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The finite-amplitude method is a feasible numerical approach to large scale random phase approximation
calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization
of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished
the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial
symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole
excitation case.
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I. INTRODUCTION

Random phase approximation (RPA) and its generalization,
quasiparticle random phase approximation (QRPA) method,
are important tools to investigate the low lying excitation
properties of nuclei both stable and far from the stability line.
However, under axial symmetry, the configuration space of
“particle-hole” pairs grows rapidly such that it prohibits the
calculation and storage of residual interaction matrix elements
as well as the diagonalization. Therefore the nonspherical
applications are limited in light and medium nuclei [1–5];
otherwise various truncations have to be introduced, such
as the energy cutoffs of particle-hole (p-h) pairs, occupation
probabilities, major shell numbers, etc., which hampers the
self-consistency of the calculation scheme itself. To circum-
vent the deficiencies of a conventional implementation of
the QRPA through diagonalization, Nakatsukasa et al. [6]
developed the finite-amplitude method (FAM) wherein the
variation of the Hamiltonian is calculated numerically through
finite difference. The numerical costs of the FAM increase
linearly with the dimension of configuration space, which
enables the RPA/QRPA calculation of super-heavy nuclei
without spherical symmetry restriction. The feasibility of the
FAM makes this new numerical approach widely used in recent
RPA/QRPA calculations. The application of the FAM in the
nonrelativistic Skyrme random phase approximation model
has been fulfilled both without pairing [7–9] and with pairing
[10,11] interactions. In the relativistic mean-field (RMF) area,
a FAM based on the relativistic point coupling model with
parameter set DD-PC1 [12] has been built by Liang et al. [9]
under spherical symmetry and by T. Nikšić et al. [13] under
axial symmetry. However the implementation in the relativistic
meson-exchange model has not been established yet.

The nuclear density functional theory (DFT) [14] is highly
developed and nowadays a lot of computing programs have
been fulfilled, well checked, and are open access. One benefit
of the FAM is that the implementation can take the most
advantage of the corresponding static DFT solver. Therefore,
many finite-amplitude method implementations are carried out
by extending ground state code.

The code HOSPHE [15] is the self-consistent solution
to the effective functional N3LO [16], which contains a
high order of gradient corrections within the local density

approximation. Carlsson et al. have used this code to perform
FAM-QRPA calculations in the spherical symmetry condition
[17]. The widely used axial deformed nonrelativistic Skyrme-
HFB solver HFBTHO [18,19] has also been extended to
the FAM-QRPA scheme in several studies [11,20,21]. The
preceding two solvers expand single-particle wave functions
with a harmonic oscillator basis, while there are other types
using space coordinate representation. For example, HFBRAD
[22] is a code fulfilled in a coordinate representation using
a spherical box, finite-amplitude method implementation of
the Skyrme-QRPA based on this program also have been
completed [10,23]. HFB-AX [24] is a two-dimensional lattice
Skyrme-HFB solver; a FAM-QRPA has been built based on
this deformed coordinate-space program concerning contin-
uum states [25].

In fact, the FAM has shown excellent performance, a
systematic study about pygmy dipole resonance in a wide
range of nuclei without assumed symmetry has been carried
out through a Skyrme-FAM-RPA [8]. It’s also been applied in
the investigation of charge changing excitation, e.g., Mustonen
et al. have applied a proton-neutronFAM [26] scheme in the
estimation of β-decay rates in axially deformed open-shell
nuclei.

As a realization of linear response theory, in the FAM the
excited eigenmodes are not directly provided. The transition
strength caused by an external field at a given frequency is
obtained after solving the linear response equation iteratively.
Sometimes one may be interested about the discrete eigen-
states. Hinohara et al. has shown that the eigenmode can be
accessed through performing a contour integral in the complex
frequency plane around QRPA poles [20]. Besides the iteration
FAM(i-FAM), the idea of finite difference can also be used
to calculate the matrix elements of a residual interaction.
Avogadro et al. have built the matrix FAM(m-FAM) [23]
scheme, wherein the matrix elements of a residual interaction
are evaluated by constructing Hamiltonian variation from a
particular particle-hole transition, and then the eigenvalues
and vectors are obtained by diagonalizing RPA equations. If
the dimension of configuration space is less than ten thousand,
the m-FAM even has a better performance than the i-FAM.

The relativistic mean field theory is covariant and self-
consistent; it introduces the spin freedom naturally and
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can explain pseudospin symmetry elegantly. The interaction
between nucleons are interpreted as exchanging scalar σ ,
vector ω meson, and isospin vector meson ρ as well as photon
for electromagnetic interaction. Implementation of a FAM in
a relativistic meson-exchange model can provide a practical
approach for systematic researching the low-lying excitation
properties of open-shell nuclei.

This paper is organized as follows: first we introduce
the general framework of the finite-amplitude method, and
then construct the variation of the Hamiltonian within the
relativistic meson-exchange mean field theory. Second, the
numerical details are shown, including the decoupling of
spurious states and benchmarking with the existing theoretical
calculation result. In the third part, we apply our method to the
study of the breathing mode in even-even cadmium isotopes
and electric dipole excitation in 60Ni. Last, conclusion and
remarks are given.

II. FORMALISM

A. The general framework of a finite-amplitude method

In the Hartree-Bogoliubov theory, the generalized single
particle Hamiltonian can be obtained from the variation of the
energy density functional

H = ∂E[R]

∂R =
(

h �
−�∗ −h∗

)
, (1)

where R is the generalized density, h and � are the single
particle Hamiltonian and the pairing field [27,28]. The varia-
tion of the generalized Hamiltonian in quasiparticle space is
connected with that in oscillator space by(

δH 11 δH 20

δH 02 −δH 11T

)
= W†

(
δh δ�

−δ�̄∗ −δhT

)
W, (2)

where the transformation matrix reads [28]

W =
(

U V ∗
V U ∗

)
. (3)

The evolution of the generalized density matrix satis-
fies the time-dependent Hartree-Fock-Bogoliubov equation
(TDHFB) [28]

i∂tR(t) = [H(t) + F(t),R(t)]. (4)

The ground state of the HFB is a quasiparticle vacuum, which
means, in the quasiparticle space we have

R0 =
(

0 0
0 1

)
, H0 =

(
E 0
0 −E

)
. (5)

When the nucleus is perturbed by an external field F̂ with a
frequency ω,

F̂ (t) = F̂ e−iωt + H.c. (6)

The elements of F̂ in generalized quasiparticle space are
similar to (2):(

F 11 F 20

F 02 −F 11T

)
= W†

(
f 0
0 −f T

)
W. (7)

In the small amplitude limit, the induced density is

R = R0 + δRe−iωt + H.c. (8)

As a projector operator, the generalized density satisfies R2 =
R, which means the nonvanishing elements of the transition
density are

δR =
(

0 δR20

δR02 0

)
:=

(
0 X
Y 0

)
. (9)

Substituting the above expressions into (4), we can obtain the
linear response equation

(Eμ + Eν − ω)Xμν(ω) + δH 20
μν(ω) = −F 20

μν(ω),

(Eμ + Eν + ω)Yμν(ω) + δH 02
μν(ω) = −F 02

μν(ω). (10)

In conventional RPA/QRPA calculations, the variations of
Hamiltonian δH 20 and δH 02 are further expanded with
transition density X,Y and residual interaction matrix ele-
ments, and then one gets the coupled equations of X,Y , i.e.,
the RPA/QRPA equation. However, in the finite-amplitude
method, the start point is (10); δH 20 and δH 02 are calculated
directly from finite difference.

The kernel of the FAM is to construct δh, δ�, and
δ�̄∗ without calculating the matrix elements of the residual
interaction. The use of small parameter η [6,7,11,23] enables
one to extract the single particle Hamiltonian variation from
finite difference

δĥ = ĥ[ρ̂0 + ηδρ̂] − ĥ[ρ̂0]

η
. (11)

In this scheme, one can take advantage of the subroutine ĥ[ρ̂]
of the original code; usually only a minimal modification is
needed. The real parameter η should be chosen carefully; if
the value is too large, the finite difference is inaccurate, but
η should not be too small either; otherwise the iteration will
suffer from significant numerical noise [7,13].

To address this problem from another point of view,
we adopt an approach of direct variation instead of finite
difference, namely, fulfill a subroutine δĥ[ρ̂0,δρ̂] responsible
for calculating variation of the Hamiltonian from transition
densities. Of course, the structure of δĥ is much more complex
than ĥ, which usually contains higher orders of derivatives.
However, it frees us from the choosing of η and what’s more,
is convenient to be applied in the Kπ �= 0+ case. The similar
scheme has also been adopted in the Skyrme-FAM-QRPA
implemented by Kortelainen et al. [21], which are intended
to research the multipole excitations of axially deformed
superfluid nuclei.

B. Variation of the Hamiltonian in the relativistic
meson-exchange model

In the relativistic meson-exchange mean field theory, the
single particle Dirac equation is [29]

[γ μ(i∂μ + Vμ) + (M + S)]ψ = 0, (12)
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where the scalar and vector potential are generated from
exchanging mesons and photon:

S = gσσ,

Vμ = gωωμ + gρ �ρμ · �τ + 1 − τ 3

2
· eAμ + �μ(R). (13)

The last ingredient of the vector potential is the “rearrange-
ment” term [30]; it appears when the coupling constants are
density dependent. At the mean field level, due to time-reversal
symmetry, the space components of a meson field are vanished,
and there’s no mixing in the isospin space, i.e., only the
third component of an isospin-vector meson contributes. The
evolution of meson fields satisfy the Klein-Gordon equation( − � + m2

σ

)
σ (r) = −gσρs(r),( − � + m2

ω

)
ω(r) = +gωρv(r),

(14)( − � + m2
ρ

)
ρ(r) = +gρρtv(r),

−�A(r) = +eρc(r),

where the distribution of the scalar/vector density and isospin-
vector density as well as the charge density are defined by

ρs(r) = Tr[βρ̂], ρv(r) = Tr[ρ̂],

ρtv(r) = Tr[τ3ρ̂], ρc(r) = 1
2 Tr[(1 − τ3)ρ̂]. (15)

When the nuclei are disturbed by an external field, the
varying of the scalar and vector potential will induce the
variation of the Hamiltonian

δĥ = −αδV + δV + βδS =
(

δV + δS −σ · δV
−σ · δV δV − δS

)
, (16)

where the scalar potential variation as well as the time and
space component of the vector potential variation are

δS = g0
σ δσ + δgσσ 0,

δV = g0
ωδω + δgωω0 + g0

ρδρ · τ 3 + δgρρ
0 · τ 3

+ 1 − τ 3

2
· δVc + δ�0(R),

δV = g0
ωδω + g0

ρδρ · τ 3. (17)

The quantities labeled by “0” are coupling constants and meson
fields belonging to the unperturbed ground state. What is
worthy to mention here is that the space components of the
vector potential are vanished in the ground state of even-even
nuclei; however, in order to calculate the excitation behavior,
the current contributions should be included. Neglecting the
spatial components of the vector field will push the giant
monopole peak about 2 MeV higher [31].

Under axial symmetry condition, the total angular mo-
mentum J is no longer a good quantum number, but the
projection of angular momentum on the z axis and the parity
are still conserved. The excitation of a nucleus can be studied
in different K channels, which to some extent, reduces the
dimension of configuration space. Therefore, if the nucleus
is perturbed by the external field operator Q̂IK , then in the
linear limit, the variation of densities will have an azimuthal
dependence like [5]

δρm(r) = δρm(r⊥,z)e−iKϕ. (18)

Here, m represents scalar, vector, isospin vector, and charge
densities. It can be proved that the variation of meson fields
has the same azimuthal dependence as the densities. Under the
small amplitude limit the variation of the meson field can be
calculated through the Klein-Gordon equation(−� + m2

m

)
δφm(r) = ∓

[
g0

m(r)δρm(r) + ∂gm

∂ρv

δρv(r)ρ0
m(r)

]
.

(19)

After dealing with the azimuthal part analytically, the above
equation can be calculated by expanding the meson field and
source at the right hand side with harmonic oscillator wave
functions, namely,

δφm(r⊥,z) =
NB∑
α

fαφK
α (r⊥,z) (20)

∓
[
g0

mδρm(r⊥,z) + ∂gm

∂ρv

δρv(r⊥,z)ρ0
m

]

=
NB∑
α

sm
α φK

α (r⊥,z), (21)

where φK
α is the cylindrical oscillator basis

φK
α (r⊥,z) = φK

nr
(r⊥)φnz

(z). (22)

The explicit expression of the deformed harmonic oscillator
basis is listed in Appendix A. The equation (19) in such a basis
becomes

NB∑
α′

Mα′αfα′ = sm
α , (23)

with

Mα′α =
∫

dz

∫
r⊥dr⊥φK

α′

[
−�a + K2

r2
⊥

+ m2
m

]
φK

α

= −2δn′
z,nz

∫ ∞

0
dηφK

n′
r

(
∂

∂η
+ η

∂2

∂η2

)
φK

nr

− 1

bz

δn′
r ,nr

∫ ∞

−∞
dζφn′

z

∂2

∂ζ 2
φnz

+ K2

2
δn′

z,nz

×
∫ ∞

0
dηφK

n′
r
η−1φK

nr
+ m2

mδn′
z,nz

δn′
r ,nr

, (24)

where �a is the azimuthal independent part of the Laplace
operator.

The Coulomb field is long range, singular at the origin;
therefore it can not be expanded in an oscillator basis; the
method used for meson fields fails. In this case the standard
Green function method should be adopted [32]:

Vc(r) = e

4π

∫
d3r ′ ρc(r ′)

|r − r ′| . (25)

The relative distance in the numerator is singular when r = r ′,
which is inconvenient for numerical calculation and should be
avoided by using the relation

�r ′ |r − r ′| = 2

|r − r ′| . (26)
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After integration by parts twice, the equation (25) becomes

Vc(r) = e

8π

∫
d3r ′|r − r ′|�ρc(r ′). (27)

In a small amplitude approximation, the variation of the
Coulomb potential can be obtained similarly as

δVc(r) = e

8π

∫
d3r ′|r − r ′|�δρc(r ′), (28)

while from (18) we can see that the second variation of δρc has
an extra azimuthal dependent form:

�δρc(r) = e−iKϕ

(
�a − K2

r2
⊥

)
δρp(r⊥,z). (29)

Substitute this into (28) leads to

δVc(r) = e

4π
(−1)Ke−iKϕ

∫ ∞

0
r ′
⊥dr ′

⊥

∫ ∞

−∞
dz′

× [(z − z′)2 + (r⊥ + r ′
⊥)2]1/2

×
(

�a − K2

r ′2
⊥

)
δρc(r ′

⊥,z′)

× IK

[
4r⊥r ′

⊥
(z − z′)2 + (r⊥ + r ′

⊥)2

]
. (30)

The expression above leaves us the problem to evaluate the
integral

IK (x) =
∫ π

0

√
1 − x sin2 θ cos(2Kθ )dθ. (31)

In the case of K = 0 and K = 1, IK can be expressed as elliptic
integrals. While in K > 1 case, we calculate a series of values
IK
i at xi numerically, and introduce a quadratic interpolation

procedure to get the function IK (x). We have tested the
performance of such a treatment; the result is satisfying.

If the coupling constants are density dependent, there’s a
rearrangement term contributing to the vector potential

�R
0 = ∂gσ

∂ρv

ρsσ + ∂gω

∂ρv

ρvω + ∂gρ

∂ρv

ρtvρ. (32)

The variation of the rearrangement term is somewhat complex
because when density varies, the three parts, namely, the
derivative of the coupling constant, the meson field, and the
scalar, vector, vector-isovector density, all change accordingly.
Under linear approximation, the variation of the rearrangement
term originates from three aspects:

δ�R
0 (r) =

∑
m

{
∂2gm(r)

∂ρ2
v

∣∣∣∣
0

δρv(r)ρ0
m(r)φ0

m(r)

+ ∂gm(r)

∂ρv

∣∣∣∣
0

δρm(r)φ0
m(r) + ∂gm(r)

∂ρv

∣∣∣∣
0

ρ0
m(r)δφm(r)

}
.

(33)

The subscript 0 in the right hand side means the expression
is valued with the ground state. It’s not difficult to see that
the variation of rearrangement carries an azimuth factor e−iKϕ

because the three variations at the right hand side (rhs) of

Eq. (33) all carry such a one while quantities valued in the
ground state are all azimuthally independent.

Because in the ground state of even-even nuclei the
currents vanish, the Klein-Gordon equations involving spatial
components of vector meson δω and the third component of
isovector-vector meson δρ differ from (19), that is,(−� + m2

ω

)
δω(r) = gω(r) j (r),(−� + m2

ρ

)
δρ(r) = gρ(r) jT (r), (34)

where j and jT are the vector and the isovector current,
respectively. ( j and jT are aroused by external perturbation).
The equation above can be solved with the method that has
been developed in the preceding context.

Once the variation of the meson field is obtained, it is a
straightforward thing to get the variation of the single particle
Hamiltonian from (16). The variation of coupling parameters
is trivial; therefore we put them in Appendix B as well as
the explicit form about the density dependence of coupling
constants.

For a good description of open-shell nuclei, the inclusion of
pairing interaction is necessary. The pairing field is a functional
of the abnormal tensor κ̂:

�̂ = 1
2 Tr(V ppκ̂). (35)

When the pairing interaction is density independent, in the
linear approximation the variation of the pairing field can be
easily obtained through

δ�̂ = 1

2
Tr(V ppδκ̂). (36)

Although there’s some attempts to handle the pairing effect
from a relativistic view [33], it is still an open question about
the relativistic structure of the pairing field so far. Therefore,
it’s customary to use a hybrid model wherein the relativistic
interaction provide a covariant mean field while the paring
interaction is handled with a nonrelativistic Skyrme or Gogny
force [34]. In our study, a separable form of the Gogny force
has been adopted [35]:

V pp(r1,r2,r ′
1,r

′
2) = − Gδ(R − R′)P (r)P (r ′)

× (1 − P σ )/2.
(37)

Here R and r denote the center-of-mass and relative coor-
dinates, respectively, and r i are particle coordinates in the
intrinsic frame. P (r) is in the form of a Gaussian function,
which makes the pairing force converge quickly. The spin
projector operator (1 − P σ )/2 restricts the pairing interaction
effects only between S = 0 pairs. The deformed oscillator
basis in these two sets of coordinate frames can be transformed
to each other through Talmi-Moshinsky brackets [36,37].
The matrix elements of the pairing interaction in harmonic
oscillator space can be expressed as a sum of separable
terms [34,35]

〈αβ|V pp|γ δ〉 = −G
∑
N

WN
αβ

∗
WN

γδ. (38)
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Therefore the matrix elements of pairing potential variation
can be easily calculated from (36)

δ�αβ = −G
∑
N

P̃NWN∗
αβ , (39)

with

P̃N = 1
2 Tr(WNδκ). (40)

C. The transition strength

Solving the linear response equation (10) will give us
the transition density X(ω),Y (ω), from which the transition
strength will be accessible. In quasiparticle space it reads [10]

dB(F,ω)

dω
= − 1

2π
Im

∑
μν

{
F 20∗

μν Xμν(ω) + F 02∗
μν Yμν(ω)

}
.

(41)
The imaginary part iγ added in ω is equivalent to a smear
strength function with the Lorentzian width � = 2γ ; therefore,
the integral over strength distribution gives the same kth
energy weighed sum rule (EWSR) as calculated via discrete
eigenmodes,

mk =
∑

ν

ωk
νB(F,ων) =

∫
ωk dB(F,ω)

dω
dω. (42)

III. NUMERICAL DETAILS

The effective functional used in our implementation is
the relativistic density-dependent meson-exchange model with
parameter set DD-ME2 [38], while in the pairing channel,
a separable form of the Gogny force [35,39] is adopted.
Instead of extending the ground subroutines, we use the ground
quasiparticle wave functions U,V of code DIRHB [34] as
inputs, where the wave functions of quasiparticle as well
as the meson fields are expanded with deformed harmonic
oscillators in cylindrical coordinates, and then establish the
finite-amplitude method framework independently.

The linear response function (10) is solved iteratively,
which starts from a guess about transition density X0,Y0. In the
first step of each iteration, the transition density is transformed
from quasiparticle space to oscillator space via(

δρ δκ
−δκ̄∗ −δρ∗

)
= W

(
0 X
Y 0

)
W†. (43)

Then the variation of single particle Hamiltonian δh and
pairing potential δ�, δ�̄∗ are calculated through the direct
variation procedure introduced in the previous section. These
terms are transformed back to quasiparticle space via (2) and
one gets δH 20 and δH 02. The new transition density X′,Y ′ can
be obtained from (10), namely,

X′
μν = δH 20

μν + F 20
μν

Eμ + Eν − ω
, Y ′

μν = δH 02
μν + F 02

μν

Eμ + Eν + ω
, (44)

which is the last step of each iteration. To avoid the singularity,
the frequency ω is added with an imaginary part γ . The
convergence criterion is chosen as follows: if the length of
residua between input vector (X,Y ) and output one (X′,Y ′)
is 10−8 times less than the length of the input vector, the

TABLE I. The relationship between the configuration space
dimension and the maximum major quantum number of oscillator
shells in the Kπ = 0+ channel.

NF 8 10 12 14 16

N2qp 12 857 30 678 64 349 122 670 217 225

iteration stops. In order to accelerate the iteration, we adopt
the algorithm of the Broyden mixing method [40,41]; in this
way the averaged iterations needed to converge can be reduced
to about 40 times. The responses of a system at different
frequency ω are independent and can be easily deployed in a
message passing interface (MPI) parallel environment, which
is beneficial for systematic calculations.

In our calculation scheme, the amount of total quasiparticle
states changes with the major quantum number NF . The
configuration space of two quasiparticle (2qp) pairs increases
with NF rapidly. For instance, in the Kπ = 0+ channel,
the 2qp pairs (μ,ν) are constructed from the configuration
requirement �μ + �ν = 0, πμπν = +, and reduced by half
from the condition μ > ν due to exchange symmetry. If ten
major shells are used, the number of 2qp pairs will exceed
thirty thousand when no further truncations on quasiparticle
states are made and all antiquasiparticle pairs are included. We
summarized the relationship between the number of 2qp pairs
and NF in this channel and list the result in Table I.

It’s interesting to notice that the increase of configuration
space with major quantum number can be well approximated
as

N2qp ≈ 1.849(NF )4.21, (45)

with goodness of fit R2 = 0.9999.
In the oscillator representation, the quasiparticle states in

continuum are approximated by discrete levels; for this reason,
although the bound states will remain constant, the effects of
continuum spectrum have a dependence on NF . As a result,
when NF changes, the strength function in the high energy
region will shift slightly, because states in continuum play
important roles. While in the low energy region, the 2qp
pairs formed by bound states dominate, the transition strength
remains unchanged. Our tests show that NF = 16 is enough
to make most calculations converge; further increase of NF

only brings in insignificant corrections. In this case, the 2qp
number is roughly two hundred thousand, which means over
4 × 1010 residual matrix elements should be calculated and
stored; that is definitely out of the reach of conventional
RPA/QRPA calculations through diagonalization.

A fully self-consistent quasiparticle random phase approx-
imation procedure will restore the symmetry broken by the
mean field calculation. The decoupling of spurious states can
be used to verify the accuracy of numerical implementation. In
Fig. 1 we display our calculation about the giant monopole res-
onance in light nuclei 22O. The dotted-dashed line represents
the situation without dynamic pairing [13], which means the
pairing correlation is involved in the ground state but omitted
in the excitation calculation. From Fig. 1 it’s clear to see that
when the pairing interaction is not included consistently, there
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FIG. 1. The elimination of a spurious state relating to particle
number symmetry breaking in the Kπ = 0+ channel. The figure
shows the giant monopole resonance of 22O; the dashed line represents
the result corresponding to the RMF-FAM-RPA calculation, while
the solid line for the self-consistent RMF-FAM-QRPA. The dotted-
dashed line shows the mixing of the spurious state with physical ones
when dynamic pairing is not included, namely, omitting the pairing
interaction in the excitation calculations; see text for details.

are significant spurious states in the low-lying energy region.
On the contrary, the solid line represent the case in which the
pairing is self-consistently included; the mixing of the spurious
state with physical ones is eliminated. When switching off
the pairing interaction both in static as well as excitation
calculations, the RMF-QRPA reduces to the RMF-RPA, which
is the situation labeled by the dashed line. In this manner, the
Nambu-Goldstone boson corresponding to particle-number
symmetry broken in the Kπ = 0+ channel will not appear. The
discrepancy between the solid line and dashed one indicates
the effect of the pairing correction on the monopole resonance,
that is, the splitting of the main peak of the giant monopole
resonance (GMR) at about 20 MeV.

We compared our calculation with the result of [13] about
the same nucleus 22O while using a density-dependent point
coupling model with parameter set DD-PC1. The behavior
of the resonance strengths resembles each other, and in both
cases there’s the significant elimination of the spurious state
when the pairing interaction is consistently considered. When
the dynamic pairing is consistently included, our calculation
shows that a small peak appears around 2–3 MeV. The same
result has also been found in the canonical QRPA calculation
[42] with a nonlinear meson-exchange interaction NL3.
Recently, in the QRPA calculation based on point-coupling
interaction DD-PC1, such a state is also reproduced both from
diagonalization and a FAM scheme [13].

IV. RESULT

A. Monopole resonance of cadmium isotopes

The nuclear matter compressibility and the frequency of
collective monopole resonance are closely correlated [43]
and provide essential restriction on the equation of state for
nuclear matter. As a first application of our FAM-QRPA
implementation, we investigate the giant monopole resonance
of cadmium even-even isotopes 110–116Cd in an axial symmetry
scheme. The deformation of these nuclei change from 0.16 to
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FIG. 2. The giant monopole resonance of Cd isotopes. The solid
line represents the self-consistent FAM-QRPA calculation with the
separable pairing (SP) force, while the dashed line represents the
pairing-absent case. The experimental results are denoted by error
bars.

0. The isoscalar monopole operator is [13]

F̂ =
∑

i

r2
i . (46)

In Fig. 2 we compare our calculation with the experimental
result [44] obtained by inelastic α scattering. To reconcile
with the experimental curves, the theoretical calculations are
smeared with a relatively large width � = 3 MeV.

In Fig. 2, we represent the isoscalar giant monopole
resonance (ISGMR) strength distribution obtained in our
FAM-QRPA calculation with solid lines, and represent the
FAM-RPA results with dashed lines. In the latter cases the
pairing interaction is omitted both in the static state and
excitations. The overall effects of pairing in these cadmium
isotopes are unremarkable, which to some extent make the
GMR peaks more concentrated. Pairing corrections are not
obvious when the excited energy is larger than about 15 MeV,
where the excitations of nucleons far from the Fermi surface
begin to make a more stronger contribution. In general, the
theoretical calculations are in agreement with experimental
results. However, in the energy region about 12–15 MeV, the
theoretical predictions are lower than experimental data, partly
because the calculated GMR structures locate higher.

In Table II, we compare the centroid energies of our
calculation with experimental results as well as some relativis-
tic and nonrelativistic random phase approximation method
calculations. The prediction of our model, which combines
the density-dependent covariant meson exchange interaction
DD-ME2 and separable form of the Gogny force in the pairing
channel, is larger than experimental data by about 0.8 MeV
(although there’s a conflict about 0.1 MeV on nucleus 116Cd
in experiments [44] and [45], but both of them are well below
theoretical predictions). We make a comparison of our results
with the RPA calculations fulfilled by Patel et al. [44] with the
relativistic nonlinear meson exchange models; our centroid
energies lie between the values predicted by NL3 [46] and
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TABLE II. Centroid energy (Ecen = m1/m0) comparison of different theoretical models and experimental results in cadmium isotopes. Our
calculation results are listed in the second column in MeV.

This work SkP SkM* SLy5 NL3 FSUGold Expt. 1 [44] Expt. 2 [45]

110Cd 16.67 15.56 16.18 16.54 17.09 16.59 15.94 ± 0.07 15.71+0.11
−0.11

112Cd 16.56 15.42 16.05 16.39 17.00 16.50 15.80 ± 0.05
114Cd 16.44 15.28 15.91 16.25 16.90 16.38 15.61 ± 0.08
116Cd 16.38 15.14 15.78 16.12 16.77 16.27 15.44 ± 0.06 15.17+0.12

−0.11

FSUGold [47] models. These two interactions systematically
overestimate the centroid energy about 1.2 and 0.7 MeV,
respectively. On the other hand, from the Skyrme-QRPA
calculation of Cao et al. [48] with parameter sets SkP [49],
SkM* [50], and Sly5 [51] we can learn that the nonrelativistic
Skyrme model predicts a relatively smaller centroid energy,
especially in SkP case; the position of GMR peaks are even
underestimated by 0.3–0.4 MeV.

The incompressibility of the nonlinear covariant models
NL3 and FSUGold are 271 and 229 MeV [52], respectively,
while that for Skyrme sets SkP, SkM*, and Sly5 are 202,
217, and 230 MeV, respectively [48]. The relative shifts of
GMR peaks predicted by those interactions manifest the fact
that the incompressibility modulus is closely correlated with
the centroid of monopole resonance. The density-dependent
covariant meson-exchange model DD-ME2 has a incom-
pressibility about 251 MeV [52]; therefore, the shifts in our
calculations are reasonable.

When evaluating the GMR energies, there’s a challenging
problem, i.e., the “softness” of Sn isotopes [53–56], which
describes such a situation that the theoretical models producing
GMR energies of 208Sn and 90Zr correctly will overestimate
that of Sn isotopes. It has been shown that the same problem
exists in Cd isotopes, too [44]. The theoretical prediction
of GMR energies in Cd isotopes by the interactions well
calibrated in 208Pb are systematically larger than experimental
results. From the comparison in Table II it is clear that
the parameter set SkM* of the Skyrme interaction shows
the best performance in producing the GMR energies of
Cd isotopes. However, the centroid energy of the GMR
in 208Pb is better described with the nonrelativistic SLy5
parameter set or relativistic interaction DD-ME2, which we
adopted in the current calculation. The ISGMR of 208Pb are
presented in Fig. 3. The dashed-dotted and dashed curves are
generated from a Skyrme-RPA solver developed by Colò et al.
[57] with parameter sets SLy5 and SkM*, respectively. The
centroid energies of 208Pb reproduced by these two interactions
are 13.92 and 13.50 MeV. The former, SLy5, is in good
agreement with experimental result 14.17 ± 0.28 MeV [58]
while the latter, SkM*, underestimated. Our FAM calculation
(denoted by a solid line) shows the relativistic meson-exchange
interaction DD-ME2 will produce the desired GMR energy for
208Pb, which is about 13.93 MeV and very close to SLy5, but
overestimates that for Cd isotopes, too.

The theoretical prediction of the GMR strength distribution
has a significant deficiency in energy region 20–30 MeV when
compared with experimental observations; there’s a fat tail
found in cadmium isotopes experimentally. This problem has
also been found in other RPA/QRPA calculations [44,48], both

from a relativistic view and from a nonrelativistic view, with
pairing or without pairing. Therefore, we believe that to explain
the fat tail the extensions beyond the mean field or theory
breakthrough of random phase approximation method may be
required.

B. Electric dipole resonance of 60Ni

The implementation of a FAM through the direct variation
approach can be extended to the calculation of multiple
excitation with Kπ �= 0+ easily. As a simple example, we
calculate the electric dipole resonance of 60Ni. The electric
dipole excitation is characterized by the operator [59]

Ê1μ = Ne

N + Z

Z∑
p=1

rpY1μ − Ze

N + Z

N∑
n=1

rnY1μ. (47)

Under axial symmetry, the E1 operator involves Kπ = 0−
and Kπ = 1− channels (the transition strength that belongs
to the K = −1 channel is identical to K = 1; therefore,
we just need double the contribution of the K = 1 channel
when calculating the whole strength distribution). From Fig. 4
we can see, in this oblate deformed nucleus (β ≈ −0.15),
transition strength belonging to Kπ = 0− and Kπ = 1−
split (represented by the dashed line and dotted-dashed line,
respectively), which makes the total strength distribution
fragmented in a wide range. Apart from the wide structure of
the giant dipole resonance, we can observe a small peak under
10 MeV, which is often referred as pygmy dipole resonance
(PDR) [60,61]. This low-lying E1 strength is usually explained
as the excess neutrons oscillating against the isospin saturated
core [62–64].

10 20 30
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 [a
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This work

FIG. 3. ISGMR of 208Pb; the “‘dashed-dotted” and “dashed”
lines represent results produced by Skyrme interactions SLy5 and
SkM*, respectively. The “solid” line represents our calculation result
with relativistic meson-exchange interaction DD-ME2. The response
strength is smeared with � = 1 MeV.
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TABLE III. The comparison of the GDR and PDR; the energy is
in units of MeV. The fifth column contains the percentage of the TRK
sum rule exhausted by the PDR and GDR.

Ecen Econ Esca
∑

m1
k/S(TRK)

PDR 8.14 8.02 8.44 0.74%
GDR 20.77 19.90 23.36 104%

The classical Thomas-Reiche-Kuhn (TRK) sum rule is
model independent and can be evaluated through nucleus mass
number [59]

S(TRK) =
∑

n

h̄ωn|〈n|Ê1μ|g.s.〉|2

= h̄2

2M

9

4π

NZ

A
e2 ≈ 14.9

NZ

A
e2. (48)

Just like the name indicates, the pygmy dipole resonance
usually takes a small percentage of the classical EWSR. In our
calculation, the value is about 0.74%, while the giant dipole
resonance take a large percentage of the EWSR, about 104%.
In Table III, we compare the giant dipole resonance (GDR)
and PDR about several moment ratios, namely, the centroid
energy Ecen = m1/m0 as well as the constrained energy
Econ = √

m1/m−1 and the scaling energy Esca = √
m3/m1.

The energy region is restricted to 5 < ω < 10 MeV when
calculating various customary moments for the PDR, and 10 <
ω < 30 MeV for GDR. The GDR peak is severely fragmented;
there’s a remarkable difference between the constrain energy
Econ and scaling energy Esca. While for the PDR, the peak is
concentrated at about 8 MeV.

Scheck et al. [65] investigated the excited behavior of 60Ni
in a (γ,γ ′) reaction, in which the excited states belonging to
pygmy resonance are identified by their decay patterns. The
experiment shows there’s a local accumulation of strong E1
excitations near 8 MeV. This result is close to our FAM-QRPA
calculation with a centroid energy about 8.14 MeV in the PDR
energy region.
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FIG. 4. The electric dipole resonance of 60Ni. Strength distri-
bution belonging to Kπ = 0− and Kπ = 1− are represented by the
dashed line and dotted-dashed line, respectively.

V. CONCLUSION

A finite-amplitude method is efficient to deal with
RPA/QRPA problems with large configuration space. It frees
one from the tedious procedure of calculating residual inter-
action matrix elements; meanwhile, it avoids the huge storage
memory and time-consuming diagonalization. By solving the
linear response equation iteratively, one gets the transition
densities at a given frequency. The processes corresponding to
different excitation energies are independent, which make the
method suitable for parallel calculation.

In this work, we have fulfilled the implementation of a
finite-amplitude method in the relativistic meson exchange
mean field model with axial symmetry. The mean field
is described by exchanging medium mesons and photons,
and the pairing effect is treated in a self-consistent way
through relativistic Hartree-Bogoliubov framework. In our
FAM-QRPA implementation, the finite difference parameter
η is not required; instead, the explicit form of the Hamiltonian
variation δh is deduced. This makes our formalism capable of
being applied to the Kπ �= 0+ case.

As applications, we have used our program to calculate the
giant monopole resonance in cadmium isotopes and electric
dipole resonance of 60Ni. In the latter case, we found a
prominent peak of the pygmy dipole resonance centered about
8.14 MeV; this is in good agreement with the experimental
result. While in the former case, the position of GMR peaks
are slightly larger than those predicted by nonrelativistic
Skyrme-QRPA models. The reason is mainly because the
incompressibility of the interaction we used, as well as other
relativistic nonlinear meson-exchange interactions, is rela-
tively larger than Skyrme ones. Moreover, there’s a deficiency
of theoretical prediction compared with experimental curves
in the high energy region, no matter whether the framework
is relativistic or nonrelativistic. The failure to reproduce
the fat tail of experimental curves in the cadmium isotopes
monopole resonance from the RPA/QRPA view may imply
the necessary extension of the current theory scheme, such
as extend the scheme of one-particle one-hole (1p1h) or
two-quasiparticle (2qp) excitation modes to multi-particle-
multi-hole (NpNh) or multi-quasiparticle (Nqp) corrections,
including the correlation between single particle motion and
collective excitations.

The FAM framework we established in the axial relativistic
meson-exchange model with density dependent coupling
makes it possible to study the multipole excitation of a wide
range of deformed nuclei through a self-consistent approach
with mild numerical costs. In future investigation we’d like
to extend our method to the triaxial deformed case, which
will enable the study of nuclei with large triaxial quadrupole
shapes, such as 62Zn, 106Ru, 134Ce, etc. This is essential for a
systematic investigation of PDR evolution. A previous work
has been fulfilled by Inakura et al. [8] with a Skyrme-FAM
in the absence of pairing, and valuable results have been
achieved. It’s interesting to check whether pairing interaction
and relativistic treatment will introduce new corrections.
Meanwhile, in order to settle the problem of “soft” GMR
energies in Sn/Cd isotopes completely, it’s meaningful to
launch a systematic investigation to find out in what range
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of the periodic table the GMR energies is overestimated or
underestimated. This will shed light upon how theoretical
models should be improved.
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APPENDIX A: THE DEFORMED HARMONIC
OSCILLATOR BASIS

The wave function of the harmonic oscillator basis can be
found in [66]; for convenience, we list the result here. The basis
in the radial direction is expressed as generalized Laguerre
polynomials

φml
nr

(r⊥) = Nml
nr

b⊥

√
2ηmlLml

nr
(η)e−η/2, (A1)

and in the z direction, Hermite polynomials

φnz
(z) = Nnz√

bz

Hnz
(ζ )e−ζ 2/2, (A2)

where bz and b⊥ are oscillator lengths and ζ and η are
dimensionless variables

ζ = z/bz, η = r2
⊥/b2

⊥. (A3)

The normalization constants of Hermite and Laguerre polyno-
mials are

Nnz
= 1√√

π2nznz!
and Nml

nr
=

√
nr !

(nr + ml)!
. (A4)

The eigenfunction of the deformed oscillator is

�α(r,s,t) = eimlϕ

√
2π

φml
nr

(r⊥)φnz
(z)χms

(s)χmt
(t). (A5)

In the axial symmetry condition, the electric dipole operator
(47) can be expressed as

Ê11 = − eeff√
2
r⊥eiϕ, Ê10 = eeffz, (A6)

with effective charges defined by

eeff =
{+ eN

A
, proton

− eZ
A

, neutron.
(A7)

The matrix elements of the electric dipole operator in basis
(A5) are

〈α′|Ê11|α〉 = −b⊥eeff√
2

δm′
l ,ml+1δm′

s ,ms
δn′

z,nz

×G(n′
r ,m

′
l ,nr ,ml, + 1), (A8)

〈α′|Ê10|α〉 = bzeeffδm′
l ,ml

δm′
s ,ms

δn′
r ,nr

×(
nzδn′

z,nz−1 + 1
2δn′

z,nz+1
)Nnz

/Nn′
z
, (A9)

where G is the shorthand for the Laguerre polynomials
integral

G(n′
r ,m

′
l ,nr ,ml,b)

= Nm′
l

n′
r
Nml

nr

∫ ∞

0
zλe−zL

m′
l

n′
r
(z)Lml

nr
(z)dz

= Nm′
l

n′
r
Nml

nr
(−)n

′
r+nr �(λ + 1)

∑
k

C
n′

r−k

λ−m′
l
C

nr−k
λ−ml

Ck
λ+k,

with λ = m′
l + ml + b

2
. (A10)

As for the matrix elements of monopole operator (46), we refer
to the Appendix of [13].

APPENDIX B: THE VARIATION OF COUPLING
CONSTANTS

In order to improve the behavior of the EOS (equation of
state) in the high energy region, the coupling parameters of
nucleon-meson interaction are set to be density dependent. In
the model we used, the explicit density dependence form of
nucleon-meson coupling constants are

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (B1)

where ρsat is the saturation baryon density in symmetric
nuclear matter, and x = ρ/ρsat is the relative density. The
function f has the form

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(B2)

for σ,ω mesons, and

gρ = gρ(ρsat)e
−aρ (x−1) (B3)

for ρ meson. The value of these coupling parameters in a
DD-ME2 model can be found in [38]. Under a small amplitude
approximation, the variation of coupling constants induced by
the transition density can be expressed as

δgi(ρ) = gi(ρsat)

ρsat

∂fi

∂x

∣∣∣∣
0

δρ,

δ
∂gi(ρ)

∂ρ
= gi(ρsat)

ρ2
sat

∂2fi

∂x2

∣∣∣∣
0

δρ, (B4)

with derivatives

∂fσ,ω

∂x
= 2a(b − c)(x + d)

[1 + c(x + d)2]2
,

∂2fσ,ω

∂x2
= 2a(b − c)

1 − 3c(x + d)2

[1 + c(x + d)2]3
,

∂fρ

∂x
= −aρe

−aρ (x−1),
∂2fρ

∂x2
= a2

ρe
−aρ (x−1). (B5)
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