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Background: Multinucleon transfer in low-energy nucleus-nucleus collisions is proposed as a method of
production of yet-unknown neutron-rich nuclei hardly reachable by other methods.
Purpose: Modeling of dynamics of nuclear reactions induced by heavy ions in their full complexity of competing
reaction channels remains to be a challenging task. The work is aimed at development of such a model and its
application to the analysis of multinucleon transfer in deep inelastic collisions of heavy ions leading, in particular,
to formation of neutron-rich isotopes in the vicinity of the N = 126 shell closure.
Method: Multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations
has been proposed. It is combined with a statistical model for simulation of de-excitation of primary reaction
fragments. The model provides a continuous description of the system evolution starting from the well-separated
target and projectile in the entrance channel of the reaction up to the formation of final reaction products.
Results: A rather complete set of experimental data available for reactions 136Xe + 198Pt,208Pb,209Bi was analyzed
within the developed model. The model parameters have been determined. The calculated energy, mass, charge,
and angular distributions of reaction products, their various correlations as well as cross sections for production
of specific isotopes agree well with the data. On this basis, optimal experimental conditions for synthesizing the
neutron-rich nuclei in the vicinity of the N = 126 shell were formulated and the corresponding cross sections
were predicted.
Conclusions: The production yields of neutron-rich nuclei with N = 126 weakly depend on the incident energy.
At the same time, the corresponding angular distributions are strongly energy dependent. They are peaked at
grazing angles for larger energies and extend up to the forward angles at low near-barrier collision energies. The
corresponding cross sections exceed 100 nb for the nuclei located at the border of the known region, which is
nearly five orders of magnitude larger than can be reached in the fragmentation reactions.
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I. MOTIVATION

Production and study of neutron-rich nuclei remains one of
the main trends in nuclear physics. A number of facilities work
on this subject in the world. One of the main interests here is
detailed understanding of the astrophysical r process which
proceeds via neutron-rich nuclei far away from the β-stability
line. Such nuclei located in the vicinity of the closed neutron
shells form the so-called r-process waiting points. Knowing
the properties of these nuclides plays a key role in modeling
of the r process.

One of the least explored neutron-rich regions of the nuclear
chart is that close to the N = 126 shell closure. It is due to
the low values of the fragmentation cross sections–the only
method of production of neutron-rich nuclei in this area used so
far. During the last decade three to four new nuclides have been
added to each of the isotonic chains in the vicinity of N = 126
by 238U and 208Pb fragmentation. The most neutron-enriched
nucleus with N = 126 known at present, 202Os, was produced
[1,2] with the cross section 4.4 ± 2.0 pb [2]. Moreover, only
the lower limit of the 202Os half-life was determined. Since the
fragmentation cross sections decrease rapidly with each step in
the direction on neutron excess, alternative efficient methods
of production of these nuclei should be considered.
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Multinucleon transfer in the processes of deep inelastic
(DI) collisions of heavy ions at near-barrier energies has been
considered to be an appropriate method since the discovery
of this type of nuclear reactions in 1966 by Volkov and
collaborators [3]. A few years later, a number of light
neutron-rich nuclei were produced for the first time in DI
collisions of light ions with heavy targets (see, e.g., Ref. [4]
and references therein). An important feature of DI collisions
known as the ground-ground systematics has been revealed
already in the early years of study of the DI reactions. It
justified the decisive role played by the potential energy of a
heavy nuclear system in the dynamics of multinucleon transfer
reactions. The cross sections for production of light nuclei were
found to be exponentially dependent on the Q value for the
ground-state–to–ground-state transfer.

A recently renewed interest in the DI processes is caused,
in part, by a widely discussed possibility of synthesizing the
unknown neutron-rich isotopes of medium-mass, heavy, and
superheavy nuclei [5–10]. A number of experimental studies
have already been performed [11–15] aimed at the validation
of this idea and studying the peculiarities of the multinucleon
transfer reactions in this mass region.

A possibility of synthesis of yet-unknown neutron-rich
nuclides around the N = 126 neutron shell with quite large
cross sections was predicted in Refs. [8,9]. One of the proposed
projectile-target combinations is 136Xe + 208Pb. The Q values
for proton transfer from lead to xenon are quite small for

2469-9985/2017/96(2)/024618(23) 024618-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.024618


A. V. KARPOV AND V. V. SAIKO PHYSICAL REVIEW C 96, 024618 (2017)

this reaction making it favorable according to the ground-
ground systematics. The nucleon transfer cross sections were
calculated in Refs. [8,9] within a semiclassical dynamical
approach based on the Langevin equations. However, the
model used in Refs. [8,9], in spite of its success in description
of various aspects of nuclear dynamics (including synthesis of
superheavy nuclei), usually quite strongly underestimates the
multinucleon transfer cross sections when the nucleon transfer
leads to the system antisymmetrization (see, e.g., Fig. 6 of
Ref. [11])—the proposed way of synthesis of neutron-rich
isotopes of heavy and superheavy elements. Thus, the primary
purpose of this work is developing a model suitable for the
analysis of near-barrier collisions of heavy ions in the whole
range of masses, charges, energies, and scattering angles of
the reaction products.

There are several theoretical approaches used at present
for analysis of such a complicated process as a collision
of two heavy nuclei. One of them is the already mentioned
Langevin-equations-based approach, discussed in detail in the
following section. A number of versions of this approach were
elaborated (see, e.g., Refs. [16–19]). All these models differ in
the number of included collective degrees of freedom, the
potential energy governing the system evolution, transport
coefficients, initial and boundary conditions, etc. These model
“ingredients” determine its applicability to different types of
nuclear reactions. For example, the model [19] was never
applied to the analysis of fusion-fission reactions, since the
necking degree of freedom was not included in the model. In
contrast, the model [17] was shown to work well for fusion-
fission and quasifission reactions, but the first (approaching)
stage of the reaction is considered within the coupled-channel
model [20] and the initial conditions for the Langevin model
are formulated at the point of contact of two nuclei, where they
are quite uncertain.

A rather widely used approach to the description of low-
energy nucleus-nucleus collisions is the so-called dinuclear
system model [4,10,21–23]. This model is based on the
assumption that the nuclear dynamics is regulated by the
diabatic nucleus-nucleus potential. After the contact, nuclei
stop at the bottom of the potential and the further evolution in
the elongation degree of freedom towards compact shapes of
the compound nucleus (CN) is prohibited due to the repulsive
at short distances potential. The CN formation is assumed to
proceed via the nucleon transfer from the lighter nucleus to
the heavier one until its complete “melting.”

Another type of approach employed for modeling nuclear
dynamics is an (improved) quantum molecular dynamics
model [24–27]. Within this approach, each nucleon of a
system is represented as a wave packet. Its propagation in
time is governed by the self-consistently generated mean field
entering Hamiltonian equations for the center of the wave
packet in coordinate and momentum space. In spite of a recent
successful effort made for developing this model, there are
still significant difficulties. The shell effects, responsible, in
particular, for the existence of nuclei deformed in their ground
states, are not yet fully included in the model. As a result,
the nuclei in the initial state are spherical which constrains
the model applicability to the collisions of statically deformed
nuclei.

Probably the most impressive progress in understanding
the dynamics of nucleus-nucleus collisions was made in
recent years within the time-dependent Hartree-Fock (TDHF)
approach [28–32]. At the same time, the TDHF approach is
a deterministic one, suffering from the absence of dissipative
effects originating from the interaction of collective and single-
particle subsystems. As a result, it describes the time evolution
of the dominant reaction channel, rather than the competition
of multiple reaction channels. In order to overcome this
problem one should go beyond the mean-field theory (see,
e.g., recent review [33] and references therein).

A semiclassical approach based on the Langevin equations
remains to be a powerful tool for analysis of low-energy
nucleus-nucleus collisions allowing one to model low-energy
collisions of heavy ions in their complexity of competing reac-
tion channels. This paper is aimed at developing such a model,
determining its adjustable parameters, and analyzing available
experimental data for reactions 136Xe + 198Pt,208Pb,209Bi.
Finally, the optimal conditions for production of neutron-rich
nuclei with N = 126 in these reactions are discussed.

II. MODEL

The model developed in this work is based on the same prin-
ciples as the one of Zagrebaev and Greiner [8,19] and can be
considered as its extension or generalization. Since the model
of Refs. [8,19] and its predictions are widely known, we list
here its most important (but not all) differences with the present
one. The details on each of the points will be given below.

Degrees of freedom. Independent deformations of a target
and a projectile are used in the present work instead of a
single deformation degree of freedom for the whole system
in the model [8,19]. A neck degree of freedom is included in
this model, which is important for all damped collisions but
especially for the fusion-fission reactions (not considered in
this work).

Potential energy. The potential energy is calculated in our
model within a two-center shell model, whereas in the model
[8,19] its approximation, a so-called two-core model, was
employed.

Equations of motion. Instead of the inertialess reduced
Langevin equations for mass and charge asymmetries, we
solve the full Langevin equations including also mass and
charge fluctuations of yet unexcited nuclei in the entrance
channel. This allowed us to solve the above-mentioned
problem with the description of mass transfer leading to the
system antisymmetrization.

Transport coefficients. We use full inertia and friction
tensors including the off-diagonal terms, whereas the tensors
were assumed to be diagonal in the model [8,19]. The
friction tensor is calculated in the present model within a
one-body dissipation model which was shown (see, e.g., the
corresponding discussions in Ref. [34]) to work better for the
fusion-fission reactions, rather than a two-body one as used in
the model [8,19].

A near-barrier collision of two nuclei may be described as
a sequence of several main stages:

(i) Approaching stage. The interaction of two nuclei,
initially being in their ground states, increases as
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the distance between their centers is getting shorter.
Already at this stage, deformations of the reaction
partners are not any more the ground-state ones. The
evolution of the deformation degrees of freedom starts
quite early due to a shift of an optimal deformation
(providing minimum of the potential energy) towards
more prolate shapes of the interacting nuclei. The
next important feature of this stage is the possibility
of nucleon transfer even before the nuclei come into
the contact. It was shown in several works that already
at the approaching stage of nucleus-nucleus collisions
the wave function of a valence neutron (localized ini-
tially in one of the nuclei) may spread into the volume
of another nucleus (see, e.g., Refs. [28,29,35,36])
before the colliding nuclei have overcome the
Coulomb barrier. Finally, interaction of statically
deformed nuclei, i.e., deformed in their ground states,
depends strongly on the angles of mutual orientation,
which should be taken into account. Note that in
this paper the reactions between nuclei having zero
ground-state deformations are analyzed.

(ii) Formation of a mononucleus and its evolution. Strong
dissipation of the kinetic energy of the relative motion
into the excitation energy starts at the end of the
approaching stage, when diffusenesses of nuclear
matter distributions overlap. Thus, after the contact,
an excited mononucleus is formed. Its evolution is
governed mainly by the peculiarities of the landscape
of the potential energy surface and interplay between
nuclear friction forces determining the transformation
of the kinetic energy of collective motion into the
internal excitation, on the one hand, and thermal
fluctuations of the collective degrees of freedom due
to coupling of the internal and collective subsystems
on the other. At this stage, a substantial change of the
mononucleus shape may occur, resulting, first of all,
in an intensive nucleon transfer between the two parts
of the system as well as their large deformations. The
system parts may even totally lose their individualities
and form a compound nucleus. Finally, the system
decays and forms either a cold evaporation residue or
two fragments.

(iii) Formation of reaction fragments. Separation of the
system into two fragments (neck rupture) terminates
the nucleon exchange and energy dissipation pro-
cesses. Masses and charges of the primary fragments
are now fixed. The fragments accelerate in the field
of their interaction. An extra deformation of the
fragments existing at the moment of scission gradually
disappears. The corresponding deformation energy
transforms into the fragments’ excitation. Thus, two
primary excited fragments are formed. Their de-
excitation may proceed either by particle evaporation
(mainly neutrons, protons, α particles, and γ quanta)
or sequential fission process.

A. Degrees of freedom

Due to a competition and substantial overlapping of heavy-
ion reaction channels, a unified dynamical approach for the

(a) (b) (c)

FIG. 1. Example of the nuclear shapes in two-center parametriza-
tion and the corresponding potentials V (ρ = 0,z) shown for δ1 =
δ2 = 0.5 and ε = 0.5. The mass asymmetry η = 0 for (a) and
η = 0.625 for (b) and (c).

simultaneous description of all the possible processes is
needed. The model should have a unified set of degrees of
freedom playing the most important role at all the stages of
the process. The choice of these degrees of freedom is the first
step on the way of development of such a model. Their number
should be large enough to reproduce the main features of the
process of the nucleus-nucleus collision and simultaneously
describe the strongly overlapping reaction channels. At the
same time, we are limited by the present computational
possibilities.

The parametrization originating from the well-known two-
center shell model (TCSM) [37–41] is used to describe the
shape of the system. Some basic details of the TCSM are given
in Sec. II B. More detailed information can be found, e.g., in
Ref. [42]. The profile function determining an axially sym-
metric nuclear shape in cylindrical coordinates has the form

ρ2
s (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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]
1
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]
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[
1 − z′2

a2
2

]
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(1)

where

z′ =
{
z − z1, z � 0,
z − z2, z > 0.

(2)

We readily see (Fig. 1) that the external, with respect to the
oscillator centers z1 and z2, parts of the shape are axially
symmetric ellipsoids centered at zi with semiaxes ai and bi

(i = 1,2). The internal part of the shape is more complicated.
The shape parametrization has 12 free parameters (zi , ai , bi , ci ,
di , and gi), seven of which can be fixed from the conditions of
volume conservation and continuity of the profile function and
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its derivative at the matching point z = 0. Therefore, the shape
parametrization of the TCSM has five independent parameters,
that allow us to introduce five collective variables:

(1) The distance between the oscillator centers (elon-
gation) r = z2 − z1, which for separated nuclei
is approximately the distance between centers of
masses of the nuclei.

(2),(3) Two independent ellipsoidal deformations δ1 and
δ2 of the two parts of the system, defined as δi =
ai/bi − 1.

(4) The mass asymmetry ηA = (A2 − A1)/(A1 + A2),
where A1 and A2 are the masses (volumes) of the
left (z < 0) and right (z � 0) parts of the system,
respectively.

(5) The neck parameter ε. It originates from the shape
smoothing between the centers zi . The smaller ε
is, the thicker the neck is at fixed values of the
other parameters. It is clear that the difference be-
tween the entrance- and the exit-channel (especially
fission) shapes should be taken into account. It is
usually supposed that nuclear shapes corresponding
to scission configurations in the fission channel are
characterized by a large distance between centers
of mass and a well pronounced neck. On the
contrary, the shapes at the contact point in the fusion
channel are rather compact and almost neckless.
These shapes can be described well with ε = 1.
For the exit (fission) channel the value of the neck
parameter should minimize the potential energy
along the fission path. The value ε ≈ 0.35 was
recommended in Ref. [43] for the fission process.
In order to reduce the number of independent
variables, we use an approximate treatment of
the neck parameter suggested in Ref. [42]. The
time evolution of the neck parameter is considered
as a relaxation process with the characteristic
time τε .

Thus, the model has four degrees of freedom (r , δ1, δ2,
and ηA) determining the shape of the nuclear system. The
model also includes the charge asymmetry defined as ηZ =
(Z2 − Z1)/(Z2 + Z1), where Z1 and Z2 are the charges of the
left and right parts of the system, respectively. This degree of
freedom is necessary for analysis of transfer reactions with the
formation of different isotopes of a given element. Note that
the charge asymmetry ηZ changes the ratio of protons in the
two parts of the system without changing its shape.

Additionally, two angles ϕi of rotation of the nuclei and the
angle θ between the symmetry axis and the beam direction are
considered as independent variables. Thus, in total, the model
has eight degrees of freedom shown schematically in Fig. 2.

B. Potential energy

The interaction potential of two separated nuclei can be
calculated quite easily as a sum of the interaction energy of
the nuclei, their deformation energies, and the Q value of
the reaction. However, after overcoming the Coulomb barrier
and touching of the nuclear surfaces, two different ways of
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FIG. 2. Schematic view of the nuclear degrees of freedom.

evolution of the nuclear system are possible. The diabatic
regime (or so-called condition of “frozen nuclei”) takes place
when the approaching velocity vrel of two nuclei is higher
than the velocity vF of Fermi motion of nucleons vrel > vF .
In this case, after the contact, the nuclei may penetrate into
each other keeping their shapes. This leads to doubling of the
nuclear density and, finally, to the appearance of the repulsive
core in the potential energy, preventing the nuclei from mutual
penetration [44,45].

In the case of slow near-barrier collisions, vrel � vF , the
system has enough time to change its shape and single-particle
levels and keep nuclear density constant (adiabatic condition),
which minimizes the potential energy. The adiabatic potential
energy noticeably differs from the diabatic one for the
elongations smaller than the contact configuration r < Rcontact.
At the same time, these potentials must coincide for well
separated nuclei.

Thus, for the nucleus-nucleus collisions at energies well
above the Coulomb barrier we use a time-dependent potential
energy, which is gradually transformed from the diabatic
potential energy into the adiabatic one, when the target and
the projectile approach at the distance of nuclear interaction
[19,46]

Vpot(A,Z; �q; τ ) = Vdiab(A,Z; �q)f (τ )

+Vadiab(A,Z; �q)[1 − f (τ )], (3)

where �q is a set of collective coordinates used. In Eq. (3), τ
is the interaction time and f (τ ) is a smoothing function with
parameter τDA, and the following properties: f (τ = 0) = 1
and f (τ � τDA) = 0. We use a rather simple function:

f (τ ) = exp

(
− τ

τDA

)
. (4)

The time evolution of the neck degree of freedom ε is
considered in the same way as the transition from the diabatic
to the adiabatic regime. The entrance and the exit channel
potentials are calculated with ε = 1 (no neck) and with
ε = 0.35, respectively. The transition time is denoted as τε.

Both the adiabatic and diabatic potentials in Eq. (3) depend
on the same collective degrees of freedom. This allows one to
consider the collision dynamics continuously, starting from
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( )S

FIG. 3. Time evolution of the potential energy for the 48Ca +248 Cm system at zero dynamic deformations. (a) The diabatic potential energy
calculated using the double-folding procedure (the first stage). The entrance-channel (b) and fission-channel (c) adiabatic potential energies
obtained within the extended macro-microscopic approach. The white arrows schematically show the most probable reaction channels: DI
scattering (a); DI scattering, quasifission, and fusion (b); and multimodal fission (c).

the separated target and projectile approaching each other
in the entrance channel and up to the formation of final
fragments. An example of the time evolution of the potential
energy for the 48Ca +248 Cm system is shown in Fig. 3. The
intermediate adiabatic potential without necking [Fig. 3(b)] is
not really reached, since the development of the neck degree
of freedom and diabatic-adiabatic regime transition proceed
simultaneously.

The transition to equilibrium nucleon distribution and,
therefore, to the adiabatic regime of motion is rather fast.
The characteristic time for the relaxation process is estimated
to be ∼10−22–10−21 s [46,47]. The relaxation times are the
model parameters and can be determined from the analysis of
experimental data on DI scattering of nuclei. The determined
values τDA = 10−22 s and τε = 10−21 s are in agreement with
the previous estimations.

1. Diabatic potential energy

Redistribution of nucleons between separated nuclei
changes their binding energies. It is convenient to include
such energy change in the nuclear potential energy. Thus, the

diabatic potential energy is defined as follows:

Vdiab(A,Z; �q) = V12(A,Z; �q)

+M(A1,Z1; δ1) + M(A2,Z2; δ2)

−M
(
AT ,ZT ; δg.s.

T

) − M
(
AP ,ZP ; δg.s.

P

)
.

(5)

Here V12 is the interaction energy of the nuclei, M(Ai,Zi ; δi)
(i = 1,2) are the masses of the reaction fragments, and the
constant value M(AT ,ZT ; δg.s.

T ) + M(AP ,ZP ; δg.s.
P ) (the sum

of the ground-state masses of target and projectile) provides
zero value of the potential energy in the entrance channel at
infinite distance between the nuclei. It is easy to see that the
value of Vdiab at infinite distance is equal to the Q value of the
corresponding reaction.

The key component of the diabatic potential energy is the
interaction energy of the nuclei V12. We apply a double-
folding procedure to its calculation. The double-folding
method consists in summation of the effective nucleon-nucleon
interactions (see, e.g., [48]). The effects of deformation and
orientation are then taken into account automatically. The
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interaction energy of two nuclei is given by

V12 =
∫

V1

ρ1(r1)
∫

V2

ρ2(r2)vNN (r12)d3r1d3r2, (6)

where vNN (r12 = r + r2 − r1) is the effective nucleon-
nucleon interaction which consists of the Coulomb and the
nuclear parts vNN = v

(N)
NN + v

(C)
NN , and ρi(ri) are the density

distributions of nuclear matter in the nuclei (i = 1,2).
The nuclear density is parametrized by the Fermi-type

function

ρ(r) = ρ0

[
1 + exp

(
r − R(r)

a

)]−1

, (7)

where R(r) is the distance to the nuclear surface, r are
the spherical coordinates of the vector r, and the value ρ0 is
determined from the condition

∫
ρid3r = Ai . There are two

independent parameters in this formula: the diffuseness of the
nuclear density a and the nuclear radius parameter r0.

The Coulomb part of the nucleon-nucleon interaction has
the form

v
(C)
NN (r) = e2/r. (8)

Different models can be used for the nuclear part v
(N)
NN . It was

suggested in Ref. [49] to use a zero-range nucleon-nucleon
potential based on the density-dependent Migdal potential
[50], which significantly simplifies the calculation of the
sixfold integral in Eq. (6),

v
(N)
NN (r1,r2) = C

[
Fex + (Fin − Fex)

ρ1(r1) + ρ2(r2)

ρ00

]
δ(r12),

(9)

where

Fex(in) = fex(in) ± f ′
ex(in). (10)

The sign “+” corresponds to the interaction of identical
particles (proton-proton or neutron-neutron), while the sign
“−” is for different particles (proton-neutron). The following
values were recommended in Ref. [50] for the fixed value of the
normalization constant C = 300 MeV fm3: fin = 0.09; fex =
−2.59; f ′

in = 0.42; and f ′
ex = 0.54. The quantity ρ00 is the

central nuclear density for which we use the mean value of the
central densities of the interacting nuclei ρ00 = (ρ01 + ρ02)/2.
Further details on the use of the Migdal nucleon-nucleon
potential for calculation of the diabatic potential can be found
in Ref. [42]. The parameters for the nuclear matter distribution
were fitted in Ref. [42] to reproduce the fusion barriers. The
maximum obtained deviation from the empirical Bass barriers
[51] was found to be less than 2 MeV.

2. Adiabatic potential energy

As mentioned above, the adiabatic regime of motion
assumes equilibrium nuclear densities. In the vicinity of
the contact point, an arbitrarily oriented nuclear system
gradually relaxes to the axially symmetric configuration of
a mononucleus. Therefore, the adiabatic potential energy is
independent of the mutual orientation for the elongations
smaller than the contact configuration (in contrast to the
diabatic potential). It is well known that the orientation effects

play a very important role in the fusion dynamics decreas-
ing the Coulomb barrier for the nose-to-nose configuration.
However, consistent consideration of the transition from the
configuration of two arbitrarily oriented deformed nuclei
before touching to the axially symmetric mononucleus within
the adiabatic approximation requires knowing the successive
shapes passed by the system. This is a very complicated
problem, which is not solved yet. Usually the axial symmetry
is assumed in calculation of the adiabatic potential energy. An
approximate treatment of the adiabatic motion for another limit
configuration (side to side) was proposed in Ref. [8] within the
two-core model.

The adiabatic potential energy is defined as a difference
between the mass of the whole nuclear system (the system
could be either a mononucleus or two separated nuclei) and
the ground-state masses of the target and the projectile,

Vadiab(A,Z; �q) = M(A,Z; �q)

−M
(
AT ,ZT ; δg.s.

T

) − M
(
AP ,ZP ; δg.s.

P

)
.

(11)

The last two terms in this expression again provide a zero value
of the adiabatic potential energy in the entrance channel for
the ground-state deformations of the target and the projectile
at infinite distance between them.

The standard macro-microscopic model is often used for
calculation of the total mass:

M(A,Z; �q) = Mmac(A,Z; �q) + δE(A,Z; �q). (12)

Here Mmac is the macroscopic liquid-drop mass, and the
second term, δE, is the microscopic shell correction which
can be calculated using the Strutinsky shell-correction method
[52,53].

The macroscopic mass is usually evaluated within a certain
version of the liquid-drop model. In particular, we use the
finite-range liquid-drop model (FRLDM) [54–56], which gives
the macroscopic mass for the uniform charge distribution (i.e.,
ηZ = ηA). The dependence on the charge asymmetry ηZ can
be taken into account as an additional term.

The FRLDM macroscopic mass has the form

Mmac(A,Z; �q) |ηZ=ηA

= mpZ + mnN − av(1 − kvI
2)A

+ as(1 − ksI
2)BN (�q)A2/3 + 3

5

e2Z2

r0A1/3
BC(�q)

− 3

4

e2

r0

(
9Z4

4π2A

)1/3

+ f (kF rp)
Z2

A
− ca(N − Z) + a0

+W

(
|I | +

{
1/A, Z and N equal and odd
0, otherwise

})

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
�p + −

�n −δnp, Z and N odd
−
�p , Z odd and N even
−
�n , Z even and N odd
0, Z and N even

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

− aelZ
2.39. (13)
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The terms in this formula are respectively the masses of
Z protons and N neutrons; the volume energy; the nuclear
(surface) and the Coulomb energies depending on deformation
via the dimensionless functionals BN and BC , respectively;
the Coulomb exchange correction; the proton form-factor
correction to the Coulomb energy; the charge-asymmetry
energy [(N − Z) term]; the constant term; the Wigner energy;
the average pairing energy; and the energy of bound electrons.

In order to calculate the macroscopic mass for an arbitrary
value of ηZ we use a parabolic approximation of the potential
energy dependence on ηZ [57–59],

Mmac(A,Z; �q) � Mmac(A,Z; �q) |ηZ=〈ηZ〉

+CηZ

(ηZ − 〈ηZ〉)2

2
, (14)

where 〈ηZ〉 is the charge asymmetry providing the minimum
of the potential energy and CηZ

is the stiffness coefficient. It is
convenient to rewrite the above formula as

Mmac(A,Z; �q) � Mmac(A,Z; �q) |ηZ=ηA

−CηZ

(ηA − 〈ηZ〉)2

2
+ CηZ

(ηZ − 〈ηZ〉)2

2
, (15)

so the first term can be calculated according to Eq. (13). The
quantities 〈ηZ〉 and CηZ

can be defined as follows [57,59]:

CηZ
(A,Z; �q) = 2csZ

2
CN (1 + k)2

kACN

+ (1 + k)2E0
C

2k2

× [
(1 + k)

(
B1

C(�q) + kB2
C(�q)

) − kBC(�q)
]
,

〈ηZ〉(A,Z; �q) = (1 + k)2

2k2ACNCηZ

{
4cskZ2

CNηA + E0
CACN

× [
B1

C(�q) − k2B2
C(�q)

]}
, (16)

where k = A1/A2 is the mass ratio of the nascent fragments,
E0

C is the Coulomb energy of the spherical compound nucleus,
Bi

C(�q) is the Coulomb energy of the ith nascent fragment, and
cs is the coefficient of the symmetry energy. An example of
the potential energy as a function of the atomic and mass
numbers is shown in Fig. 4 for the 136Xe + 209Bi system. Two
pronounced minima correspond to the strongly bound 136Xe
and 209Bi nuclei. The potential forms a valley with very steep
walls. This forces the system to evolve mainly along the bottom
of the potential (dashed curve) suppressing mass and charge
transfers in other directions.

The Strutinsky method [52,53] was applied to calculation
of the shell correction. The value of δE is evaluated separately
for the neutron and the proton subsystems and includes
the microscopic correction to the pairing energy as well.
We use the TCSM to calculate the required single-particle
spectra. The mean-field potential of the TCSM consists of
two potentials of axially symmetric harmonic oscillators with
independent centers (Fig. 1). This model is able to describe
the transition from the small ellipsoidal deformations near the
nucleus ground state, where it coincides with the well-known
Nilsson model, to the strongly deformed shape and then to the
system of two completely separated nuclei, where it reduces
to the Nilsson model for each of the fragments. We use the
version of the TCSM developed in Ref. [41], where the model

100 150 200 250
40

60

80

100

136Xe

mass number

209Bi

r = R contact

reb
mun ci

mota
FIG. 4. The potential at the contact point for the 136Xe + 209Bi

system calculated at zero values of the deformations. The dashed
curve corresponds to the minimum of the potential energy. The
contour lines are drawn over each 5 MeV.

was, in particular, extended to the case of mass-asymmetric
shapes, and the mean-field potential was modified providing
the smooth behavior in the point of the fragments touching.

In spite of a rather good agreement with the experimental
ground-state masses and fission barriers, direct application of
the standard macro-microscopic approach and, in particular,
expression (13) to the case of highly deformed mononucleus
and/or two separated nuclei leads to an incorrect result [42].
The main reason for this consists in nonadditivity of Eq. (13)
with respect to A and Z. In particular, the standard formula for
macroscopic mass, such as Eq. (13), gives different values
being applied to the system of two separated nuclei as a
whole or separately to each of the nuclei plus their interaction
energy. This problem was discussed in Refs. [42,60–63]. The
solution suggested there was to take into account a deformation
dependence of the nonadditive terms. In particular, according
to Ref. [42], the adiabatic potential energy can be calculated
as follows:

Vadiab(A,Z; �q) = V standard
adiab (A,Z; �q)B(�q)

+Vdiab(A,Z; �q)[1 − B(�q)], (17)

where V standard
adiab is the adiabatic potential energy calculated

within the standard macro-microscopical approach, and the
function B(�q) defines the transition from the properties of
two separated nuclei to those of the mononucleus. The
function B(�q) should be unity for the ground-state region of
the mononucleus and tend to zero for completely separated
nuclei. We use the following expression for it: B(�q) =
[1 + exp ( r−Rcontact

adiff
)]

−2
, where Rcontact is the distance between

mass centers corresponding to the touching nuclei at the
contact or scission point, and adiff = 0.5 fm is the adjustable
parameter. The procedure of the calculation of the adiabatic
potential energy defined by expression (17) was named in
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Ref. [42] as the “extended macro-microscopical approach.” It
leads to the correct adiabatic potential energy in the whole
range of nucleus deformation: from the compact ground-state
shapes of mononucleus, through a well-deformed configura-
tions of the fission and fusion barriers, up to the system of two
separated nuclei.

C. Equations of motion

A rather traditional approach based on the Langevin
equations was applied to modeling the time evolution of the
nuclear system (see, e.g., reviews [16,34,64] and references
therein). The corresponding system of equations is

q̇i = μijpj , ṗi = F
driving
i + F friction

i + F random
i , (18)

where qi and pi are the collective degrees of free-
dom and their conjugate momenta, respectively, mij is
the mass tensor ||μij || = ||mij ||−1. As described above,
in this model �q = {r,δ1,δ2,ηA,ηZ,ϕ1,ϕ2,θ} and �p =
{pr,pδ1 ,pδ2 ,pηA

,pηZ
,l1,l2,l}, where l1,2 are the angular mo-

menta associated with the self-rotations of the two system
parts and l is the angular momentum of relative motion.

The driving, friction, and random forces are calculated as

F
driving
i = T

(
∂S

∂qi

)
Etot

, S = 2
√

aE∗,

F friction
i =−

∑
j,k

γijμjkpk, F random
i =

∑
j

θij ξj (t). (19)

Here S is the entropy of excited nuclear system, a is the
level density parameter [see Eq. (35) below], the excitation
energy E∗ = Etot − V − Ekin, Etot is the total energy of the
system (center-of-mass energy, Ec.m., in our case), Ekin =∑

i,j μij
pipj

2 is the kinetic energy stored in all the collective
degrees of freedom, ξi(t) are the normalized random vari-
ables with Gaussian distribution 〈ξi(t)〉 = 0, 〈ξi(t),ξj (t ′)〉 =
2δij δ(t − t ′), and θij are the amplitudes of the random force

determined from the Einstein equation θikθkj = γijT , T =√
E∗/a is the nuclear temperature, and γij is the friction tensor.
Since the deformations, charge, and mass asymmetries are

finite collective modes, one should use an effective temperature
T eff

i , which takes into account quantum fluctuations, instead
of the heat-bath temperature T for amplitudes of the random
force θδiδi

, θηZηZ
, and θηAηA

[65],

T eff
i = h̄ωi

2
coth

(
h̄ωi

2T

)
, (20)

where ωi is the frequency with respect to the mode i =
{δ1,δ2,ηZ,ηA}. Asymptotically, T eff

i � T when T � h̄ωi and
T eff

i = h̄ωi/2 when T = 0. It is clear that the use of the
effective temperature instead of the thermodynamic one is
extremely important at the first, approaching, stage of nucleus-
nucleus collisions, when the temperature T is close to zero.
This, in particular, simulates the zero vibrations of the target
and the projectile, as well as mass and charge transfer between
the yet unexcited reaction partners. The difference in the
use of T eff

i and T gradually disappears, when the energy
dissipates and the system gets excited. For the charge and the
mass asymmetry degrees of freedom, the use of the effective
temperature is important even for well-excited systems due to
large stiffness coefficients (see Fig. 4) and, thus, large values
of h̄ωηi

(up to several MeV).
Coupling of the deformation degrees of freedom with

the relative motion plays a very important role in nuclear
dynamics. On the approaching stage, in particular, the main
factor determining the variation of the target and projectile
deformations is the shift of the minimum of the potential en-
ergy towards prolate deformations when the distance between
nuclei is getting smaller. Excitation of low-lying vibrational
states can be taken into account only approximately due to
a continuous character of the Langevin random force not
allowing to have a discrete spectra.

Summarizing this subsection, one may write Eqs. (18) for
the conjugate momenta in the explicit form (the equations for
the collective coordinates are rather trivial)

dpr

dt
= −∂V

∂r
+ T 2

(
∂a

∂r

)
T

−
∑
j,k

pjpk

2

∂μjk

∂r
+ h̄2l2

2J2
12

∂J12

∂r
+

∑
i=1,2

h̄2l2
i

2J2
i

∂Ji

∂r
−

∑
j,k

γrjμjkpk +
∑

j

θrj ξj ,

dpδ1

dt
= − ∂V

∂δ1
+ T 2

(
∂a

∂δ1

)
T

−
∑
j,k

pjpk

2

∂μjk

∂δ1
+ h̄2l2

2J2
12

∂J12

∂δ1
+

∑
i=1,2

h̄2l2
i

2J2
i

∂Ji

∂δ1
−

∑
j,k

γδ1jμjkpk +
∑

j

θδ1j ξj ,

dpδ2

dt
= − ∂V

∂δ2
+ T 2

(
∂a

∂δ2

)
T

−
∑
j,k

pjpk

2

∂μjk

∂δ2
+ h̄2l2

2J2
12

∂J12

∂δ2
+

∑
i=1,2

h̄2l2
i

2J2
i

∂Ji

∂δ2
−

∑
j,k

γδ2jμjkpk +
∑

j

θδ2j ξj ,

dpηA

dt
= − ∂V

∂ηA

+ T 2

(
∂a

∂ηA

)
T

−
∑
j,k

pjpk

2

∂μjk

∂ηA

+ h̄2l2

2J2
12

∂J12

∂ηA

+
∑
i=1,2

h̄2l2
i

2J2
i

∂Ji

∂ηA

−
∑
j,k

γηAjμjkpk +
∑

j

θηAj ξj ,

dpηZ

dt
= − ∂V

∂ηZ

+ T 2

(
∂a

∂ηZ

)
T

− γηZηZ
μηZηZ

pηZ
+ θηZηZ

ξηZ
,

dl

dt
h̄ = −∂V

∂θ
− γtang

(
h̄l

J12
Rc.m. − h̄l1

J1
R(1)

c.m. −
h̄l2

J2
R(2)

c.m.

)
Rc.m. + Rc.m.

√
γtangT ξtang,
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dl1

dt
h̄ = − ∂V

∂ϕ1
+ γtang

(
h̄l

J12
Rc.m. − h̄l1

J1
R(1)

c.m. −
h̄l2

J2
R(2)

c.m.

)
R(1)

c.m. − R(1)
c.m.

√
γtangT ξtang,

dl2

dt
h̄ = − ∂V

∂ϕ2
+ γtang

(
h̄l

J12
Rc.m. − h̄l1

J1
R(1)

c.m. −
h̄l2

J2
R(2)

c.m.

)
R(2)

c.m. − R(2)
c.m.

√
γtangT ξtang. (21)

Here indexes j and k run over all the degrees of freedom
except for the angular ones (j,k = θ,ϕ1,ϕ2), Ji (i = 1,2)
are the inertia moments of the system parts assumed to be
the rigid-body ones, J12 = μR2

c.m. is the inertia moment of
relative motion, μ is the reduced mass, Rc.m. is the distance
between mass centers of the nuclei, and R(i)

c.m. are the distances
from the center of mass of the ith nucleus to the central
point between the nuclear surfaces. The last three equations
in (21) are the same as Eq. (6) in Ref. [19]. It is assumed
that the “sliding friction,” which is proportional to the relative
velocity of the nearest points of nuclear surfaces (expression
in the parentheses), is mainly responsible for the so-called
dissipation of angular momentum and formation of sticking
configuration. For the moment, we do not take into account
the derivatives of the potential over the angular degrees
of freedom. It is a reasonable approximation for reactions
between the nuclei which are spherical in their ground states,
when dynamic deformations evolve along internuclear axis
�r (see Fig. 2). The friction coefficient γtang is taken to
be proportional to the radial friction γtang = γ 0

tangγrr , where
γ 0

tang � 0.1 is the adjustable parameter.

D. Transport coefficients

The transport coefficients (inertia and friction tensors) play
a crucial role in time evolution of a nuclear system. Energy
dissipation in mononucleus appears due to viscosity of nuclear
“liquid” as a response to a change of its shape (“shape” degrees
of freedom are r , δ1, δ2, and ηA) and/or oscillation of the
neutron subsystem with respect to the proton one (charge
asymmetry, ηZ). There is no dissipation of angular momenta
(l1, l2, and l) at this stage of nuclear reaction, the velocities ϕ̇1,
ϕ̇2, and θ̇ are equal to each other and change only due to the
variation of the corresponding inertia moments.

The components of inertia tensor mij corresponding to the
shape degrees of freedom are calculated within the Werner-
Wheeler approach for incompressible irrotational flow [66].
The surface-plus-window model of one-body dissipation [67]
is used for the corresponding components of the friction tensor
γij . The reduction coefficient of the wall mechanism of energy
dissipation is taken to be unity [see, e.g., Eq. (36) in Ref. [34]].
In these models, the inertia and the friction tensors for the shape
degrees of freedom are diagonal when nuclei are separated
and have ellipsoidal shapes, while the tensors have nonzero
off-diagonal components for the mononucleus stage of the
system evolution.

The transport coefficients for the charge asymmetry mode
(mononucleus stage) are treated in the same way as in
Ref. [59]. The inertia coefficient for the charge asymmetry
mode is calculated according to Ref. [68] for a flow of viscous
incompressible liquid through a cylindrical neck of the radius
rN and the length lN connecting two spherical parts of the

system,

mηZηZ
= mN

3πρ

ZA2

N

(lN + 2rN )

r2
N

, (22)

where ρ is the nucleon density and mN is a nucleon mass. In
order to use this expression, the actual shape of a nucleus is
approximated as the two spheres connected by a cylindrical
neck in the way of preserving the system mass asymmetry ηA,
distance r between centers of the nascent fragments, and neck
thickness rN = ρs(0). The friction parameter of the charge
asymmetry mode is calculated within the one-body mechanism
of nuclear viscosity,

γηZηZ
= 4mN

9ρ

AZ

N
[Nv̄p + Zv̄n]

1

�σ
, (23)

where �σ = πr2
N is the neck cross section, and v̄p and v̄n are

respectively the proton and neutron average velocities inside
the nucleus.

The models used in this work to calculate the inertia
and friction tensors are essentially macroscopic, which give
a high-temperature limit of the transport coefficients. The
microscopic effects may be important, for example, on the
approaching stage when nuclei just reach the distance where
energy dissipation begins. In this region (see below) we use
phenomenological friction and inertia form factors having
adjustable parameters determined from experimental data.
This allows us to avoid an additional model complication
assuming that the system may be already enough excited at the
contact point to use the macroscopic transport coefficients as a
reasonable approximation. At the same time, the microscopic
corrections to the transport coefficients (shell effects and
influence of pairing, see, e.g., Ref. [69]) and their temperature
dependence can be explicitly included into the model in the
future.

There are few important peculiarities of treatment of nuclear
motion when nuclei are separated. As mentioned above, the
inertia and the friction tensors are diagonal in this case.
The Werner-Wheeler approach and the model of one-body
dissipation can still be used for deformation degrees of
freedom δ1 and δ2. For relative motion, the inertia coefficient
mrr is equal to the system reduced mass. All other transport
coefficients μηAηA

, μηZηZ
, γrr , γηAηA

, γηZηZ
are zero for

separated nuclei being calculated within the models described
above. This does not allow one to take into account the fact
that dissipation of angular momentum and energy of relative
motion starts already before contact when nuclei approach
each other at the distance of nuclear forces range (∼2 fm),
and their diffusenesses overlap. There is also a possibility
of nucleon transfer at the approaching stage, which can be
modeled within the Langevin-type approach in the presence
of nonzero transport coefficients only.
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In order to take into account these effects and following
the surface friction model [16], a phenomenological nuclear
friction force with a Woods-Saxon type form factor is included
in the model as suggested in Ref. [19]. This additional form
factor F (r) tends to zero for the mononucleus stage, where
the one-body friction yields a nonzero dissipation. Thus, the
radial friction coefficient γrr is calculated as a weighted sum
of two terms,

γrr = wF (r)γ o.b.
rr + [1 − wF (r)]γ 0

r F (r),

F (r) =
{

1 + exp

(
r − Rcontact − �RF

aF

)}−1

, (24)

where γ o.b.
rr is the friction coefficient according to the model

of one-body dissipation, and the weighting function is

wF (r) =
{

1 + exp

(
r − Rcontact + �RF

aF

)}−1

. (25)

The friction strength γ 0
r , the friction distance �RF , and the

friction diffuseness aF coefficients are the model parameters.
Their values can be rather reliably determined by fitting
calculations to the experimental data for quasielastic and DI
scattering. The most sensitive quantities to these parameters
are the grazing angle of the collision, the slope, and the
lowest value of the quasielastic part of the fragment energy
distribution. The following values were determined in this
work: γ 0

r = 30 × 10−22 MeV s fm−2, �RF = 2.5 fm, and
aF = 0.2 fm.

It can be shown that the friction coefficients for the mass
and charge asymmetries for separated nuclei are related to the
corresponding transfer rates as

γηxηx
= T

ληx

, x = A,Z, (26)

where the quantity ληx
can be calculated as [see Eq. (5) in

Ref. [19]]

ληA
= λ0

APtr(r)
4

A2
, ληZ

= λ0
ZPtr(r)

4

A2
gZA, (27)

where λ0
A and λ0

Z are the mass and charge transfer rates, and
Ptr is the probability of a nucleon transfer depending on the
distance between the nuclear surfaces. The term A2/4 appears
because the mass asymmetry is used as a collective coordinate.
The probability Ptr goes exponentially to zero at r → ∞ and
equals unity for the overlapping nuclei. In the calculations,
we use the semiclassical approximation for Ptr = exp (−2�ξ )
proposed in Ref. [70]. Here ξ = r − Rcontact − �RN , where
�RN � �RF , i.e., the radius of nucleon transfer coincides
with the radius of the radial friction and � =

√
2μnBn/h̄

2,
where μn is the nucleon reduced mass and Bn is its separation
energy. Again, for continuity, the friction coefficients for
the mass and charge asymmetries for separated nuclei and
mononucleus are joined in the vicinity of the contact point.
It is assumed that λ0

A = λ0
Z , and the ratio gZA = ληZ

/ληA
is

the same as given by the corresponding window formulas
(close to unity). Thus, we have one free parameter λ0

A which
was determined by fitting to experimental data on the charge
distribution for the 136Xe + 209Bi reaction at Ec.m. = 569 MeV
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FIG. 5. A trajectory and its projections showing time evolution of
energy (potential + relative motion), elongation, and mass of heavier
nucleus for the 136Xe + 208Pb combination at Ec.m. = 526 MeV.

[see Fig. 6(g) below] to be 1(T/MeV) × 1022 s−1. The
corresponding inverse inertia coefficients μηAηA

and μηZηZ

for separated nuclei are estimated assuming that the damping
coefficients γηxηx

μηxηx
have the same values as those calculated

with the one-body friction and hydrodynamical masses in the
vicinity of the contact point. The values of μηAηA

and μηZηZ
are

close to each other and equal approximately 0.005 R−2
0 m−1

N .

E. Modeling nucleus-nucleus collisions

Numerical solution of the Langevin equations (18) starts
from the approaching stage of collision when the target
and projectile are separated by 50 fm and terminates when
two reaction products are formed and separated again by
approximately 50 fm distance. The solution of these equations
is a trajectory in the space of collective coordinates. An
example of such the trajectory is shown in Fig. 5, where one
may clearly see the energy dissipation process (system heating)
as well as mass transfer along with evolution of the elongation
degree of freedom. Each trajectory provides full information
about a single collision, such as charges and masses of primary
(excited) reaction products, their kinetic energies, scattering
angles, reaction time, etc. In order to study the characteristics
of final fragments we use the statistical model of de-excitation
of an excited rotating nucleus described in Sec. II F below.

In this approach, the differential cross sections are calcu-
lated in a standard way: (i) a large number of trajectories
at different impact parameters 0 < b < bmax are simulated;
(ii) additional restrictions on the fragment energies, angles,
masses, and charges are imposed according to the experimental
measurement conditions; (iii) the differential cross sections are
then calculated as

d4σ

dMdZdEd
(M,Z,E,θ )

=
∫ bmax

0

�N (b,E,θ )

Ntot(b)

b db

sin θ�M�Z�θ�E
, (28)
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where �N is a number of trajectories in specific mass, charge,
energy, and angle bins and Ntot is the total number of simulated
trajectories for each impact parameter. Any single, double, or
triple differential cross section can be obtained by integration
of Eq. (28).

F. Modeling de-excitation process

One may obtain the characteristics of the primary (excited)
reaction products of nucleus-nucleus collisions within the
Langevin-type model described above. The de-excitation
process can be considered within a statistical model which
should be applied separately to each of the fragments. Basic
relations of the statistical model used in this paper are given
below.

The most important channels of decay of an excited nucleus
are evaporation of light particles (neutrons, protons, α’s),
fission, and γ -quanta emission. The Monte Carlo method is
used to obtain the survival probability for all the possible
decay channels. At each stage of the decay of the nucleus, one

of the possible events is randomly selected according to their
probabilities,

Pb = �b

�tot
, b = n,p,α,γ,fission,

�tot = �n + �p + �α + �γ + �fiss,

where �tot is the total decay width calculated as a sum
of the decay widths of the considered decay channels.
In the case of a particle emission event, its energy e is
determined according to the spectra given by the integrand
of Eqs. (29) and (30). In the case of fission, the masses and
the charges of the fragments are chosen according to the GEF
model [71].

Modeling the de-excitation process is terminated either
when the nucleus undergoes fission at some stage of decay
cascade or when the excitation energy decreases below the
fission and the particle emission thresholds and an evaporation
residue is formed.
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FIG. 6. Comparison of experimental (symbols) and calculated (histograms) energy, angular, and charge distributions for the 136Xe + 209Bi
reaction at energies Ec.m. = 569 [panels (a), (d), and (g)], 684 [panels (b), (e), and (h)], and 861 [panels (c), (f), and (i)] MeV. The thick
solid histograms show the distributions of final fragments with partially eliminated sequential fission events according to the experimental
selection criteria. The thin histograms for energy distributions (a), (b), and (c) correspond to the primary fragments. The solid thin histograms
in panels (d)–(i) show the distributions of final fragments including all sequential fission events. The dotted histograms are for the final
charge yields with completely excluded sequential fission events. Arrows indicate the projectile charge. The experimental data are taken from
Refs. [80–82].
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The expressions for the particle emission widths have the
form

�C→B+b(E∗,J ) = 2sb + 1

2πρC(E∗,J )

∫ E∗−Bb

0

∑
l

Tl(eb)

×
I=J+l∑
I=|J−l|

ρB(E∗ − Bb − eb,I )deb.

(29)

Here ρ(E,J ) is the level density, sb is the spin of the emitted
particle b, and Bb is its binding energy, where b = n,p,α; Tl(e)
is the probability for the particle to pass through the potential
barrier, eb is the kinetic energy of the emitted particle.

The γ -quantum emission width is

�L
γ (E∗,J ) = 1 + κ

ρC(E∗,J )

∫ E∗

0
fL(eγ )

×
I=J+L∑
I=|J−L|

e2L+1
γ ρC(E∗ − eγ ,I )deγ , (30)

where fL is the strength function for radiation of multipolarity
L and κ = 0.75 [16,72]. Only the dipole radiation (L = 1) is
considered.

The fission width is calculated by the expression

�fiss(E
∗,J ) = KKramers

2πρC(E∗,J )

∫ E∗−Bfiss

0
Tfiss(e,J )

× ρ
s.p.
C (E∗ − Bfiss − e,J )de, (31)

where Tfiss(e,J ) is the fission barrier penetrability; KKramers

is the Kramers factor [73], and the fission barrier height is
calculated as

Bfiss = BLDM + δU, (32)

where BLDM is the liquid-drop fission barrier [55]; δU is the
Strutinsky shell correction to the ground state from Ref. [74].

The level density of the atomic nucleus consisting of Z
protons and N neutrons with the total angular momentum J
and the excitation energy E∗ has the following form

ρ(E∗,Z,N,J ) = Kcoll(E
∗,Z,N )ρ0(E∗,Z,N,J ), (33)

where ρ0(E∗,Z,N,J ) is the single-particle level density;
Kcoll(E∗,Z,N ) is the enhancement factor which takes into
account collective states of the nucleus.

The single-particle level density is calculated according to
Ref. [75]:

ρ0(E∗,Z,N,J ) = (2J + 1)a1/2

24
(
E∗ − � − h̄2J (J+1)

2J⊥

)2

(
h̄2

J⊥

)3/2

× exp

⎡
⎣2

√
a

(
E∗ − � − h̄2J (J + 1)

2J⊥

)⎤
⎦,

(34)

where J⊥ is the moment of inertia of the nucleus about the axis
perpendicular to its axis of symmetry; � is the pairing energy,

� = χ
12√
A

,

where χ is the parameter equal to 0, 1, and 2 for odd-odd, odd,
and even-even nuclei, respectively.

The level-density parameter is [75]

a = ã

(
1 + δU

1 − exp(−γE∗)

E∗

)
,

ã = αA + βA2/3BS, (35)

where α, β, and γ are the coefficients with the default values
0.073 MeV−1, 0.095 MeV−1, and 0.061 MeV−1, respectively
[76]. The functional BS is the dimensionless quantity equal to
the ratio of the surface area of the deformed nucleus with the
quadrupole deformation parameter β2 to that of the spherical
nucleus of the same volume. The quantity BS is calculated
for the deformation of the ground state (particle emission
widths) and for the saddle point (fission width). Deformations
of the nucleus at the saddle point are calculated according
to Ref. [77]. The ground-state properties of nuclei (masses,
shell corrections, deformations) are taken from Ref. [74]. The
ground-state masses for known nuclei are from Ref. [78].

The deformation dependence of the collective enhancement
factor Kcoll is determined according to Ref. [79],

Kcoll(E
∗,Z,N ) = Krotφ(β2) + Kvib[1 − φ(β2)],

Krot = J⊥T

h̄2 , Kvib = exp(kA2/3T 4/3), (36)
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FIG. 7. The angular distribution of Bi-like fragments in the
laboratory system for the 136Xe + 209Bi reaction at Ec.m. = 569 MeV.
The experimental data (symbols) are from Ref. [80]. The calculated
distributions (histograms) are for the primary (dashed) and final
(solid) fragments. The cross section of the final Bi-like fragments
is 33% less than that of the primary fragments due to sequential
fission.
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are taken from Refs. [80,81].

where k = 0.0555 [75] and the smoothing function has the
form

φ(β2) =
[

1 + exp

(
β0

2 − |β2|
�β2

)]−1

. (37)

The default values of the parameters are β0
2 = 0.15, �β2 =

0.04 [79].

III. ANALYSIS OF MULTINUCLEON
TRANSFER REACTIONS

The systems 136Xe + 209Bi, 136Xe + 208Pb, and 136Xe +
198Pt were chosen for the first application of the developed
model. First of all, the fusion-fission channel is completely
suppressed for such heavy systems. Therefore, one may focus
on the analysis of the DI scattering only without overlapping

with other reaction channels. Second, these systems were
thoroughly studied experimentally using different methods.
Rather complete information was accumulated in the series of
experiments conducted for the 136Xe + 209Bi reaction at sev-
eral energies [80–82]. The 136Xe + 208Pb system was studied
recently in Refs. [11,12,14]. Finally, the 136Xe + 198Pt reaction
analysis was performed in Ref. [13] aimed at identification of
absolute cross sections for products formed in the processes
of multinucleon transfer.

A. 136Xe + 209Bi system

The characteristics of the 136Xe + 209Bi reaction were
measured at three above-barrier energies Ec.m. = 569, 684,
and 861 MeV in Refs. [80–82]. Projectilelike fragments (PLFs)
were detected in the angular ranges indicated below. The values
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FIG. 9. Experimental [80] (a) and calculated (b) Wilczynski plots d2σ/dEdc.m. for the 136Xe + 209Bi reaction at Ec.m. = 569 MeV. The
cross section is in mb/MeV sr.
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of the total kinetic energy loss (TKEL) were restricted in the
analysis of the charge and angular distributions, in order to
eliminate quasielastic events and events of sequential fission
of highly excited targetlike fragments (TLFs). Thus, the fol-
lowing conditions were imposed both on the experimental data
and on the calculations: 309 > TKEL > 23 MeV and 40◦ �
θc.m. � 100◦ for Ec.m. = 569 MeV, 384 > TKEL > 34 MeV
and 25◦ � θc.m. � 75◦ for Ec.m. = 684 MeV, 601 > TKEL >

51 MeV and 18◦ � θc.m. � 128◦ for Ec.m. = 861 MeV.
The average experimental charge resolution of three units
[full width at half maximum (FWHM)] and 10 MeV

energy uncertainty were taken into account in the calculations
as well.

The comparison of the theoretical and the experimental
TKEL, angular, and charge distributions of the reaction
fragments is shown in Fig. 6. The calculated distributions are in
a reasonable agreement with the corresponding experimental
data for all the three energies. A rigid shift of the calculated
charge distribution with respect to the data for the largest
collision energy by two charge units [Fig. 6(i)] should be
mentioned. Nucleon transfer in this model is mainly governed
by the potential energy. There are positive Q values for the
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proton transfer from bismuth to xenon. All transfers in the
opposite direction are characterized by negative Q values.
This results in a larger probability of proton transfer towards
symmetrization, namely from target to projectile. This trend is
present in the experimental data for the two lower energies as
well as in the model calculations for all the three considered
energies. The peak of the measured charge distribution for
Ec.m. = 861 MeV is slightly shifted in the direction of lower
charges. The origin of this shift is not clear for us.

A noticeably enhanced yields of the light products with
Z < 45 visible for all the three incident energies is due
to contribution of the sequential fission of excited Bi-like
fragments, which was not completely eliminated during the
analysis of the experimental data [80,81]. In order to simulate
the procedure used during the experiment analysis, a detected
fragment of sequential fission is treated in the calculations
as a product of binary reaction. The assigned TKE value is
calculated from the energy and the momentum conservation
laws. The charge distributions of the final binary reaction
products (without presence of sequential fission) formed after
the de-excitation of primary (excited) ones are shown in Fig. 6
by the dotted histograms. The de-excitation process almost
does not affect the charges of the fragments, since neutron
evaporation dominates. Therefore, the charge distributions of
primary and final PLFs of binary reactions practically coincide.
The particle evaporation substantially influences, however, the
energy distributions, lowering the TKE values. This effect is
more pronounced for higher excitation energies, i.e., at larger
incident energies and for completely damped events.

The charge and angular distributions shown by thick and
thin solid histograms include the sequential fission products.
For the former case, the TKEL values are selected according
to the experimental procedure, and in the latter case, there is
no upper limit for the TKEL values. The TKEL restriction
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FIG. 11. Correlations of the interaction time with number of
transferred protons (a), TKEL (b), center-of-mass scattering angle
(c), and impact parameter (d) for the 136Xe + 209Bi reaction at
Ec.m. = 569 MeV. The contour lines are drawn over each order of
magnitude.

procedure substantially, but not completely, suppresses the
presence of the sequential fission events. It is also seen that
the calculated charge distributions should be somewhat wider
in order to reproduce the data for the two largest energies.
This can be easily achieved by the additional adjustment
of the model parameters (inertia coefficients for the charge
and/or mass asymmetry for separated nuclei). At the same
time, this will worsen the agreement between the calculated
and the experimental mass distributions shown in Fig. 12,
and especially for numerous isotopic yields discussed below.
Therefore, keeping also in mind the uncertainty of treating
of sequential fission events, the model parameters were fitted
to reproduce better the whole bulk of various experimental
observables analyzed in this paper.
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fragments for the 136Xe + 208Pb reaction for two collision energies
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Ref. [11]. The angular distributions are shown for light reaction
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The sequential fission cross section carries important
information on the excitation energy of reaction products. It
can be estimated from the angular distribution of TLFs. The
results of the calculations in comparison with the data are
shown in Fig. 7. The sequential fission cross section obtained
in this work constitutes 33% of all inelastic events, which is
close to the experimentally determined value of 30% [80].

The events of sequential fission also influence the energy
distribution of PLFs. Only one of the reaction products was
detected in the series of experiments under analysis. Therefore,
the sequential fission events were treated as binary ones and
then partially eliminated by the TKEL selection discussed
above. Since the fragment masses were not measured, the
event reconstruction procedure was rather uncertain. This
mostly concerns the TKE values and center-of-mass angles.
Therefore, it is interesting to analyze the primary experimental
data, namely, the measured energy distribution of PLFs in the
laboratory frame. Such a comparison is shown in Fig. 8 for
the primary reaction fragments (dashed curves) and the final
ones including the sequential fission events (solid curves).
One may see that the calculations reproduce the position of
the quasielastic peak and the maxima of the deep inelastic
energy spectra. The sequential fission substantially extends
the energy distributions towards lower energies. In spite of in
general good agreement with the data, the calculations visibly
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FIG. 13. Calculated primary (dashed histograms) and final (solid
histograms) yields of Po, Rn, and Ra isotopes for the 136Xe + 208Pb
reaction in comparison with experimental data (circles, triangles, and
diamonds for Po, Rn, and Ra, respectively) taken from Ref. [14] for
Ec.m. = 450 MeV (a) and Ref. [11] for Ec.m. = 514 MeV (b).

differ from them for the largest angles shown. The position of
the quasielastic peak, relatively less pronounced in the data,
is shifted for Ec.m. = 569 MeV, whereas it is absent at all
for Ec.m. = 684 MeV. These angles are close to the grazing
angles, which are �44◦ and 32◦ for Ec.m. = 569 and 684 MeV,
respectively. One may also notice that for the lowest angles
the calculated energy distributions have a stronger depression
between the quasielastic and the DI events compared with
the data. This may indicate that the radial friction at the
approaching stage of collision requires further adjustment.

A deeper analysis (compared to that based on the integral
characteristics of Fig. 6) of the dynamics of nucleus-nucleus
collisions can be made based on various correlation dependen-
cies of the measured quantities. One of such dependencies is
the double differential cross section d2σ/dEdc.m. known as
the Wilczynski plot. It is shown in Fig. 9 for Ec.m. = 569 MeV.
Four sections of the double differential cross sections
d2σ/dEdZ, d2σ/dEdc.m., and d2σ/dZdc.m. of Xe-like
fragments are shown in Fig. 10 for the same incident energy.
The calculations reproduce the data quite well in the whole
range of energies, charges, and angles.

The charge distributions have nearly Gaussian shapes for all
the energy-loss bins [Fig. 10(a)]. The width of the distribution
increases with increasing energy loss [and, hence, increasing
reaction time shown in Fig. 11(a)], whereas the position of
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The data (triangles, circles, and diamonds are for W, Os, and Pt,
respectively) are taken from Ref. [14] for Ec.m. = 450 MeV (a)
and Ref. [12] for Ec.m. = 496 MeV (b). The data of Ref. [12] are
multiplied by 10 (see the text).
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the maximum of the distributions changes only a little. This
suggests that the charge distribution for this projectile-target
combination is formed with the dominance of the random force
(diffusion) over the driving one, in part, owing to the shell
effects strongly lowering the potential energy at the positions
of the target and the projectile.

The energy distributions [Fig. 10(b)] have a similar behav-
ior for the proton pickup and the proton stripping channels.
The quasielastic peak gradually disappears with increasing
number of transferred protons, and the shape of the distribution
becomes more and more Gaussian-like. It is not completely
clear for the lower-charge bins because of the contamination
of these bins with sequential fission events. In order to make
it more visible, an example of the energy distribution of

the binary fragments is shown for the Z = 45 ± 1 charge
bin by the dashed curve. This distribution is rather close
in the position of the maximum and the width to the one
corresponding to the Z = 63 ± 1 charge bin having the same
number of transferred protons. This is correlated with the
almost symmetric (with respect to the number of transferred
protons) time-charge distribution in Fig. 11(a).

The maxima of the angular distribution shift towards the
back angles with increasing energy loss (Fig. 9). This behavior
is explained by the correlation of interaction time with TKEL
shown in Fig. 11(b). The angular distributions for different
energy and charge bins [Figs. 10(c) and 10(d)] become wider
and more uniform with increase of the energy loss and with
the charge (mass) transfer in the both directions. This indicates
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that the reaction time increases with the energy loss and
charge (mass) transfer [Figs. 11(a) and 11(b)]. The time
distribution is wider in the region of smaller charge transfer,
and it is getting narrower as the number of transferred protons
increases. Therefore, the number of transferred protons cannot
be a unique indicator of the reaction time, especially when
it concerns the regions around the target and projectile. The
same can be concluded about time-angle correlation shown in
Fig. 11(c). The widest distribution corresponds to the grazing
angle. In contrast, the distribution is rather narrow and peaked
at the maximum reaction times in the region of small scattering
angles, due to a large time required for the system to make
almost a full turn and reseparate at angles smaller than the
grazing one. A more straightforward correlation is found
between the reaction time and the TKEL. The distribution
maintains a rather constant width in the whole range of energy
losses, becoming somewhat wider for the completely damped
events. Finally, quite evident, but important results are shown
in Fig. 11(d): the reaction time is larger for almost central
collisions and decreases as the impact parameter grows.

B. 136Xe + 208Pb system

The 136Xe + 208Pb reaction has been studied recently in
Ref. [11] at several energies. The covered angular range was
25◦ � θlab. � 70◦. Both reaction products were detected in
coincidence using the time-of-flight method. This allowed
one to determine the characteristics of the primary (excited)
reaction fragments that have survived against sequential
fission. The experimental resolution (FWHM) was seven units
for the fragment mass and 25 MeV for each of the fragment
energies. These experimental conditions and uncertainties are
taken into account in the calculations.

Figure 12 shows the comparison of the experimental [11]
and calculated energy, mass, and angular distributions for
the primary fragments of the 136Xe + 208Pb reaction at two
incident energies Ec.m. = 526 and 617 MeV. In addition, the
total mass yields of final fragments (including the events of
sequential fission) are calculated without any restrictions and
assuming ideal mass resolution (thin histograms). A good
overall agreement with the data is obtained. An evident but not
strong underestimation of the maximum value of the TKEL
for the lower collision energy contradicts a good agreement of
the present calculations with the data of Refs. [80–82] (Fig. 6).
This can be the subject of further detailed comparison with the
most accurate data on the TKE distributions.

Keeping in mind the primary aim of this paper, namely
the analysis of multinucleon transfer reactions as a means
of production of heavy neutron-rich nuclei, it is important
to compare the calculations with the data not only for the
integral mass distributions but also for the independent isotopic
yields. Such a comparison is shown in Fig. 13 for the isotopes
of Po, Rn, and Ra detected in two independent experiments
[11,14] at two rather close collision energies. The data of
Ref. [11] were accumulated in angular range 45◦ � θlab. �
55◦, while the entire solid angle was covered in Ref. [14].
The dashed histograms show the primary fragment yields.
Since the de-excitation process for Ec.m. = 450 MeV proceeds
predominantly by neutron evaporation, the final fragment

yields (solid histograms) represent the nearly parallel-shifted
primary ones. For the higher collision energy, the excitation
is large enough, which leads to a substantial probability of
sequential fission for isotopes of radon and radium. The
calculations are in a good agreement with the data for proton-
enriched nuclei, whereas they distinctly deviate from the data
on the neutron-rich side for Ec.m. = 450 MeV and reproduce
the data for Ec.m. = 514 MeV.

An analysis of the production of osmium isotopes in the
same projectile-target combination can be made as well. This
domain of nuclides is located in the vicinity of N = 126. It
is this domain that we intend to study. The corresponding
experiments were performed at Ec.m. = 450 MeV in Ref. [14]
and at Ec.m. = 496 MeV in Ref. [12]. In the latter case, osmium
isotopes having kinetic energies 400 < E(Os) < 600 MeV
were detected in the angular range 31◦ � θlab. � 54◦. The
calculated cross sections are compared with the data in Fig. 14.
The data of Ref. [12] are not absolute cross sections but
normalized to the theoretical predictions of Ref. [83]. We
use an additional normalization factor of 10. Thus, one may
compare only the slopes of the calculated and measured cross
sections. A good agreement of the calculations with the data
for Ec.m. = 496 MeV should be noted. As in the case of Po,
Rn, and Ra isotopes, overestimation of the cross sections for
production of neutron-rich nuclides can be seen for the data of
Ref. [14].

In addition, the analysis of all 41 isotopic yields measured
in Ref. [14] is shown in Fig. 15 for completeness. As in
the previously discussed cases [Figs. 13(a) and 14(a)], the
theoretical cross sections are in better agreement with the data
on the neutron-deficient side of the mass distribution for each
isotope. The measured cross sections on the neutron-rich side
are overestimated by the present calculations, especially in
the region of masses heavier than the target. It is consistent
with the mass distributions shown in Fig. 16. The results
of the modeling are very close to the data except for the
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FIG. 16. Mass distribution of reaction products for 136Xe + 208Pb
at Ec.m. = 450 MeV. The experimental data (symbols) are from
Ref. [14]. The solid and dashed histograms are the calculated mass
distributions for final and primary fragments, respectively.
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FIG. 17. Calculated (histograms) and experimental [13] (symbols) cross sections of PLFs for the 136Xe + 198Pt reaction at Ec.m. = 643 MeV.

heaviest masses. At the same time, the calculated cross sections
for specific isotopes reasonably agree with the data in all
other cases considered in the paper, but corresponding to
higher energies, however. In order to reproduce the data on
136Xe + 208Pb at Ec.m. = 450 MeV, one should change the
model parameters responsible for nucleon transfer, e.g., reduce
the radius of nucleon transfer. However, this will lead to a
strong disagreement with the rest of the data analyzed in the
paper. This suggests that additional studies (both theoretical
and experimental) are required.

C. 136Xe + 198Pt system

In order to further verify the model, the recent experimental
data for the 136Xe + 198Pt system at Ec.m. = 643 MeV [13]
have been analyzed. In the experiment, PLFs have been
detected. Cross sections for the corresponding TLFs were then
deduced employing an iterative procedure. The results of the
analysis are summarized in Fig. 17 for the PLFs and in Fig. 18
for the osmium and mercury isotopes. In the latter case, the data
accumulated in different TKEL gates are shown as well. The
cross sections are integrated over the experimentally covered
angles from 24◦ to 34◦. The calculations reproduce all the
data for this system quite well. A shift (maximum of three
mass units) of the calculations with respect to the data for
the PLFs towards neutron richness is however seen for the
channels with the largest number of transferred protons. One
may see (Fig. 18) that in this reaction the most neutron-rich
nuclei are formed predominantly at low TKEL values, whereas
the most proton-rich nuclei are produced in more damped
and, thus, more central collisions. This key result for the
further discussions coincides with the conclusion made in
Ref. [13].

D. Production of neutron-rich nuclides
in the vicinity of N = 126 shell closure

At this point, it can be concluded that the present model
provides a reasonable agreement with various experimental
data for a number of studied systems at different collision
energies. This provides a basis for the further analysis of
synthesis of neutron-rich nuclei in multinucleon transfer
reactions. The data on the production cross sections of the
N = 126 nuclides in the 136Xe + 198Pt,208Pb reactions are
compared with the calculations in Fig. 19(a). One may see
a good agreement with the data of Ref. [13] and data on
proton-rich nuclei from Ref. [14]. The calculated cross sections
for production of neutron-rich nuclei in the 136Xe + 208Pb
reaction are strongly overestimated compared with the data
of Ref. [14].

According to the calculations, the cross sections for the
most neutron-rich nuclei are larger for the 136Xe + 198Pt
combination than for the 136Xe + 208Pb one. The difference
increases with the increasing neutron richness of a nuclide.
The cross sections calculated at two different incident energies
for 136Xe + 198Pt are quite close. This encourages further
study of the energy dependence of the production cross
sections. The results of the corresponding calculations are
shown in Fig. 20 for several neutron-rich isotopes with
N = 126 formed in the 136Xe + 198Pt,208Pb reactions. One
may notice a rather weak dependence of the production
cross section of a specific neutron-rich nuclide on the in-
cident energy. The same conclusion was made recently in
Ref. [10] based on the dinuclear system model. As already
mentioned, the most neutron-rich nucleus with N = 126
known at present is 202Os. It can be seen from Fig. 20 that the
production cross sections for even more neutron-rich nuclides
are relatively high. For example, 201Re and 200W can be
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(open circles) and calculated (solid histograms). Isotopic distributions
for different ranges of TKEL from −25 to 25 MeV (dash-dotted
histograms and filled circles) and from 175 to 225 MeV (dashed
histograms and filled squares) are shown.

synthesized in the 136Xe + 198Pt collisions with the cross
sections exceeding 1 μb.

Rather important conclusions can be made regarding the
optimal angular ranges for production of neutron-rich nuclei
in multinucleon transfer reactions [see Fig. 19(b)]. Whereas the
angular distributions are broad being integrated over an isotope
mass (iridium in our case), they are much more localized for
a specific neutron-rich isotope (the 203Ir126 case is shown).
The maxima for all the three studied reactions are close to
the corresponding angles of grazing collisions. Obviously, the
degree of localization depends on the system and the incident
energy. The sharpest angular distribution is predicted for the
136Xe + 198Pt system at Ec.m. = 643 MeV. It is consistent with
the calculations of cross sections [compare thick and thin
histograms for this system in Fig. 19(a)], as well as the data
and calculations in Fig. 18. This figure shows that the cross
sections for production of neutron-rich isotopes are almost
exhausted by events having low TKEL which correspond to
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FIG. 19. (a) Calculated (histograms) and experimental (symbols)
cross sections for production of isotopes with N = 126 in reactions
136Xe + 198Pt,208Pb. The solid and dashed histograms are for Ec.m. =
450 and 643 MeV, respectively. The thin and thick dashed curves
are integrated over all angles and over the experimentally covered
angles from 24◦ to 34◦, respectively. The experimentally deduced
cross sections for the 136Xe + 198Pt system are from Ref. [13] and for
136Xe + 208Pb are from Ref. [14]. (b) Calculated angular distributions
in the laboratory frame for the Ir isotopes for the 136Xe + 198Pt,208Pb
reactions. The thick histograms are for the 203Ir126 nucleus and
the thin histograms are integrated over all iridium isotopes. The
solid and dashed histograms are for Ec.m. = 450 and 643 MeV,
respectively. The vertical arrows indicate the corresponding grazing
angles of TLFs.

peripheral collisions. Highly excited transfer products formed
in central collisions do not survive. Low values of neutron
binding energies enhance this effect. At lower near-barrier
energies, even central collisions lead to low excitation energies
of primary products (see the difference of the primary and final
cross sections shown in Fig. 14 for two collision energies).
Moreover, the interaction time increases with the decreasing
impact parameter, which favors nucleon transfer. Thus, the
angular distributions for neutron-rich nuclides become broader
extending towards the forward angles. The most uniform
distribution is obtained for the 136Xe + 208Pb combination
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at Ec.m. = 450 MeV, which can be explained by the lowest
difference between the incident energy and the potential
energy at the contact point. These peculiarities should be
taken into account for designing experimental setups dedicated
to studying multinucleon transfer reactions and planning the
corresponding experiments.

Figure 21 shows the contour map of the isotope production
cross sections in reaction 136Xe + 198Pt (Ec.m. = 643 MeV).
It can be seen that the line corresponding to 100 nb follows
the border of the known neutron-rich nuclei over a wide range
of atomic numbers. The most neutron-rich nuclides in the
N = 126 area can be synthesized in this reaction with the
cross sections exceeding 100 nb, that is more than five orders
of magnitude higher than one may expect for the fragmentation
reactions used so far.

IV. CONCLUSIONS AND OUTLOOK

In this paper, the multidimensional dynamical model of
nucleus-nucleus collisions based on the Langevin equations

126

50

82

82

neutron number

reb
mun notorp

FIG. 21. Upper part of the chart of nuclides. The production cross
sections in the 136Xe + 198Pt reaction at Ec.m. = 643 MeV are shown
by contour lines drawn over an order of magnitude of the cross section
down to 100 nb.

has been developed. It is combined with a statistical model
for simulation of de-excitation of primary reaction fragments.
The model provides a continuous description of the system
evolution starting from the well-separated target and projectile
in the entrance channel of the reaction and up to the formation
of final reaction products.

The model showed its applicability to reactions between
nuclei, which are spherical in their ground states. It is known
that the coupling of the relative motion to the orientation
degrees of freedom plays an important role for statically
deformed nuclei. Extension of the model for this domain of
nuclei is considered as a next step of its development. The most
complicated question, which should be solved in this case, is
the evolution of axially asymmetric nuclear shapes and the
system potential energy in the vicinity of the contact point. It
implies, in particular, restoration of the axial symmetry when
the interaction time is long enough.

In order to determine the model parameters and test its
applicability to deep inelastic reactions, a rather complete
set of experimental data available for reactions 136Xe +
198Pt,208Pb,209Bi was analyzed. The calculated energy, mass,
charge, and angular distributions of reaction products, their
various correlations as well as the cross sections for production
of different nuclides agree well with the data. On this basis,
optimal conditions for detecting the neutron-rich nuclei in
the vicinity of the N = 126 neutron shell were formulated
and the corresponding cross sections were predicted. The
yields of neutron-rich nuclei with N = 126 are found to be
weakly dependent on the incident energy. At the same time,
the corresponding angular distributions are strongly sensitive
to the reaction dynamics and, thus, the collision energy. They
are peaked at grazing angles for larger energies and extend up
to the forward angles at low near-barrier collision energies.
The corresponding cross sections exceed 100 nb for the nuclei
located at the border of the known region, which is nearly
five orders of magnitude larger than can be reached in the
fragmentation reactions.

This work confirms the earlier-predicted efficiency of
multinucleon transfer reactions as a method for synthesis
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of neutron-rich nuclei. At the same time, additional high
quality experimental data on low-energy nucleus-nucleus
collisions with simultaneous measurement of the charges,
masses, energies, and angles of reaction products in various
mass and energy domains are of a great value for better
understanding of the dynamics of nucleus-nucleus collisions
at low energies, for adjustment of model parameters as well

as for designing the dedicated facilities and planning the
corresponding experiments.
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