
PHYSICAL REVIEW C 96, 024612 (2017)

Estimation of M1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region
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Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many
applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on
the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function
as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between
theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the
M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show
that the form of the M1 scissors mode improves the theoretical description of evaluated data and the match to
experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few
keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate
in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis
by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode active.
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I. INTRODUCTION

The neutron radiative capture reaction on medium to
heavy nuclei is a relatively simple process, compared to
nuclear fission that involves a large number of degrees of
freedom to calculate [1]. Nevertheless, our capability to
accurately calculate neutron capture cross sections is not yet
well established, despite this process being one of the most
important nuclear reactions for many applications from nuclear
technology [2] and nuclear based medicine [3] to nuclear
astrophysics [4].

In neutron radiative capture, an incoming neutron interacts
with a target nucleus to form a compound nucleus (CN), which
then decays by emitting γ rays. The compound formation
process is determined primarily by the optical potential, while
the decay process is governed by two important nuclear
properties, namely the nuclear level density (NLD) and the
γ -ray (photon) strength function (γ SF). The latter two quan-
tities are key ingredients in the statistical Hauser-Feshbach
theory [5] for the neutron capture reaction, and accurate
prediction of the radiative capture cross section relies on how
well these nuclear properties are estimated. The level densities
for stable nuclei are relatively well measured, as experimental
data of average resonance spacing D0 are available for many
cases, and the level density can be extracted with an assumption
for the spin and parity distributions.

There are many available (almost exclusively phenomeno-
logical) γ SF models—see, e.g., RIPL-3 [6]—which can
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be used in calculation of the statistical decay. Both the
phenomenological nature of the description and the variation
between models contribute to the uncertainty in the prediction
of capture cross sections [7], which is further compounded by
the choice of implementation in Hauser-Feshbach codes [8].
Among these models, one of the most widely used is the gen-
eralized Lorentzian model of Kopecky et al. [9]. A significant
issue arises in the capture reaction calculation for deformed
nuclei, where a standard Lorentzian form for the giant dipole
resonance (GDR) for the E1 transition often underpredicts
measured capture cross section. Kopecky, Uhl, and Chrien
[10] proposed an enhanced generalized Lorentzian shape to
expand the E1 GDR width to overcome this problem, although
this representation includes an adjustable parameter. Watanabe
et al. [11] demonstrated a similar deficiency in calculating
neutron capture cross sections for nuclei in the fission product
(FP) region, and they reported that the available Hauser-
Feshbach codes tend to underestimate measured capture cross
sections when renormalization of 〈�γ 〉 to an experimentally or
empirically estimated value is not performed.

Recent attention to the γ -ray strength function has focused
on the magnetic dipole excitation, M1. This mode was first
predicted by the theoretical work of Lo Iudice and Palumbo
using the two-rotor model [12]. Further extensions of this
seminal framework were carried out by Iachello using the
interacting boson model [13]. Nuclear deformation was shown
to be responsible for the coupling of this mode to the isovector
giant quadrupole resonance, leading Lipparini and Stringari to
postulate a dependence of excitation energy on quadrupole
deformation and mass number A from a consideration of
sum-rule techniques [14]. The low lying M1 scissors mode was
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first observed in ground-state transitions in electron scattering
experiments [15] and in photon scattering (also called nuclear
resonance fluorescence) experiments [16]. Studies performed
by Ziegler et al. [17] and Margraf et al. [18] laid the ground
work for a correlation between M1 strength and nuclear
deformation in the Sm and Nd isotopic chains respectively.
The first observation of the M1 scissors mode in odd-A nuclei
(163Dy) was explored by Bauske et al. [19] and additional FP
nuclei were studied by Pietralla et al. [20]. Later, experimental
data from neutron radiative capture reactions clearly indicated
that the scissors mode is present in transitions between excited
states at least up to transitions starting at neutron separation
energy [21]. The interpretation of these findings was attributed
to the M1 scissors mode which can be represented by a
counter-rotational or out-of-phase oscillation of protons and
neutrons in the nucleus. The amplitude of this collective
oscillation is expected to be small at low excitation energies.
For a comprehensive review of this subject see the article by
Heyde, von Neumann-Cosel, and Richter [22].

As a result of these investigations, the M1 scissors mode
needs to be considered in calculation of the radiative capture
cross sections. In the past it was believed that M1 has a
modest contribution to the calculated capture cross section,
since the M1 spin-flip mode at around 7–10 MeV excitation
is often under the tail of larger E1 GDR. However, more
recently, Ullmann et al. [23] showed that the calculated neutron
capture cross sections in the fast energy range are significantly
enhanced by the addition of M1 strength. In this study of
238U, Ullmann et al. estimated the M1 scissors strength from
the experimental capture cross section as well as the γ -ray
multiplicity distributions measured with the DANCE (Detector
for Advanced Neutron Capture Experiment) spectrometer at
LANSCE (Los Alamos Neutron Science Center). A similar
improvement when adding the M1 scissors mode was also
reported by Guttormsen et al. for other nearby actinides [24].
The observation seen in the FP region [11] is consistent with
the finding for the actinide cases, which suggests that the M1
scissors mode may impact capture cross sections of deformed
or transitional nuclei throughout the chart of nuclides.

In this work we investigate a correlation between the nuclear
deformation and the scissors mode strength by analyzing the
neutron capture data in the FP region, where a large variation of
nuclear deformation is found. Since the fission channel is not
involved, and charged particle emission is strongly suppressed
by the Coulomb barrier, the nuclear reaction mechanism
we have to deal with is relatively simple, and a standard
Hauser-Feshbach theory with the coupled-channels framework
[25] works well. From data gathered in the FP region, we
posit a standard Lorentzian form for the M1 scissors mode
and assume the center of the strength of the mode to be
dependent on the nuclear deformation. This form of the M1
scissors mode yields a low energy increase to the γ SF in
the range of a few keV to a few MeV. We find that this
form of the M1 scissors seems to improve the theoretical
description of both evaluated data and the match to experiment
in the FP region. With the improved predictive capability in
our statistical Hauser-Feshbach model, we expand our initial
investigation outside the FP region to find regions where the
M1 scissors mode may enhance capture cross sections and

could be explored in future studies. We also report on the
impact of the scissors mode on studies in astrophysics.

II. THEORY

A. Hauser-Feshbach theory for neutron radiative capture

Here we consider neutron and γ -ray channels only. The
Hauser-Feshbach formula with the width fluctuation correction
for the neutron radiative capture process is written in the form

σcapt(En) = π

k2
n

∑
J�

gc

TnTγ

Tn + Tγ

Wnγ , (1)

where En is the incident neutron energy, gc is the spin
statistical factor, kn is the wave number of the incoming
neutron, Tn is the neutron transmission coefficient, Tγ is
the lumped γ -ray transmission coefficient, and Wnγ is the
width fluctuation correction factor. To calculate Wnγ , we use
the model of Moldauer [26] with the Gaussian orthogonal
ensemble (GOE) parametrization [27]. The sum runs over the
possible compound state spin J and parity �.

The capture cross section is related to the γ -ray strength
function through the lumped γ -ray transmission as

Tγ =
∑
J ′XL

∫ E0

0
2πE2L+1

γ fXL(Eγ )ρ(Ex,J
′)dEx, (2)

where E0 = Sn + En is the total excitation energy of the
compound nucleus, Ex is the excitation energy of residual
nucleus, Sn is the neutron separation energy, Eγ = E0 − Ex

is the emitted γ -ray energy, fXL(Eγ ) is the γ -ray strength
function of multipolarity L and type X being E (electric) or
M (magnetic), and ρ(Ex,J ) is the level density in the
compound nucleus. The summation again runs over all allowed
spin and parity combinations. When the final states of γ decay
are in discrete states, the integration in Eq. (2) is replaced
by a corresponding discrete sum. Note that in our actual
calculation we do not use the lumped γ -ray transmission
coefficient in Eq. (2), but the continuum in a residual nucleus is
discretized in order to calculate the width fluctuation correction
properly [28].

When an average γ -ray width 〈�γ 〉 is available from the
experimental resonance parameters, the level density ρ(Ex,J )
and the lumped γ -ray transmission Tγ are connected by

Tγ = 2π
〈�γ 〉
D0

, (3)

D0 =
⎧⎨
⎩

1
ρ(Sn,1/2) (I = 0),

1
2

(
1

ρ(Sn,I+1/2) + 1
ρ(Sn,I−1/2)

)
(I �= 0),

(4)

where I is the target nucleus spin, and D0 is the average
resonance spacing for s-wave neutrons. Here we omitted the
trivial parity selection. This relation, however, is not fulfilled
due to inconsistency between the employed γ -ray strength
function and 〈�γ 〉. Under such circumstances, an empirical
renormalization is applied to the strength function.
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B. γ -ray strength function for deformed nuclei

The Hauser-Feshbach theory smooths out the detailed
energy dependence of fXL(Eγ ) by the integration of Eq. (2).
This integration also couples the NLD, thus making it difficult
to extract an exact functional form of fXL(Eγ ) from capture
cross section data alone. Despite this, a rough estimate for the
magnitude of strength function up to the neutron separation
energy can still be obtained by comparing experimental
neutron capture data.

For the largest E1 giant dipole resonance (GDR), we
adopt the generalized Lorentzian (GLO) form of Kopecky and
Uhl [29]:

fE1(Eγ ) = 8.67 × 10−8σE1�E1

×
{

Eγ �K (Eγ ,T )(
E2

E1 − E2
γ

)2 + E2
γ �K (Eγ ,T )2

+ 0.7
�K (0,T )

E3
E1

}
, (5)

where Eγ is the energy of the γ ray and EE1, σE1, and
�E1 are the GDR parameters. The units of the numerical
constant are mb−1MeV−2, σ is in mb, and the units of width
and energy are in MeV. This leads, in general, to the strength
function in units of MeV−(2L+1). The temperature dependent
width �K (E,T ) is characterized by the level density parameter
a as

�K (Eγ ,T ) = (
E2

γ + 4π2T 2) �

E2
, (6)

T =
√

Sn − Eγ

a
, (7)

where Sn is the neutron separation energy. The so-called
enhanced generalized Lorentzian (EGLO) [10], which might
be an alternative choice, is unsuitable for our purpose, since
it already includes an empirical enhancement in the deformed
region. We employ the double-humped GDR parameters of
Herman et al. [30].

The expression in Eq. (7) is a little ambiguous when the
a parameter is energy dependent due to the shell-correction
effect [31,32]. The Hauser-Feshbach model code CoH3 [33]
employs the Gilbert-Cameron level density formula [34],
which combines the constant temperature model ρT at the low
excitation energies and the Fermi gas model ρG in the higher
energy region. The shell correction mentioned above modifies
the original Gilbert-Cameron level density in our calculation,
and the model parameters have recently been updated [35].
The energy-dependent a parameter is calculated as

a(U ) = a∗
{

1 + δW

U
(1 − e−γU )

}
, (8)

U = Ex − 	, (9)

where 	 is the pairing energy, δW is the shell correction
energy, a∗ is the asymptotic level density parameter, and γ =
0.31A−1/3 is the damping factor. When the excitation energy
Ex is inside the constant temperature regime, the a parameter
is evaluated at the conjunction energy of ρT and ρG.

Motivated by the observation of the M1 scissors mode in the
actinide region [23,24], we add a small Lorentzian to represent
the scissors mode:

fM1(Eγ ) = 8.67 × 10−8σM1�M1

× EM1�M1(
E2

γ − E2
M1

)2 + E2
γ �2

M1

, (10)

where Eγ is the energy of the γ -ray and the other quantities
are parameters of the scissors mode. For the location of M1
scissors, we assume a mass dependence proportional to A−1/3.
We also assume that the oscillation amplitude is proportional
to the deformation parameter, β2, in the compound nucleus.
From our previous study on 238U [23], we have

EM1 = 80|β2|A−1/3 MeV, (11)

which is similar to the theoretical prediction of 66δA−1/3,
where δ is the Nilsson deformation [36]. While the calculated
capture cross section is sensitive to this extra M1, it stays
almost the same unless the product σM1�M1 becomes very
different. This product (or a Lorentzian area) is an adjustable
parameter in our study. In addition to the E1 and M1
aforementioned, we include the standard Lorentzian profile
for the M1 spin-flip mode and E2 with the systematic study of
GDR in RIPL-3 [6]. The nuclear deformation parameter β2 is
taken from the Finite-Range Droplet Model (FRDM) [37,38].

C. Hauser-Feshbach calculation with M1 scissors mode

In order to extract the M1 scissors mode strength in a wide
mass range, we compare the Hauser-Feshbach calculation
with the evaluated cross sections of FPs in ENDF/B-VII.1
[39] and JENDL-4 [40], instead of directly comparing with
the experimental data. The conventional evaluation procedure
does not include the M1 scissors mode. Instead, the calculated
average γ -ray width in Eq. (3) is scaled to match the calculated
capture cross section with the experimental data available
at some neutron incident energies. This procedure gives
a reasonable excitation function of neutron capture, while
the strength of E1 GDR could be far from experimental
photon absorption cross sections. Generally speaking the
evaluated cross sections well represent experimental capture
cross section data in the fast energy range whenever they
are available, while the shape of the excitation function is
often taken from the Hauser-Feshbach calculation. In other
words, the evaluated data provide reasonable interpolation
and extrapolation of experimental information by applying
theoretical models.

We choose the neutron incident energy of 200 keV at
which we compare our calculation with the evaluated values
in the data files. This energy could be higher than the resolved
resonance region, and could be lower than the region where
the direct or semidirect capture process starts contributing
to some extent. We select 106 nuclei in the FP region,
for which evaluation of capture cross section is based on
experimental data. If we employ a normal set of γ -ray strength
functions, namely without the scissors M1, the calculated
capture cross section at 200 keV often results in lower
value than the evaluated cross section. This underestimation
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FIG. 1. Ratios of the calculated capture cross sections at 200 keV
to the selected evaluated cross sections in ENDF/B-VII.1 and
JENDL-4. The triangles show the case when the Hauser-Feshbach
calculations do not include the M1 scissors mode. The circles are
with the scissors mode.

is shown in Fig. 1 labeled by “without M1,” as a ratio of
calculated cross sections to the evaluated ones. We attribute
this underestimation to the missing M1 strength coming from
the nuclear deformation effect, although this assumption is
somewhat crude. By adding an extra M1 strength given in
Eq. (10), we are able to estimate the missing strength required
to reproduce the 200-keV data.

The cross section calculation is performed with version
3.5.1 of the CoH3 statistical Hauser-Feshbach code [33], which
includes both the coupled-channels model for the neutron
entrance channel and the Hauser-Feshbach model with width
fluctuation correction for the statistical decay channels. The
Engelbrecht-Weidenmüller transformation [41] is performed
to take the direct inelastic scattering channels into account
correctly in the width fluctuation calculation [25]. We adopt
the global coupled-channels optical potential of Kunieda et al.
[42] for calculating the neutron transmission coefficients of
deformed nuclei and otherwise use the Koning-Delaroche
global optical potential [43].

Since the level density parameters for the compound
nucleus are adjusted to reproduce the compiled D0 values
[6,44], the remaining competing channels in our calculations
are compound elastic and inelastic scattering. These two
channels are largely determined by the optical potential
employed. Unfortunately, pinning down these cross sections
by experiment is difficult. However, since we empirically
know that the adopted optical potentials give reasonable total
cross sections, together with the fact the competing inelastic
scattering channels are not so many at 200 keV in general, the
inclusion of competing neutron emission channels does not
change our final result. Conversely, the addition of the M1
scissors mode does not have an influence on these channels.

There are other level density formulas found in the literature
that could be used in our study. We expect these level density
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FIG. 2. Additional M1 strength σM1�M1 required to reproduce
the evaluated capture cross section at 200 keV for selected nuclei in
the fission product region. The quadratic curve is the least-squares
fitting to the symbols, and the dashed curves are the 1σ band. The
filled points are for the gadolinium (Z = 64, Gd) isotopes.

formulas will also show similar results because we adjust the
level densities to the observed D0 values. Further limiting the
impact of the level density on our results is the observation that
this quantity increases monotonically (constant temperature
behavior) up to the neutron separation energy. This observation
is supported by the results of Ref. [45], where the back-shifted
Fermi gas and HFB level density formulas were compared.

III. RESULTS AND DISCUSSIONS

A. Estimation of M1 scissors strength

The Lorentzian strength, σM1�M1, is estimated by com-
paring the capture cross section at 200 keV, and the result is
shown in Fig. 2 as a function of the nuclear deformation β2.
Although the derived values are rather scattered, we can see
some dependence on the deformation parameter. Assuming a
quadratic form in β2, which is reported by Ziegler et al. [17],
Margraf et al. [18], and Heyde et al. [22], the least-squares
fitting yields

σM1�M1 = (42.4 ± 5.0)β2
2 mb MeV. (12)

Provided �M1 = 1.5 MeV, we recalculated the 200-keV
capture cross sections with this relation and assumption;
they are shown in Fig. 1 labeled by “with M1.” Overall the
underestimated capture cross sections are reconciled, yet an
overshooting is seen slightly above A = 180.

By summing up all the γ -ray strength functions including
M1, the average γ -ray width 〈�γ 〉 is calculated by Eqs. (2)
and (4). We compare the calculated 〈�γ 〉 in the wider mass
range with the resonance analysis values stored in RIPL-3 [6],
which is shown in Fig. 3. Whereas the calculated 〈�γ 〉 values
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FIG. 3. Comparison of the calculated average photon width 〈�γ 〉
with the compiled values in the RIPL-3 database. The filled circles are
the evaluated values in RIPL-3, the × symbols are the calculated 〈�γ 〉
without the scissors mode, and the + symbols are with the scissors
mode. The dashed curve is a fit to the compiled 〈�γ 〉 values.

without the M1 strength are systematically lower than the
resonance data in the mass A = 100–200 region, inclusion of
M1 improves this deficient situation significantly, particularly
in the mass A = 150–200 region where the nuclei tend to be
deformed strongly. In the lower mass region, although our
estimated M1 improves the agreement between the resonance
data and the calculations, too much scatter in the data makes
our argument inconclusive. A possible impact from other
photon strengths, such as the E1 pygmy dipole resonances,
makes the situation more complicated in the low mass region.

The dashed curve in Fig. 3 is represented by �3000A−2 eV,
which is a fit to the evaluated 〈�γ 〉 values. If we rescale the
calculated Tγ to reproduce this simple relation, the calculated
capture cross section will not be so unreasonable. In fact, this
technique is often adopted for estimating unknown capture
cross sections. However, the rescaling the whole γ -ray strength
functions could cause unacceptable GDR parameters for
E1. By adding M1, it is possible to avoid such artificial
re-normalization of the γ -ray strength function.

B. Comparison with experimental capture cross section data

1. Fission product region

The gadolinium (Z = 64, Gd) isotopic chain has many
highly deformed isotopes with measured capture cross sec-
tions, making it an ideal candidate use for comparison
between calculation and data in the FP region. The calculated
capture cross sections for the Gd isotopes are compared with
experimental data [46] in Fig. 4. The agreement is significantly
improved by including the the M1 strength of Eq. (12) with
assumed �M1 = 1.5 MeV. The lighter isotopes of 152Gd and
154Gd, for which deformation is smaller than heavier isotopes,
seem to need more enhancement to reproduce the experimental
data. As seen in Fig. 2 by the filled data points, the Gd isotopes
do not reveal clear β2 dependency.

By fitting the Hauser-Feshbach calculation to the experi-
mental data of Wisshak et al. [46], we obtained σM1�M1 = 4.1
and 5.5 mb MeV for 152Gd and 154Gd, respectively. They are

shown by the dotted curves in Fig. 4. These strengths are 2.2
times larger than the values given by Eq. (12).

There are no experimental data for 153Gd in the fast energy
range. A recommended value of Maxwellian average cross
section (MACS) in the KADoNiS database [47] is 4550 ±
700 mb at the temperature of 30 keV, while Eq. (12) gives
a MACS of 3322 mb. Considering the local deviation seen
in 152Gd and 154Gd, we estimate σM1�M1 = 4.3 mb MeV for
153Gd, and this yields a MACS of 3836 mb.

C. Comparison with DANCE multistep cascade experiments

The behavior of the γ -ray strength in the MeV region
can be visible when the capture γ -ray spectrum is sorted
by an individual multiplicity [23]. We compare the estimated
scissors mode strength with the DANCE experimental data
of gadolinium isotopes [45]. The multistep cascade (MSC)
simulation that includes the M1 strength was performed
with the DICEBOX code. See Ref. [45] for the details of
the calculation. The calculated two- and three-step cascade
γ -ray spectra from 156Gd and 157Gd are compared with the
DANCE experimental data in Figs. 5 and 6. The experimental
data are shown by the red and green histograms, and the
simulated MSC spectra are represented by the gray area.
Although the simulated spectra in the 2–6 MeV range do
not reproduce the experimental data, we must emphasize that
the large enhancement in the spectra in that energy region
cannot be obtained without the M1 scissors mode, and our
estimation indeed moves the simulation toward the right
direction.

For the neutron-induced reaction on 155Gd, Eq. (11)
suggests the M1 Lorentzian may be located at 3.7 MeV, which
can be seen as a peak position in the simulated spectra. The
experimental data show that it could be in the 2–3 MeV region.
We understand this shift is due to the uncertainty in the crude
energy estimate in Eq. (11), and obviously a better estimation
could improve the peak position. The uncertainty in the M1 lo-
cation also depends on β2. When we assume β2 = 0.2, a reduc-
tion in the deformation from the prediction of FRDM, the M1
Lorentzian will be shifted below 3 MeV, and the M = 2 spec-
trum will be split into two peaks as in the experimental data.

The calculated MSC spectra for the 156Gd reaction is in a
similar situation. The estimated M1 position is higher by sev-
eral hundred keV than the experimentally observed location.
Because our aim is to estimate phenomenologically the global
behavior of the M1 scissors mode without hefty computation
that prevents large-scale nuclear data applications, we do not
intend to fit the MSC spectrum to a particular experiment by
adjusting the Lorentzian parameters in this study.

1. Extrapolation to actinide region

Figure 7 is a magnified plot of the 〈�γ 〉 comparison in
the actinide region. The prediction of 〈�γ 〉 is also improved
by adding M1. Here we compare the calculated 〈�γ 〉 with
the compiled values in Ref. [44]. It is worth stressing that
we derived the M1 scissors strength in the fission product
region, and did not include any actinide data. Figure 7 is a pure
extrapolation to the heavier mass range. Although we overes-
timate the 〈�γ 〉 values by 15–25% for 237Np and 241,243Am,
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FIG. 4. Comparison of the calculated capture cross sections with experimental data of Wisshak et al. [46]. The dashed lines are calculated
without M1 scissors, while the solid lines include M1. The dotted lines for 152Gd and 154Gd are the Hauser-Feshbach calculations fitted to the
experimental data.

our calculations are generally in good agreement with the
evaluated values without any additional tweaks of model
parameters. This also suggests the calculated capture cross
sections with the M1 strength should reasonably reproduce
the measured data in the fast energy region, when the fission
channel is negligible. This is shown in Ref. [23], although
not with exactly the same parametrization we proposed in this
paper.

FIG. 5. Calculated capture γ -ray spectra of the (a) two-step
cascade and the (b) three-step cascade for the neutron-induced
reaction on 155Gd, compared to the DANCE experimental data. The
gray area is the simulated result, and the red and green histograms
are the experimental γ -ray spectra from the two different resonances;
the red is for the first J = 1− resonance, while the green is for the
fifth J = 1− resonance.

D. Comment on the reduced M1 strength

It is common in the literature to compare the total
reduced M1 strength, B(M1), between different theoretical
calculations as well as to experiment; see, e.g., [14,48–50].
For theoretical calculations based off a Lorentzian form, as in
this work, the reduced M1 strength may be calculated via the

FIG. 6. Calculated capture γ -ray spectra of the (a) two-step
cascade and the (b) three-step cascade for the neutron-induced
reaction on 156Gd, compared to DANCE experimental data. The gray
area is the simulated result, and the red and green histograms are the
experimental γ -ray spectra from the two different resonances; the red
is for the second J = (1/2)+ resonance, while the green is for the
fourth J = (1/2)+ resonance.
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relation

B(M1) = 9h̄c

32π2

σM1�M1

EM1
= 9h̄c

32π2

42.4β2
2

EM1
, (13)

where σM1 is the strength (in mb), σM1 is the width (in MeV),
and EM1 is the energy (in MeV) as above, and the last equality
comes from Eq. (12). The natural scale for B(M1) is in
Weisskopf units (μ2

N ) where μN is the nuclear magneton.
For the Gd isotopes found in the fission product region, we
predict values on the order of B(M1) ∼ 20μ2

N . In comparison,
other calculations show a range between B(M1) ∼ 1μ2

N and
B(M1) ∼ 10μ2

N [51]. The discrepancy in these values calls
to attention a crucial detail in B(M1) comparisons: that
is, the choice of the E1 γ SF is absolutely critical for the
predicted scale of B(M1) values [10]. For γ SF’s that use
the EGLO formulation, as in Ref. [51], an additional term
is included which enhances the γ SF at low energy. Therefore,
B(M1) values are consistently on the order of a few to ten
μ2

N . In contrast, our calculations assume no such low-energy
enhancement to the γ SF, leading to larger values of σM1

for roughly the same values of �M1 and EM1; see Eq. (13).
Thus, from our choice of GLO E1 strength, our B(M1)
values are consistently higher than what is typically quoted
in the literature. Most importantly for our purposes, whether
the additional strength is of E or M character, the impact
on the radiative capture remains the same.

E. Application to neutron-rich nuclei

We now explore the impact of including the M1 scissors
mode to the neutron capture rates of neutron-rich nuclei and
discuss the implications for the rapid neutron capture or r
process of nucleosynthesis.

1. M1 enhancement across the chart of nuclides

Figure 8 shows the ratio of neutron capture reaction rates
with and without the M1 scissors mode. The ratio is calculated
by taking the new reaction rate with M1 scissors mode and
dividing by the old reaction rate without the additional M1
strength. For this figure, the neutron capture reaction rates are
evaluated at T = 1.0 GK, a rough estimate of the temperature
the r process may proceed through. With the M1 scissors mode
active around ∼1 MeV, neutron capture rates of neutron-rich
nuclei may increase up to a maximum factor of roughly 5
at T = 1.0 GK. We find that this enhancement from the
M1 scissors mode has a larger impact for nuclei that are
further from stability with the largest changes centralized in
the transition regions just before or after closed shells, similar
to previous predictions [52].

At first glance, the distribution of increases to neutron
capture rates in Fig. 8 may seem a bit peculiar as it does
not follow in line with known maximums in β2 deformation
for FRDM which occur near the mid-shells. The reason for
this unintuitive spread relies on how neutron capture rates
are calculated; recall Eq. (1). Neutron capture cross sections
are proportional to TnTγ

Tn+Tγ
, and to good approximation Tn

dominates the sum in the denominator, Tn + Tγ ≈ Tn. Thus,
a relatively small change to the photon width can have a
potentially large impact on the predicted neutron capture rates.
Since this modification depends both on the strength and its
placement in energy, which in our calculations are coupled to
deformation, the distribution of impacted nuclei follows more
closely the change to the average photon width, 〈�γ 〉, rather
than following nuclei with largest deformation.

2. Application to nucleosynthesis calculations

The astrophysical impact of additional low-lying γ strength
on the neutron capture rates of neutron-rich nuclei has been
suggested by several groups [53,54]. In the case of Low Energy
MAgnetic Radiation (LEMAR), the impact on the r process
was first considered in Ref. [55]. In this study, systematic
increases to neutron capture rates in a small region beyond
the N = 82 closed shell were shown to have a localized
impact on the final isotopic abundances in the fission product
region. Here we study the impact of the additional M1 scissors
mode strength which is coupled to deformation as in Eq. (11).
For each neutron-rich nucleus in the simulation, the neutron
capture rate was calculated with and without the M1 scissors
mode and a comparison was made between the baseline set of
rates to the ones with the scissors mode.

To study the nucleosynthesis we use a fully dynamical
reaction network, Portable Routines for Integrated nucleoSyn-
thesis Modeling (PRISM), which was recently developed at
the University of Notre Dame [56]. This network includes all
relevant reaction channels from the JINA REACLIB database,
support for changing any rate or property that goes into the
network, as well as support for fission. The nuclear properties
from FRDM are used in our network calculations as in
Ref. [57]. By default the fission for these calculations uses an
approximate asymmetric splitting schema [58] and is turned
on for all astrophysical conditions. The region of nuclei which
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FIG. 8. The M1 enhancement of neutron capture reaction rates evaluated at T = 1.0 GK assuming the inclusion of the M1 scissors mode
from Eq. (11). Each nucleus is colored based on the ratio of the new reaction rate (which includes the additional M1 strength) to the value of
the old reaction rate (without M1 scissors mode). Darker shading represents a nucleus with a faster neutron capture rate when the M1 scissors
mode is considered. Stable nuclei are shown in solid black with closed shells denoted by gray solid lines.

may fission in the r process may only be reached in the case
of extremely neutron-rich outflows.

We consider three astrophysical conditions: a low entropy
hot r process with a long duration (n,γ ) � (γ,n) equilibrium
[57], a cold r process from a supernova scenario with some
reheating [59], and a neutron star merger outflow from
Ref. [60]. The impact of M1 enhancement for these three
trajectories is shown in Fig. 9. We find the impact over a
wide range of atomic mass units, with the cold and merger

FIG. 9. The change to final isotopic abundances when M1
enhancement is included in the neutron capture rates that go
into r-process simulations. The behaviors of the changes to the
abundances are relatively similar, as denoted by the lines which
represent simulations with different astrophysical trajectories. See
text for details.

trajectories showing the most change from the baseline set of
rates without the additional M1 scissors mode. We also note
that a slight boost in the production of the rare earth region just
beyond A ∼ 160 is observed, which is often underproduced
in r-process simulations relative to the larger peaks associated
with closed neutron shells [61].

The constraint for an individual nucleus’s neutron capture
rate to alter the final abundances is that it is out of (n,γ ) �
(γ,n) equilibrium and it is sufficiently populated during the
decay back to stability. In addition, the population of the
nucleus must also occur when neutron capture is still feasible,
i.e., when neutron capture has not been limited by the amount
of free neutrons or the astrophysical conditions. Further
information on late-time neutron capture and its impact in
the r process can be found in Ref. [62] and citations therein.

IV. CONCLUSION

We studied the impact the M1 scissors mode has on
neutron capture cross sections, given a dependency on nuclear
deformation. Assuming a simple Lorentzian form for the
M1 scissors mode, the strength and position as a function
of deformation were extracted by comparing the Hauser-
Feshbach calculation with the evaluated nuclear data libraries
that represent experimental data. The strength was found to be
proportional to the square of the compound nucleus’s defor-
mation and the location in energy of this mode was assumed
to be proportional to the absolute value of the compound
nucleus’s deformation, as in Ref. [23] and previously predicted
by Refs. [14,36].

We found the addition of the M1 scissors mode to the
conventional generalized Lorentzian γ -ray strength function to
provide an improvement in the prediction of neutron radiative
capture cross section, especially for strongly deformed nuclei
in the fission product region. This improvement is reinforced
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by considering the comparison of average γ -ray widths in the
fission product region before and after the addition of the M1
scissors mode. The additional M1 dipole strength can also be
applied to the nuclei in the actinide region, although the lack of
experimental data here currently limits any firm conclusions.

We added the predicted M1 scissors mode to the calculation
of neutron capture rates of nuclei throughout the chart of
nuclides and explored the impact on r process abundance
yields. A speeding up, or “M1 enhancement,” of neutron
capture reaction rates was found for nuclei that lie in the
transition regions before closed shells, but not at points
of maximum deformation as predicted by the Finite-Range
Droplet Model (FRDM). The reason for this offset is that
the neutron capture rate follows the change in average γ
width relative to the baseline Hauser-Feshbach calculation.
We find the impact on the r-process abundance yields to be
relatively small compared to the impact of other uncertain
nuclear physics inputs, e.g., from nuclear masses [62]. Still,
the impact is large enough that it should be taken into account
when quoting the theoretical uncertainty of final abundances.

Ongoing and future experimental campaigns—for instance,
those that could be performed with polarized photons from the

free electron laser High Intensity Gamma-ray Source (HIγ S) at
the Triangle Universities Nuclear Laboratory (TUNL)—will
help to uncover the nature of low-lying γ strength. These
challenging but promising avenues coupled with devoted
theoretical efforts, particularly with large-scale shell model
calculations, will continue to illuminate this phenomenon and
guide us to understanding the complex, collective motion that
occurs in nuclei.
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