
hances the ANC, has an opposite effect on the Whit-
taker function W−η

(s)
i , li+1/2(2 κ

(s)
i Ri), so that the product

C
(s)
i W−η

(s)
i , li+1/2(2 κ

(s)
i R) is unaffected by the Coulomb-

centrifugal barrier factor. It is convenient to rewrite Eq. (37) as

γ̃
(s)2

i =
C̃

(s)2

i W̃ 2
−η

(s)
i , li+1/2

(
2 κ

(s)
i Ri

)
2 μi Ri

, (38)

where Ri = Rα 13C, μi = μα 13C, κ
(s)
i =

√
2 μiε

(s)
i , and

ε
(s)
i = −3 keV. Also

W̃ 2
−η

(s)
i , li+1/2

(2 κ
(s)
i Ri) = �(1 + li + η

(s)
i )

li!

×W 2
−η

(s)
i , li+1/2

(2 κ
(s)
i Ri). (39)

For example, for the case under consideration, if the
subthreshold bound state is located at −3 keV then �(1 +
li + η

(s)
i ) = 2.406 × 1084 for li = 1. For the channel radius

Ri = 7.5 fm, W−η
(s)
i , li+1/2(2 κ (s) Ri) = 2.44122 × 10−86 while

W̃−η
(s)
i , li+1/2(2 κ

(s)
i Ri) = 0.0587. Correspondingly,

C
(s)
i W−η

(s)
i , l+1/2

(
2 κ

(s)
i Ri

) = C̃
(s)
i W̃−η

(s)
i , l+1/2

(
2 κ

(s)
i Ri

)
= 0.111 fm−1/2. (40)

The reduced width changes very little if we assume that
the threshold level 1/2+ is the bound state. We used the
single-particle α-13C Woods-Saxon potential to generate the
bound-state wave function with the binding energy −3 keV.
This function has three nodes at ri > 0. Following the R-
matrix procedure, we accepted the internal region as 0 �
r � R, where R = 5.2 fm is the location of the last peak of
the internal wave function, and calculated the wave function,
which is normalized over the internal region, at R = 5.2 fm.
The obtained value can give estimation of the single-particle
reduced width amplitude. After that we adopted the binding
energy as −0.1 keV and repeated the similar procedure and
found by decreasing the well depth that R = 4.93 fm. The
value of the single-particle reduced width decreased only by
2.5% compared to the value for the binding energy of −3 keV.
Because the reduced width of the resonance state at 4.7 keV
is unknown and we are not able to reproduce this state using a
single-particle Woods-Saxon potential, as we did for the bound
states, we assume that the reduced width for the resonance state
is close to the reduced width for the bound state −3 keV, which
is 3.3 keV1/2 for the ANC C̃

(s)
i = 1.9 fm−1/2 and Ri = 7.5

fm. To make the fit to the TH data [19] we adopted the
reduced width for the resonance state 4.7 keV in the interval
2.81–3.6 keV1/2. Note that Ri = 7.5 fm provided the best fit
of the TH data.

B. Low-energy astrophysical factor for 13C(α, n)16O

From Fig. 2 it is clear that only the experimental S factor
generated by the broad resonance 3/2+, Eα 13C = 0.857 MeV
can be used for normalization of the TH double-differential
cross section at Eα 13C > 0.5 MeV. The problem of the
normalization of the TH data for this specific reaction was
discussed in detail in [19,20]. We use the results from [19] as
fitting data but need to renormalize them because in [19,20] the
factor M̃1 was calculated without the integral term in Eq. (27).
Recalculating M̃1 taking into account the integral term we find
that the TH results in [19] should be renormalized by 0.948.
After renormalization of the TH data from [19] we did a new
fit. In Fig. 3 we present our final results for the S factor for the
reaction 13C(α, n)16O.

Our numerical values of the S(0) factors are
(1) for 1/2+, −3 keV, and �n = 158.1 keV [17], S(0) =

7.62+2.65
−1.23 × 106 MeV b; and (2) for 1/2+, 4.7 keV, and �n =

136 keV [18], S(0) = 7.51+2.96
−1.1 × 106 MeV b.

Thus, even the TH data, which provide the astrophysical
factor at significantly lower energies than direct measurements
[17], cannot answer the question whether the threshold level
is a subthreshold bound state or a resonance.
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FIG. 3. Astrophysical S factor for the 13C(α, n)16O reaction as a
function of the α-13C relative kinetic energy. Square black boxes, solid
green dots, and shaded orange band are data from Refs. [13], [17], and
[19], respectively. Red solid lines correspond to our calculations for
the fit to the lower and upper limits of the TH data considering 1/2+

state as −3 keV subthreshold resonance with �n = 158.1 keV [17].
The lower and upper limits of the ANC square are 2.89 and 4.7 fm−1,
respectively. Whereas, the blue dotted-dashed lines correspond to
our calculations for the fit to TH data, considering the 1/2+ state
as the 4.7 keV threshold resonance with �n = 136 keV [18] and
the corresponding lower and upper values of the observable reduced
width are 2.81 and 3.6 keV1/2, respectively. For our calculations we
have used Rα 13C = 7.5 fm, and Rn 16O = 6.0 fm. The insert in the
figure shows the enlarged low-energy S factor.

In the analysis of the TH data, only the two-stage mecha-
nism proceeding through the intermediate threshold state 1/2+
has been taken into account in this paper and in the previous
TH papers (see Refs. [19,20]). However, the single-step direct
reaction 13C(α,n)16O also can contribute to the low-energy
cross section. Although the S factor of the direct mechanism
is flat and can be small its interference with the two-stage
resonant mechanism can change the total S factor. However,
the accuracy of the existing data does not allow us to determine
the contribution of the direct mechanism.

VI. SUMMARY

In this paper we discussed the R-matrix approach to the
subthreshold resonances for the single-level and one-channel,
and for the single-level and two-channel cases. The connec-
tion between the observable reduced width and the ANC
is presented for the single-level, single-channel case and gen-
eralized for the two-channel case. We present the relationship
between the resonance width and the ANC for the general case
and consider two limiting cases: broad and narrow resonances.
It is demonstrated how the resonant reactions proceeding
through the subthreshold resonance can be treated within the
conventional R-matrix approach.

Different equations for the astrophysical factors in the
R-matrix approach are presented, which we use to calculate
the astrophysical factor for the 13C(α,n)16O. All the equations
are written in convenient forms which can be directly used by
the readers. Special attention is given to the THM formalism.
Our equation for the TH amplitude is obtained using the
surface-integral formalism and generalized R-matrix approach
for the three-body resonant reactions. It is shown how the TH
double-differential cross section can be expressed in terms
of the on-the-energy-shell astrophysical factor for the binary
subreaction.

Finally, we demonstrated how the THM method can be used
to calculate the astrophysical factor for the neutron generator
13C(α, n)16O in low-mass AGB stars. At astrophysically
relevant energies this astrophysical factor is controlled by the
threshold level 1/2+,Ex = 6356 keV. Here, we reanalyzed
recent TH data [19] using both assumptions that the threshold
level is the subthreshold state and that it is a resonance
state.
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