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Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of 238U + 238U in the
framework of the stochastic mean-field (SMF) approach. For bombarding energies considered in this work, the
dinuclear structure is maintained during the collision. Hence, it is possible to describe nucleon exchange as a
diffusion process for mass and charge asymmetry. Quantal neutron and proton diffusion coefficients, including
memory effects, are extracted from the SMF approach and the primary fragment distributions are calculated.
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I. INTRODUCTION

Recently, much work has been done to investigate the
multinucleon transfer processes in heavy-ion collisions near
barrier energies. For this purpose, the quasifission reaction
of heavy ions provides an important tool. The colliding
ions are attached together for a long time, but separate
without going through compound nucleus formation. During
the long contact times many nucleon exchanges take place
between projectile and target nuclei. A number of models
was developed for a description of the reaction mechanism
in the multinucleon transfer process in quasifission reactions
[1–4]. Within the last few years the time-dependent Hartree-
Fock (TDHF) approach [5–7] has been utilized for studying
the dynamics of quasifission [7–17] and scission dynamics
[18–23]. Such calculations are now numerically feasible to
perform on a three-dimensional (3D) Cartesian grid without
any symmetry restrictions and with much more accurate
numerical methods [24–26].

The mean-field description of reactions using TDHF
provides the mean values of the proton and neutron drift.
It is also possible to compute the probability to form a
fragment with a given number of nucleons [27–32], but the
resulting fragment mass and charge distributions are often
underestimated in dissipative collisions [33,34]. Much effort
has been done to improve the standard mean-field approxi-
mation by incorporating the fluctuation mechanism into the
description. At low energies, the mean-field fluctuations make
the dominant contribution to the fluctuation mechanism of the
collective motion. Various extensions have been developed
to study the fluctuations of one-body observables. These
include the TDRPA approach of Balian and Vénéroni [35],
the time-dependent generator coordinate method [36], or the
stochastic mean-field (SMF) method [37]. The effects of
two-body dissipation on reactions of heavy systems using the
TDDM [38,39], approach have also been recently reported
[40,41]. Here we discuss some recent results using the SMF
method [42].

*ayik@tntech.edu

In the SMF approach dynamical description is extended
beyond the standard approximation by incorporating the mean-
field fluctuations into the description [37]. In a number of
studies, it has been demonstrated that the SMF approach is a
good remedy for this shortcoming of the mean-field approach
and improves the description of the collisions dynamics by
including fluctuation mechanism of the collective motion
[42–45]. Most applications have been carried out in collisions
where a dinuclear structure is maintained. In this case, it
is possible to define macroscopic variables with the help
of the window dynamics. The SMF approach gives rise to
a Langevin description for the evolution of macroscopic
variables [46,47] and provides a microscopic basis to calculate
transport coefficients for the macroscopic variables. In most
application, this approach has been applied to the nucleon
diffusion mechanism in the semiclassical limit and by ignoring
the memory effects. In a recent work, we were able to
deduce the quantal diffusion coefficients for nucleon exchange
in the central collisions of heavy ions [48] from the SMF
approach. The quantal transport coefficients include the effect
of shell structure, take into account the full geometry of
the collision process, and incorporate the effect of Pauli
blocking exactly. We applied the quantal diffusion approach
and carried out calculations for the variance of neutron
and proton distributions of the outgoing fragments in the
central collisions of several symmetric heavy-ion systems at
bombarding energies slightly below the fusion barriers [48].
In this work we carry out quantal nucleon diffusion calcula-
tions and determine the primary fragment mass and charge
distributions in the central collisions of 238U + 238U system
in side-side and tip-tip configurations. Since the presented
calculations do not involve any fitting parameters, the results
may provide a useful guidance for the experimental investi-
gations of heavy neutron rich isotopes originating from these
reactions.

In Sec. II, we present a brief description of the quantal
nucleon diffusion mechanism based on the SMF approach.
In Sec. III, we present a brief discussion of quantal neutron
and proton diffusion coefficients. The result of calcula-
tions is reported in Sec. IV, and conclusions are given in
Sec. V.

2469-9985/2017/96(2)/024611(9) 024611-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.024611


S. AYIK, B. YILMAZ, O. YILMAZ, A. S. UMAR, AND G. TURAN PHYSICAL REVIEW C 96, 024611 (2017)

II. NUCLEON DIFFUSION DESCRIPTION

In heavy-ion collisions when the system maintains a binary
structure, the reaction evolves mainly due to nucleon exchange
through the window between the projectile-like and target-like
partners. It is possible to analyze nucleon exchange mechanism
by employing nucleon diffusion concept based on the SMF
approach. In the SMF approach, the standard mean-field
description is extended by incorporating the mean-field fluctu-
ations in terms of generating an ensemble of events according
to quantal and thermal fluctuations in the initial state. Instead
of following a single path, in the SMF approach dynamical
evolution is determined by an ensemble of Slater determinants.
The initial conditions of the single-particle density matrices
associated with the ensemble Slater determinants are specified
in terms of the quantal and thermal fluctuations of the initial
state. For a detailed description of the SMF approach, we
refer to [37,42–44]. In extracting transport coefficients for
nucleon exchange, we take the proton and neutron numbers
of projectile-like fragments Zλ

1 , Nλ
1 as independent variables,

where λ indicates the event label. We can define the proton and
neutron numbers of the projectile-like fragments in each event
by integrating over the nucleon density on the projectile side
of the window. In the central collisions of symmetric systems,
the window is perpendicular to the collision direction taken
as the x axis and the position of the window is fixed at the
origin of the center of mass frame according to the mean-field
description of the TDHF. The proton and neutron numbers of
the projectile-like fragments in each events are defined as(

Zλ
1 (t)

Nλ
1 (t)

)
=

∫
d3rθ (x − x0)

(
ρλ

p(�r,t)
ρλ

n (�r,t)
)

. (1)

Here, x0 = 0 denotes average position of the window plane
taken as the origin of the center of mass frame and ρλ

p(�r,t) and
ρλ

n (�r,t) are the local densities of protons and neutrons. Nucleon
diffusion description, developed from the SMF approach in
Ref. [48], is suitable for collisions in which a dinuclear
structure is maintained during the entire reaction. There is a
range of low bombarding energies in which dinuclear structure
is maintained in 238U + 238U collisions for different geometric
orientations. In our work, we carry out the calculations at
Ec.m. = 900 MeV and Ec.m. = 1050 MeV for the side-side
and tip-tip configurations, respectively. Figure 1 shows the
evolution of the average density profiles in the side-side and
tip-tip configurations in these collisions. In the calculation of
this figure and in the calculations presented in the rest of the
article, we employ the TDHF code developed by Umar et al.
[24,49] using the SLy4d Skyrme functional [50].

In the collision of symmetric systems, location of the
window plane remains stationary, and on the average, there
is no net nucleon transfer between projectile and target nuclei.
According to the SMF approach, the proton and neutron
numbers of the projectile-like fragment follows a stochastic
evolution according to the Langevin equations,

d

dt

(
Zλ

1 (t)

Nλ
1 (t)

)
=

∫
d3rg(x)

(
J λ

p (�r,t)
J λ

n (�r,t)
)

=
(

vλ
p(t)

vλ
n(t)

)
. (2)

FIG. 1. Density profiles in the reaction plane in the central
collisions of 238U + 238U (a) side-side collision with energy Ec.m. =
900 MeV from top to bottom at times t = 0, 400, 800, and 950 fm/c,
and (b) tip-tip collision with energy Ec.m. = 1050 MeV from top to
bottom at times t = 0, 200, 700, and 800 fm/c, respectively, obtained
in TDHF calculations.

In this expression, in place of the δ function δ(x) we introduce
a Gaussian smoothing function g(x) for convenience,

g(x) = 1√
2πκ2

exp

(
− x2

2κ2

)
, (3)

which approaches the δ function δ(x) in the limit κ → 0.
For the smoothing parameter, we take the value κ = 1 fm.
This value is in the order of lattice spacing of the numerical
calculations performed in this work. The right-hand side
of Eq. (2) denotes the proton vλ

p(t) and neutron vλ
n(t) drift

coefficients in the event λ, which are determined by the proton
and the neutron current densities, J λ

p (�r,t) and J λ
n (�r,t), through

the window in that event. In the SMF approach, the fluctuating
proton and neutron currents densities in the collision direction
are determined to be

J λ
α (�r,t) = h̄

m

∑
ij∈α

Im(	∗
j (�r,t ; λ)∇x	i(�r,t ; λ))ρλ

ji . (4)

Here, and in the rest of the paper, we use the label α = p,n
for the proton and neutron states. In the description of the
SMF approach, the elements of density matrices ρλ

ji are taken
as uncorrelated Gaussian numbers. The mean values of the
elements of density matrices are given by ρλ

ji = δjinj and the
second moments of fluctuating parts are determined by

δρλ
jiδρ

λ
i ′j ′ = 1

2δii ′δjj ′ [ni(1 − nj ) + nj (1 − ni)], (5)

where nj are the average occupation numbers of the single-
particle states.

For small amplitude fluctuations, by taking the ensemble
averaging, we obtain the usual mean-field result given by the
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TDHF equations

d

dt

(
Z1(t)
N1(t)

)
= ∫

d3rg(x)

(
Jp(�r,t)
Jn(�r,t)

)
=

(
vp(t)
vn(t)

)
. (6)

Here, Z1 = Z
λ

1, N1 = N
λ

1, Jα(�r) = J
λ

α(�r), and vα = vλ
α indi-

cate the mean values of the proton and neutron numbers of
projectile-like fragments, proton and neutron current densities,
and proton and neutron drift coefficients, which are average
values taken over the ensemble single-particle densities. Mean
values of the current densities of protons and neutrons along
the collision direction are given by

Jα(�r,t) = h̄

m

∑
h∈α

Im(	∗
h(�r,t)∇x	h(�r,t)), (7)

where the summation h runs over the occupied states orig-
inating both from the projectile and the target nuclei. Drift
coefficients vλ

p(t) and vλ
n(t) fluctuate from event to event due

to stochastic elements of the initial density matrix ρλ
ji and also

due to the different sets of the wave functions in different
events. As a result, there are two sources for fluctuations
of the nucleon current: (i) fluctuations those arise from the
state dependence of the drift coefficients, which may be
approximately represented in terms of fluctuations of proton
and neutron partition of the dinuclear system, and (ii) the
explicit fluctuations δvλ

p(t) and δvλ
n(t) which arise from the

stochastic part of proton and neutron currents. For small
amplitude fluctuations, we can linearize the Langevin Eq. (2)
around the mean evolution to obtain

d

dt

(
δZλ

1 (t)

δNλ
1 (t)

)
=

(
∂vp

∂Z1

(
Zλ

1 − Z1
) + ∂vp

∂N1

(
Nλ

1 − N1
)

∂vn

∂Z1
(Zλ − Z1) + ∂vn

∂N1

(
Nλ

1 − N1
)
)

+
(

δvλ
p(t)

δvλ
n(t)

)
. (8)

The variances and the covariance of neutron and pro-
ton distribution of projectile fragments are defined as

σ 2
NN (t) = (Nλ

1 − N1)
2
, σ 2

ZZ(t) = (Zλ
1 − Z1)

2
, and σ 2

NZ(t) =
(Nλ

1 − N1)(Zλ
1 − Z1). Multiplying both sides of Eq. (8) by

Nλ
1 − N1 and Zλ

1 − Z1, and taking the ensemble average, it is
possible to obtain set of coupled differential equations for the
covariances [51,52]. These differential equations are given by

∂

∂t
σ 2

NN = 2
∂vn

∂N1
σ 2

NN + 2
∂vn

∂Z1
σ 2

NZ + 2DNN, (9)

∂

∂t
σ 2

ZZ = 2
∂vp

∂Z1
σ 2

ZZ + 2
∂vp

∂N1
σ 2

NZ + 2DZZ, (10)

∂

∂t
σ 2

NZ = ∂vp

∂N1
σ 2

NN + ∂vn

∂Z1
σ 2

ZZ

+ σ 2
NZ

(
∂vp

∂Z1
+ ∂vn

∂N1

)
. (11)

Here, DNN and DZZ indicate the diffusion coefficients of
proton and neutron exchanges. In order to determine the
covariances in addition to the diffusion coefficients, we need
to know derivatives of drift coefficients with respect to the
proton and neutron numbers. These derivatives are evaluated

at the mean values of the neutron and proton numbers. In
symmetric collisions, mean values of the drift coefficients are
zero, but in general, their slopes at the zero mean values do not
vanish.

It is well know that the Langevin description is equivalent to
the Fokker-Planck description of the probability distribution
function P (N,Z,t) primary fragments as a function of the
neutron and proton numbers [53]. When fluctuating drift
coefficients are linear functions of the fluctuating proton and
neutron numbers, the probability distribution of the project-
like or the target-like fragments are specified by a correlated
Gaussian function,

P (N,Z,t) = 1

2πσNNσZZ

√
1 − ρ2

exp (−C). (12)

Here, the exponent C is given by

C = 1

2(1 − ρ2)

[(
Z − Z

σZZ

)2

+
(

N − N

σNN

)2

− 2ρ

(
Z − Z

σZZ

)(
N − N

σNN

)]
, (13)

where ρ = σ 2
NZ/σZZσNN is the correlation coefficient. The

mean values N , Z are the mean neutron and proton numbers
of the target-like or project-like fragments.

III. TRANSPORT COEFFICIENTS
FOR NUCLEON EXCHANGE

A. Quantal diffusion coefficients

The quantal expressions of the proton and neutron diffusion
coefficients are determined by the correlation function of the
stochastic part of the drift coefficients according to [46,47],

Dαα(t) =
∫ t

0
dt ′δvλ

α(t)δvλ
α(t ′). (14)

From Eq. (4), the stochastic parts of the drift coefficients are
given by

δvλ
α(t) = h̄

m

∑
ij∈α

∫
d3rg(x)Im(	∗

j (�r,t)∇x	i(�r,t))δρλ
ji . (15)

In determining the stochastic part of the drift coefficients, we
impose a physical constraint on the summations of single-
particle sates. The transitions among single particle states
originating from projectile or target nuclei do not contribute to
nucleon exchange mechanism. Therefore, in this expression,
we restrict the summations as follows: when the summation
i ∈ T runs over the states originating from target nucleus, the
summation j ∈ P runs over the states originating from the
projectile, and vice versa.

Using the basic postulate of the SMF approach given by
Eq. (5), it is possible to calculate the correlation functions
of the stochastic part of the drift coefficients, and hence
we can determine the quantal expression for the diffusion
coefficients. The correlation function involves a complete
set of time-dependent particle and hole states. The standard
solutions of TDHF give the time-dependent wave functions
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of the occupied hole states. The solution of complete set of
time-dependent particle states requires a very large amount
of effort. However, it is possible to eliminate the complete
set of particle states by employing closure relation with the
help of a reasonable approximation. We recognize that the
time-dependent single-particle wave functions obtained from
the TDHF exhibit nearly a diabatic behavior [54]. In other
words, during short time intervals the nodal structure of
time-dependent wave functions do not change appreciably. The
most dramatic diabatic behavior of the time-dependent wave
functions is apparent in the fission dynamics. The Hartree-Fock
solutions force the system to follow the diabatic path, which
prevents the system to break up into fragments. As a result of
these observations, we introduce, during short time τ = t − t ′
evolutions in the order of the correlation time, a diabatic
approximation into the time-dependent wave functions by
shifting the time backward (or forward) according to

	a(�r,t ′) ≈ 	a(�r − �uτ,t), (16)

where �u denotes a suitable flow velocity of nucleons. Now, we
can employ the closure relation

∑
a

	∗
a(�r1,t)	a(�r2,t

′) ≈
∑

a

	∗
a(�r1,t)	a(�r2 − �uτ,t)

= δ(�r1 − �r2 + �uτ ), (17)

where summation a runs over the complete set of states
originating from target or projectile, and the closure relation
is valid for each set of the spin-isospin degrees of freedom.
We note that diabatic approximation is not determined with a
single flow velocity. As seen from Eq. (19) of Ref. [48], when
the closure relation is employed over the complete set of states
originating from the projectile, the flow velocity is taken as
the flow velocity of each hole state originating from target,
and similarly when the closure relation is employed for the
complete set of states originating from target, the flow velocity
is taken as the flow velocity of each hole state originating
from target. Consequently, the main contribution to nucleon
diffusion arises from the nucleon exchanges around the Fermi
surface. Carrying out an algebraic manipulation, we find that
the quantal expressions of the proton and neutron diffusion
coefficients are given by

Dαα(t) =
∫ t

0
dτG0(τ )

∫
d3rg̃(x)

× [
J T

α (�r,t − τ/2) + JP
α (�r,t − τ/2)

]
−

∫ t

0
dτRe

[ ∑
h′∈P,h∈T

Aα
h′h(t)A∗α

h′h(t − τ )

+
∑

h′∈T ,h∈P

Aα
h′h(t)A∗α

h′h(t − τ )

]
, (18)

where g̃(x) = (1/
√

πκ) exp[−(x/κ)2]. The quantity J T
α (�r,t −

τ/2) represents the sum of magnitude of the current den-
sities due to hole wave functions originating from target

nuclei,

J T
α (�r,t) = h̄

m

∑
h∈T

|Im(	∗
h(�r,t)∇x	h(�r,t))|. (19)

Here, the quantity G0(τ ) = [1/(τ0

√
4π )] exp[−(τ/2τ0)2] de-

notes the memory kernel with the memory time given by
τ0 = κ/|u0| with u0 = 〈uh〉 as the average flow speed of
hole states across the window. The quantity JP

α (�r,t − τ/2)
associated with the projectile states is given by a similar
expression. The hole-hole matrix elements Aα

h′h(t) calculated
with the wave functions originating from projectile and target
nuclei are given by

Aα
h′h(t) = h̄

2m

∫
d3rg(x)

[
	∗α

h′ (�r,t)∇x	
α
h(�r,t)

− 	α
h(�r,t)∇x	

∗α
h′ (�r,t)]. (20)

For a detailed derivation of quantal diffusion coefficients
Eq. (18) and definition of flow velocities, we refer the
reader to Ref. [48]. There is a close analogy between the
quantal expression and the classical diffusion coefficient in a
random walk problem [46,47,55]. The first line in the quantal
expression gives the sum of the nucleon currents from the
target-like fragment to the projectile-like fragment and from
the projectile-like fragment to the target-like fragment, which
is integrated over the memory. This is analogous to the random
walk problem, in which the diffusion coefficient is given by
the sum of the rate for the forward and backward steps. The
second line in the quantal diffusion expression stands for the
Pauli blocking effects in nucleon transfer mechanism, which
does not have a classical counterpart. It is important to note
that the quantal diffusion coefficients are entirely determined in
terms of the occupied single-particle wave functions obtained
from the TDHF solutions. The quantal diffusion coefficients
contain the effects of the shell structure, take into account full
collision geometry and do not involve any free parameters.
In the collisions at the energies we considered, the average
value of nucleon flow speed across the window is u0 ≈ 0.05c
[48], which gives a memory time around τ0 = κ/u0 ≈ 20
fm/c. Since the memory time is much shorter than a typical
interaction time of collisions, τ0 << 500 fm/c, the memory
effect is not very effective in nucleon exchange mechanism.
Consequently, we can neglect the τ dependence in the current
densities in Eq. (18), carry out the τ integration over the
memory kernel to give

∫ t

0 G0(τ )dτ ≈ 1/2. Because of the
same reason, memory effect is not very effective in the Pauli
blocking terms as well, however in the calculations we keep
the memory integrals in these terms.

B. Nucleon drift coefficients

In order to solve covariances from Eqs. (9)–(11), in addition
to the diffusion coefficients DZZ and DNN , we need to
know the rate of change of drift coefficients in the vicinity
of their mean values. According to the SMF approach, in
order to calculate rates of the drift coefficients, we should
calculate neighboring events in the vicinity of the mean-field
event. Here, instead of such a detailed description, we employ
the fluctuation-dissipation theorem, which provides a general
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relation between the diffusion and drift coefficients in the
transport mechanism of the relevant collective variables as
described in the phenomenological approaches [55]. Proton
and neutron diffusions in the N -Z plane are driven in a
correlated manner by the potential energy surface of the
dinuclear system. As a consequence of the symmetry energy,
the diffusion in direction perpendicular to the β-stability valley
takes place rather rapidly leading to a fast equilibration of the
charge asymmetry, and diffusion continues rather slowly along
the β-stability valley. Borrowing an idea from Refs. [54,56],
we parametrize the N1 and Z1 dependence of the potential
energy surface of the dinuclear system in terms of two
parabolic forms:

U (N1,Z1) = 1
2a(z cos θ − n sin θ )2

+ 1
2b(z sin θ + n cos θ )2. (21)

Here, z = Z0 − Z1, n = N0 − N1, and θ denotes the angle
between β-stability valley and the N axis in the N -Z plane.
The quantities N0 and Z0 denote the equilibrium values of
the neutron and proton numbers, which are approximately
determined by the average values of the neutron and proton
numbers of the projectile and target ions, N0 = (NP + NT )/2
and Z0 = (ZP + ZT )/2. The first term in this expression
describes a strong driving force perpendicular to the β-stability
valley, while the second term describes a relative weak
driving force toward symmetry along the valley. In symmetric
collisions, N0 and Z0 are equal to the initial neutron and
proton numbers of the target or projectile nuclei. Following
from the fluctuation-dissipation theorem, it is possible to
relate the proton and neutron drift coefficients to the diffusion
coefficients and the associated driving forces, in terms of the
Einstein relations as follows [54,56]:

νn = − DNN

T

∂U

∂N1
= +DNN

T

∂U

∂n

= DNN [−α sin θ (z cos θ − n sin θ )

+β cos θ (z sin θ + n cos θ )] (22)

and

νz = − DZZ

T

∂U

∂Z1
= +DZZ

T

∂U

∂z

= DZZ[+α cos θ (z cos θ − n sin θ )

+β sin θ (z sin θ + n cos θ )]. (23)

Here, the temperature T is absorbed into coefficients α and
β, consequently temperature does not appear as a parameter
in the description. In asymmetric collisions, it is possible to
determine α and β by matching the mean values of neutron and
proton drift coefficients obtained from the TDHF solutions. In
symmetric collisions, the mean value of drift coefficients are
zero and the mean values of neutron and proton numbers do
not change and remain equal to their initial values. Therefore
it is not possible to determine the coefficients α and β from
the full TDHF solutions. However, we can determine these
coefficients employing the one-sided neutron and proton fluxes
from projectile-like fragment to the target-like fragment or vice
versa. We indicate neutron and proton numbers of one of the

FIG. 2. Mean drift path of the projectile-like fragments in the
N -Z plane in the central collisions of 238U + 238U at side-side
collision with energy Ec.m. = 900 MeV (solid line), and at tip-tip
collision with energy Ec.m. = 1050 MeV (dashed line), obtained with
one-sided flux in TDHF calculations.

fragments as Ñ1 and Z̃1. Then, the neutron and proton numbers
of this fragment monotonically decreases according to

d

dt

(
Z̃1(t)

Ñ1(t)

)
=

∫
d3rg(x)

(
J̃p(�r,t)
J̃n(�r,t)

)

=
(

ṽp(t)

ṽn(t)

)
. (24)

Here, ṽα(t) with α = n,p denotes the one-sided neutron and
proton drift coefficients towards the other fragment and the
one-sided current density J̃α(�r,t) is given by Eq. (7) keeping
only negative terms in the summation over the hole states.
The one-sided drift coefficients ν̃n and ν̃p are related to the
driving force with the similar expressions given by Eqs. (22)
and (23), except that n and z are replaced by ñ = N0 − Ñ1 and
z̃ = Z0 − Z̃1 and by including an overall sign change

ν̃n = DNN [+α sin θ (z̃ cos θ − ñ sin θ )

−β cos θ (z̃ sin θ + ñ cos θ )] (25)

and

ν̃z = DZZ[−α cos θ (z̃ cos θ − ñ sin θ )

−β sin θ (z̃ sin θ + ñ cos θ )]. (26)

Figure 2 shows the one-sided mean-drift paths of projectile-
like fragments which are determined by keeping the one-sided
neutron and proton fluxes from projectile-like to the target-like
fragments in the side-side and tip-tip collisions of 238U + 238U.
Using this information, we can extract the angle θ and the
magnitude of coefficients α and β. We find that the angle
between the mean one-sided drift path and N axis is about
θ ≈ 30◦ in both collision geometries. As a result of the quantal
effects arising mainly from the shell structure, we observe
that the coefficients α and β exhibit fluctuations as a function
of time. In the side-side collision, during the relevant time
interval from 200 fm/c to 800 fm/c, the average values of
these coefficients are about α ≈ 0.035 and β ≈ 0.007. In the
tip-tip collision, during the relevant time interval from 200
fm/c to 700 fm/c, the average values of these coefficients are
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FIG. 3. Neutron and proton diffusion coefficients in the central
collisions of 238U + 238U (a) side-side collision with energy Ec.m. =
900 MeV, and (b) tip-tip collision with energy Ec.m. = 1050 MeV,
respectively.

about α ≈ 0.039 and β ≈ 0.009. These results are consistent
with the potential energy surface of the liquid drop picture.
The potential energy surface in the (N -Z) plane has a
steeply rising parabolic shape in the perpendicular direction
to the stability valley and has a shallow behavior along the
stability valley. Because of a simple analytical structure, we
can easily calculate derivatives of drift coefficients which
are needed in differential Eqs. (9)–(11) for determining the
covariances.

IV. PRIMARY FRAGMENT DISTRIBUTIONS

In determining the primary fragment distributions, the
main input quantities are the neutron and proton diffusions
coefficients given in Eq. (18). The diffusion coefficients are
entirely determined by the occupied time-dependent single-
particle states. The TDHF theory includes the one-body
dissipation mechanism. We can use the same information
provided by the TDHF to calculate the diffusion coefficients
which describe the fluctuation mechanism of the collective
motion. The reason behind this fact is the fundamental relation
that exists between dissipation and fluctuation mechanism of
the collective motion as stated in the fluctuation-dissipation
theorem [46,47]. Figure 3 shows the neutron (solid lines) and
proton (dashed lines) diffusion coefficients in the side-side
and the tip-tip central collisions of 238U + 238U at bom-
barding energies Ec.m. = 900 MeV and Ec.m. = 1050 MeV,
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FIG. 4. Neutron, proton covariances in the central collisions of
238U + 238U (a) side-side collision with energy Ec.m. = 900 MeV, and
(b) tip-tip collision with energy Ec.m. = 1050 MeV, respectively.

respectively. We determine the proton, neutron covariance by
solving the coupled differential Eqs. (9)–(11) with the initial
conditions σnn(0) = 0, σpp(0) = 0 and σnp(0) = 0. Figure 4
illustrates these covariance as a function of time in the side-side
and the tip-tip central collisions of 238U + 238U. Primary
fragment distribution in the N -Z plane is determined by a
correlated Gaussian given by Eq. (12). The elliptic curves
in Fig. 5 show equal probability lines relative to the center
point for producing fragments for three values of the exponent
C = 0.5, 1.0, 1.5 in the Gaussian function. For example the
probability for producing fragments on the ellipse with C =
0.5 relative to the symmetric fragmentation is exp(−0.5) =
0.6. Primary fragment distributions have a similar behavior
in both side-side and tip-tip collisions as seen from panels
(a) and (b). The variance of fragment mass distributions is
determined by

σ 2
AA(t) = σ 2

NN (t) + σ 2
ZZ(t) + 2σ 2

NZ(t). (27)

As seen from Fig. 4, at the end of the final states of collisions
the covariances of the fragment mass distribution have the
values σAA(t) = 12.9 and σAA(t) = 12.0 in side-side and
tip-tip collisions, respectively. Figure 6 illustrates the Gaussian
form of the mass distributions of the primary fragments
with a mean value A = 238 and variances σAA(t) = 12.9 and
σAA(t) = 12.0.

In the symmetric fragmentation of the final state, we can
determine the excitation energy of each final 238U nucleus

024611-6



MULTINUCLEON TRANSFER IN CENTRAL COLLISIONS . . . PHYSICAL REVIEW C 96, 024611 (2017)

(a)

side-side

 80

 85

 90

 95

 100

 105

Z •

0.5
1.0

1.5

(b)

tip-tip

130 140 150 160

N

 80

 85

 90

 95

 100

Z •

0.5
1.0

1.5

FIG. 5. Equal probability lines for primary fragment formation
with C = 0.5, 1.0, 1.5 in the central collisions of 238U + 238U (a) side-
side collision with energy Ec.m. = 900 MeV, and (b) tip-tip collision
with energy Ec.m. = 1050 MeV, respectively.

by calculating the final total kinetic energy (TKE) from
the TDHF solutions. We find TKE = 620 MeV and TKE =
634 MeV in the side-side and the tip-tip collisions, respec-
tively. From the energy conservation, E∗ = Ec.m. − TKE,
we find that the excitation energy of each 238U nucleus is
E∗ = 140 MeV and E∗ = 208 MeV, in the side-side and the
tip-tip collisions. As a result of multinucleon transfer in the
collisions, there are many binary fragments in the final state
as indicated in distributions in Fig. 5. In the present work, we
cannot calculate the excitation energies of each final fragment
pair, but we can estimate them by using the Viola systematics.
It is very reasonable to assume that all available initial relative
kinetic energy is dissipated into the internal excitations and
is shared between the fragments in proportion to the ratio of
masses in possible final binary channel. According to the Viola
formula, total excitation E∗

c in a binary channel is determined
by E∗

c = Ec.m. + Qc − (TKE)c. Here, Qc is the Q value of the
binary channel and (TKE)c indicates the total final kinetic
energy of fragments. (TKE)c is approximately determined
by Coulomb potential energy of the binary fragments at
an effective relative distance determined by an adjustable
parameter r0 as

(TKE)c = 1

4πε0

Z1cZ2ce
2

r0
(
A

1/3
1c + A

1/3
2c

) . (28)

With help of the TKE of the symmetric binary channel, we
adjust the parameter r0 = 1.59 fm and r0 = 1.55 fm for the
side-side and tip-tip collisions, respectively. We estimate that
primary fragments inside the elliptic region with C = 1.5
have excitation energies in the range of (120–150) MeV
and (185–225) MeV in the side-side and tip-tip collisions,
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FIG. 6. Primary fragment mass distributions in the central col-
lisions of 238U + 238U at side-side collision with energy Ec.m. =
900 MeV (solid line) and at tip-tip collision with energy Ec.m. =
1050 MeV (dashed line).

respectively. In this work, we carry out primary charge and
mass distributions of fragments, which have rather large
dispersions. These primary fragments are highly excited.
Highly excited intermediate fragments cool down by particle
evaporation and heavy fragments should immediately fission.
Therefore the secondary charge and mass distributions are
expected to have smaller dispersions. However, we do not
perform de-excitation calculations of the primary fragments
in this work. In a recent work, a different analysis of a
multinucleon transfer mechanism in 238U + 238U collisions
were carried out by Zhao et al. [4] by employing improved
quantal molecular dynamics (ImQMD) simulations. In this
work, authors report the cross sections for production of
primary fragments as well as the secondary fragment distribu-
tions. Indeed dispersions of the mass and charge distributions
are reduced by de-excitation of the primary fragments. In
the ImQMD simulation a simplified version of the Skyrme
interaction was employed, the Pauli blocking effect is treated
in the semiclassical approximation and calculation are carried
out for a range of impact parameters. On the other hand, in
the quantal calculations presented in the present work, the
full Skyrme interaction is employed and the Pauli blocking
effect is exactly taken into account. Since in the calculations
presented here are carried out only in the central geometry,
a detail comparison of the result with the result reported
with molecular dynamics simulation for the primary fragment
distribution is not possible. From Fig. 1 of Ref. [4], it appears
that the dispersion of the charge and mass distribution of
the primary fragment distribution is smaller than the quantal
calculations presented here. In collisions with finite impact
parameters, the interaction times are much shorter than the
interaction time in the central collisions. Shorter interaction
times leads to smaller dispersion in the primary fragment
distributions. We believe that smaller dispersions reported in
the molecular dynamics calculations, among the other reasons,
are the results of simulations carried out with finite impact
parameters.
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V. CONCLUSIONS

The SMF approach improves the standard mean-field
description by incorporating thermal and quantal fluctuations
in the collective motion. The approach requires to generate
an ensemble of mean field trajectories. The initial conditions
for the events in the ensemble are specified by the quantal
and thermal fluctuations in the initial state in a suitable
manner, and each event is evolved by its own self-consistent
mean-field Hamiltonian. In reactions where the colliding
system maintains a dinuclear structure, the reaction dynamics
can be described in terms of a set of relevant macroscopic
variables, which can be defined with the help of the window
dynamics. The SMF approach gives rise to a quantal Langevin
description for the evolution of the macroscopic variables. In
this work, we apply this approach and analyze multinucleon
transfer mechanism in the central collisions of 238U + 238U in
side-side geometry with energy Ec.m. = 900 MeV and in tip-tip
geometry with energy Ec.m. = 1050 MeV. Fluctuation mech-
anism of neutron and proton exchanges is described by the
quantal diffusion coefficients. Quantal diffusion coefficients
are entirely determined by the single-particle states of the
TDHF equations. These coefficients include the full geometry
of the collision process and the effect of the shell structure.

They do not involve any adjustable parameters and do not
require any additional information. Deep underlying reason
behind this is the fact that the dissipation and fluctuation
aspects of the dynamics are connected according to the
fluctuation-dissipation theorem of nonequilibrium statistical
mechanics. We estimate the excitation energies of the primary
fragments with the help of Viola formula which provides an
approximate description of the total final kinetic energy of
the binary fragments. The highly excited fragments are cooled
down by particle emission and in particular highly excited
heavy fragments are expected to decay rapidly by fission. We
plan to carry out de-excitation calculations and determine the
secondary fragment distributions in a subsequent work.
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