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Low-lying electric-dipole (E1) strength of a neutron-rich nucleus contains information on neutron-skin
thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross
sections on 40Ca, 120Sn, and 208Pb targets to probe the E1 strength of neutron-rich Ca, Ni, and Sn isotopes.
They exhibit large enhancement of the E1 strength at neutron number N > 28, 50, and 82, respectively, due to a
change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions
and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS
and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of
Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with
the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken
into account. The three Skyrme interactions give different results for the total reaction cross sections because of
different Coulomb breakup contributions. The contribution of the low-lying E1 strength is amplified when the
low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total
reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E1 strength
of unstable nuclei.
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I. INTRODUCTION

Electric-dipole (E1) excitations of nuclei provide useful
information on not only the ground-state properties but also
the dipole excitation mechanism. In neutron-rich nuclei, the
low-lying E1 strength, so-called pygmy dipole resonance,
has attracted much attention. In particular, the correlation
between the low-lying E1 mode and neutron-skin thickness
has intensively been discussed in relation to the equation of
state of asymmetric nuclear matter [1–3].

The E1 excitation mechanism in the neutron-rich unsta-
ble nuclei has not yet reached a universal understanding.
Recent systematic analyses of the E1 strength show that its
enhancement strongly depends on the shell structure and mass
region [4–6]. A relationship with the so-called “soft” dipole
mode due to the excess neutrons and a core nucleus [7–9] is
also an interesting subject as a characteristic excitation mode
in the neutron-rich unstable nuclei (see recent papers [10,11]
and references therein).

Experimental studies of the low-lying E1 strength have
been performed by using both photoabsorption reactions with
real photons and Coulomb breakup reactions with virtual
photons generated by a highly charged target nucleus. The
former cannot be applied to short-lived unstable nuclei, while
the latter can be applied in the inverse kinematics and has
often been utilized to extract the low-lying E1 strength of
halo nuclei [12,13]. Since a weakly bound halo nucleus breaks
mainly through the E1 transition, the E1 strength function
is extracted by subtracting the nuclear contribution from one-
or two-neutron removal cross sections. We cannot apply this
idea for our purpose because most of unstable nuclei are more

tightly bound than the halo nuclei. Higher multipole excita-
tions other than E1 can also be expected to play a significant
role. Furthermore, for the calculation of the nucleon-removal
cross sections, we have to assume appropriate final-state wave
functions, leading to some ambiguity (see, e.g., Refs. [14,15]).

Inclusive observables that require no final-state wave
functions are desired to probe the low-lying E1 strength.
The total reaction or interaction cross sections measured at
medium- to high-incident energies at ∼100–1000 A MeV are
possible candidates for that purpose. They have been so far
used primarily to study nuclear sizes thanks to the following
advantages: The measurement is easier and applicable to
almost all nuclei, and theoretical models to evaluate the cross
sections are well established. The cross sections for stable and
unstable nuclei have been measured using light targets, e.g.,
1H and 12C, because the Coulomb breakup contribution can
be negligible. The measurement reaches a few % accuracy
for unstable nuclei [16–19], and thus we can discuss structure
problems including, for example, deformation [20–24] and
neutron-skin thickness [25,26].

In the above measurement of the reaction and interaction
cross sections the target nucleus is chosen to be light enough to
enable one to neglect the Coulomb breakup contribution [26].
In this paper, we take an opposite direction: We instead
consider a heavy target in which the reaction includes large
Coulomb breakup contributions, and discuss the possibility of
extracting the low-lying E1 strength using the total reaction
cross section. This is challenging in that the Coulomb breakup
contribution has to be evaluated by a sound theory.

The Coulomb breakup process in the high-energy collision
is well approximated with the equivalent-photon method
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(EPM) [27–29]. It is based on a semiclassical picture in which
a relativistic charged particle passes through the Coulomb field
produced by the highly charged target nucleus. If the Coulomb
excitation is dominated by the E1 process, the Coulomb
breakup cross section is simply obtained by multiplying the
number of the virtual photons and the E1 strength functions.
The energy dependence of the number of the virtual photons is
important: At the high-incident energy ∼1000 MeV/nucleon,
the number of the virtual photons distributes from the low-
lying to the giant resonance energy region. With the decrease
of the incident energy, the virtual photons are concentrated
at the low energy region and therefore the contribution of
the low-lying strength function to the Coulomb breakup cross
sections will be more enhanced. The EPM has been employed
to extract the structure of halo nuclei from the low-lying E1
strength [12,13]. Reasonable agreement between theory and
recent experiment is obtained [13,30] and its validity is studied
by reaction calculations [31,32]. We will make use of this
sensitivity for extracting the low-lying E1 strength of unstable
nuclei.

In this paper, we take up Ca, Ni, and Sn isotopes with even
neutron numbers N = 20–40 for Ca, 28–56 for Ni, and 50–90
for Sn, because the enhancement of the low-lying E1 strength
is predicted at N > 28, 50, 82 for Ca, Ni, and Sn isotopes,
respectively [4]. At those magic numbers, 0f7/2, 0g9/2, and
0h11/2 neutron orbits are fully occupied, respectively. The
higher major shell orbits play a vital role to determine the
E1 strength. A sudden increase of the E1 strength is clearly
seen in “PDR fraction” [4], which is defined as a fraction
of total and cumulative energy-weighted sums up to ad hoc
cut-off excitation energy, 10 MeV. The enhancement in fact
strongly depends on the interaction employed or very sensitive
to the single-particle structure near the Fermi surface. We
investigate the total reaction cross sections including the
Coulomb multipole excitations in order to answer whether they
can be used as a probe of the low-lying E1 strength. This study
provides us with information on the shell structure beyond the
magic numbers N = 28, 50, 82 of neutron-rich nuclei and
can also be a strong test of the Skyrme interaction employed.
The role of the low-lying E1 strength is quantified in the
Coulomb breakup contribution as well as the contributions
from other electric multipoles. Incident energy and target de-
pendence of the total reaction cross sections are systematically
analyzed.

In the next section, we describe our reaction and structure
models as well as a way to include the Coulomb multipole
effects into the cross section. Since we consider highly charged
particles, a finite size effect of the target charge distribution,
which is usually ignored in the EPM, is also formulated in this
section. Numerical results are presented in Sec. III, mainly
focusing on Sn isotopes. In Sec. III A, we first discuss the effect
of the finite charge distribution in the EPM. In Sec. III B, we
make a systematical analysis of the total reaction cross sections
of Sn isotopes. The contributions of the Coulomb multipole
excitations are quantified in Sec. III C. We discuss in Sec. III D
the incident energy and target dependence of the total reaction
cross section and its sensitivity to the E1 strength. In Sec. III E,
we show the total reaction cross sections of Ca and Ni isotopes.
Conclusions are given in Sec. IV.

II. TOTAL REACTION CROSS SECTION

We consider the total reaction cross section (σR) on a heavy
target that induces a large amount of Coulomb excitations.
The total reaction cross section is expressed as a sum of the
nuclear breakup cross section (σN ) and the Coulomb breakup
cross section (σC):

σR = σN + σC. (1)

See, e.g., Refs. [26,33] for its validity. The nuclear and
Coulomb interference term is negligibly small. These cross
sections are calculated as explained below.

A. Nuclear breakup

The σN is calculated in the Glauber formalism [34] by

σN =
∫

db (1 − |eiχ(b)|2), (2)

where b is the impact parameter vector perpendicular to
the beam direction. The nuclear optical phase-shift function,
χ (b), contains all information of the high-energy nuclear
collision. We calculate χ (b) in the nucleon-target formalism
in the Glauber theory [35], which is known to give a better
description of high-energy nucleus-nucleus collisions than the
ordinary optical-limit approximation. It is easily calculated by
using the ground state densities of both the projectile and target
nuclei and the parameters of the profile function describing
the NN collision are taken from Ref. [36]. The present
method for computing σN has been successfully applied to
many examples of nucleus-nucleus collisions including light
unstable nuclei [21,30,37–39].

We use the ground-state density distributions of Ca, Ni,
and Sn isotopes and the target nuclei, 40Ca, 120Sn, and 208Pb
obtained in Ref. [26], where the Hartree-Fock (HF)+BCS
method is applied to three kinds of the Skyrme-type effective
interaction, SkM* [40], SLy4 [41], and SkI3 [42]. We employ
a constant monopole pairing as in Refs. [4,43], where the level
density determining its pairing strength is calculated by each
of the Skyrme interactions. Once all the inputs are set, the
calculation of σN contains no adjustable parameter.

B. Coulomb breakup

To calculate σC we have to consider some basic elements
such as equivalent photon method (EPM), photoabsorption
cross sections, and effect of finite charge distribution. These
are discussed below.

1. Multipole excitations by virtual photons

We consider the Coulomb breakup probability PC(b)
according to the EPM [27–29]. The Coulomb breakup occurs
through both electric- and magnetic-multipole excitations, but
the latter contribution is ignored in this paper because a ratio
of the photon-number spectra of E1 and M1 transitions is
roughly proportional to (v/c)4 [27], and the M1 strength is
in general much smaller than the E1 strength [44]. PC(b)
is given as a sum of electric multipoles labeled by λ, and
each multipole is obtained by the equivalent photon number
NEλ(b,ω) multiplied by the photoabsorption cross section
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σEλ(ω) integrating over the frequency ω:

PC(b) =
∑

λ

∫ ∞

0
dω NEλ(b,ω)σEλ(ω). (3)

Assuming point-charge distribution of the target nucleus, the
multipole decomposition of the photon numbers per unit area
per unit frequency is given by [27]

NEλ(b,ω) = Z2
T α

λ[(2λ + 1)!!]2

(2π )3(λ + 1)

∑
m

|GEλm(ξ )|2 ξ 2

ωb2
K2

m(ξ )

(4)

with

GEλm(x) = iλ+m

√
16π

λ(2λ + 1)!!

{
(λ + 1)(λ + m)

2λ + 1
P m

λ−1(x)

− λ(λ − m + 1)

2λ + 1
P m

λ+1(x)

}
, (5)

where α is the fine structure constant and ξ = bω/γ v with the
Lorentz factor γ = 1/

√
1 − (v/c)2. Km is the modified Bessel

function of the second kind and P m
l is the associated Legendre

polynomial.

2. Mean-field calculations for photoabsorption cross sections

The nuclear structure information of the Coulomb breakup
reaction is contained in σEλ(ω), which is related to the Eλ
strength (response) function S(Eλ; ω) as

σEλ(ω) = (2π )3(λ + 1)

λ[(2λ + 1)!!]2
ω2λ−1S(Eλ; ω). (6)

The canonical-basis-time-dependent-HF-Bogoliubov method
is employed to obtain S(Eλ; ω) [45]. A linear response by the
Eλ field is obtained using the prescription given in Ref. [46].
The initial state is generated by applying a weak impulse field
to the ground state:

FE1
K =

{
e(N/A)rY1K (r̂), (for proton)
−e(Z/A)rY1K (r̂), (for neutron) (7)

FEλ
K = e

rλYλK (r̂) + rλYλ−K (r̂)√
2(1 + δK0)

, (for proton, λ > 1) (8)

and the time evolution of the initial state enables us to obtain
the strength function.

3. Equivalent photon method with finite-charge distribution

If the target nucleus is treated as a point-charged particle
with charge ZT e, the number of equivalent photons at the
center of mass (r = 0) of the fast-moving projectile nucleus
with velocity v is obtained by using the electric field E(r,ω)
as [27,28]

N (b,ω) = c

h̄ω
|E(r,ω)|2r=0

= Z2
T α

π2

(
c

v

)2
ξ 2

ωb2

[
K2

1 (ξ ) + 1

γ 2
K2

0 (ξ )

]
. (9)

As was done in Ref. [27], the multipole decomposition of the
electric field is possible by considering r-dependence but we

discuss the electric field at the origin r = 0 in this paper for
the sake of simplicity. Note that NE1(b,ω) of Eq. (4) is equal
to N (b,ω).

The target nuclei considered in this paper are medium and
heavy nuclei, and it is appropriate to discuss possible deviation
from the point-charge approximation. In the following we
estimate the extent to which N (b,ω) of Eq. (9) changes for
the finite charge distribution. Let ZT eρT (r ′) denote the charge
density of the target nucleus,

∫
d r ′ρT (r ′) = 1. The electric

field produced by the fast moving target nucleus is

E(r,t)|r=0 = −ZT e

∫
d r ′ R(t)

γ 2u3
ρT (r ′), (10)

where, with r ′ = (s′,z′),

R(t) = b + vt + s′ − v

v
z′,

u =
√

1

γ 2
(b + s′)2 + (vt − z′)2. (11)

The center-of-mass of the target nucleus is assumed to move
along the −z direction with the velocity v = (0,0,−v) and
each nucleon of the target nucleus is also assumed to follow
a straight-line trajectory. The above field can be considered a
superposition of fields with various frequencies.

A Fourier analysis of the electric field gives

E(r,ω)|r=0 = 1

2π

∫ +∞

−∞
dteiωt E(r,t)|r=0. (12)

Performing t-integration with Eq. (10) leads to

E(r,ω)|r=0 = −ZT eξ

πbv

∫
d r ′ei ω

v
z′
ρT (r ′)

×
[

p̂K1(p) + i
v̂

γ
K0(p)

]
, (13)

where v̂ = v/v and

p = ξ

(
b̂ + 1

b
s′
)

. (14)

The number of equivalent photons modified by the finite charge
distribution is obtained as

Ñ (b,ω) = Z2
T α

π2

(
c

v

)2
ξ 2

ωb2

×
[

K̃ 1(ξ,ω) · K̃ 1(ξ,ω) + 1

γ 2
K̃2

0 (ξ,ω)

]
, (15)

where

K̃ 1(ξ,ω) =
∫

d r ′ei ω
v
z′
ρT (r ′) p̂K1(p),

(16)

K̃0(ξ,ω) =
∫

d r ′ei ω
v
z′
ρT (r ′)K0(p).

Here, ρT (r ′) is assumed to be invariant with respect to the
reflection of z′ → −z′, which guarantees that both K̃ 1(ξ,ω)
and K̃0(ξ,ω) are real. The integration in Eq. (16) is easily per-
formed by expanding ρT (r) in terms of a sum of Gaussians. See
Appendix for details. The ratio, r(b,ω) = Ñ (b,ω)/N (b,ω),
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gives the change of the photon-number spectrum as a function
of b and ω:

r(b,ω) =
K̃ 1(ξ,ω) · K̃ 1(ξ,ω) + 1

γ 2 K̃
2
0 (ξ,ω)

K2
1 (ξ ) + 1

γ 2 K
2
0 (ξ )

. (17)

At large b that exceeds the charge radius of the target,
we numerically find that the ratio has no incident-energy
dependence and goes to a constant independent of b. Note
that

∫ ∞
0 dωÑ (b,ω) = ∫ ∞

0 dωN (b,ω) holds at large b. We will
examine r(b,ω) in Sec. III A.

4. Coulomb breakup reaction probability

The Coulomb breakup probability of Eq. (3) is replaced by
including the finite-charge distribution as follows:

PC(b) =
∑

λ

∫ ∞

0
dω r(b,ω)NEλ(b,ω)σEλ(ω). (18)

Here, we assume that the finite distribution applies equally to
all the multipoles. Since the EPM is formulated in a classical
way, the probability PC(b) exceeds unity at small b. To avoid
this unphysical problem, we multiply the Coulomb breakup
probability by the survival probability |eiχ(b)|2 of the colliding
nuclei [29,47]

σC =
∫

db PC(b)|eiχ(b)|2. (19)

This ansatz is more natural than introducing a sudden cut-off
impact parameter that is usually taken as a sum of the nuclear
radii of the projectile and target nuclei.

We have discussed the Coulomb excitations of the projectile
nucleus by the target nucleus. We have to consider the other
way around, that is, the Coulomb field of the projectile excites
the target because a measurement excluding such process
can not be possible. As was done in Ref. [26], both the
Coulomb breakup cross sections of the projectile and target
nuclei are added incoherently to the nuclear breakup cross
section. σEλ(ω) of the target nucleus is calculated in exactly
the same manner as that of the projectile nucleus. It may be
likely that the incoherent sum leads to some overestimation of
σC . If mutual excitations of both projectile and target nuclei
are considered, it may not be valid to assume that such excited
nuclei generate the same photon-number spectrum as the one
employed in Eq. (4). Instead, they produce somewhat weaker
field each other, leading to the reduced Coulomb breakup cross
section.

III. RESULTS AND DISCUSSIONS

A. Comparison of the EPM with point- and finite-charge
distributions

To show the effect of the finite-charge distribution in the
EPM, we display in Fig. 1 the ratio r(b,ω) at b = 20 fm as a
function of the excitation energy of the projectile nucleus. For
small h̄ω � 5 MeV, the point- and finite-charge distributions
give almost equal photon numbers. For h̄ω � 10–15 MeV
where the giant dipole resonance appears, approximately 5%
reduction is obtained for 208Pb target. With increasing ω
further suppression occurs for a heavier target nucleus. The
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FIG. 1. Ratio of the photon numbers r(b = 20 fm,ω) of finite-
and point-charge distributions of 40Ca, 120Sn, and 208Pb targets as a
function of h̄ω. See Eq. (17).

calculated Coulomb breakup cross sections of 120Sn incident
at 100–1000 A MeV are reduced by 1–3 %, 3–4 %, 4–5 % for
40Ca, 120Sn, and 208Pb targets, respectively, compared to the
case of the point charge. Hereafter we employ the EPM with
the finite-charge distribution.

B. Systematics of total reaction cross sections

Figure 2 displays σR , σN , and σC of Sn isotopes incident on
(a1)–(a4) 40Ca, (b1)–(b4) 120Sn, and (c1)–(c4) 208Pb targets at
the incident energies of 100, 200, 550, and 1000 A MeV. At
all incident energies, the cross sections increase as the neutron
number increases. All the Skyrme interactions give almost
the same results for Ca target because the nuclear breakup
contributions dominate. For Sn and Pb targets, the Coulomb
contribution increases and the interaction dependence shows
up through σC although σN is insensitive to the interaction.
At the lower-incident energies, the cross sections calculated
with the SkM* and SLy4 interactions are almost the same,
whereas those with the SkI3 interaction behave differently
from the others. At the higher-incident energies, the SkM* and
SLy4 interactions give different cross sections. The different
behavior of σR with the incident energy suggests some change
of structure on the Sn isotope chain.

Both the nuclear and Coulomb breakup cross sections
increase gradually as the neutron number increases. All panels
of Fig. 2 show kink behavior at N = 82 where the neutron
0h11/2 orbit is fully occupied. The isotope dependence of σN

is rather moderate, reflecting the increase of its matter radius.
The σC on 40Ca target also shows smooth dependence on the
neutron number, but for 120Sn and 208Pb targets it exhibits a
rapid increase at N > 82. This behavior corresponds to the
sudden appearance of the low-lying E1 strengths [4].

The enhancement of the low-lying E1 strength can be
understood by considering the neutron level structure around
the Fermi surface. Though the HF+BCS model mixes the
single-particle orbits near the Fermi surface, we discuss it
with the dominant neutron orbits for the sake of simplicity.
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FIG. 2. Total reaction (σR), nuclear breakup (σN ), Coulomb breakup (σC) cross sections of Sn isotopes, 100–140Sn, incident on (a1)–(a4)
40Ca, (b1)–(b4) 120Sn, and (c1)–(c4) 208Pb targets at the incident energies of 100, 200, 550, and 1000 A MeV. The SkM*, SLy4, and SkI3
interactions are employed.

In the mass region of N = 70–82, the outermost neutrons
are filled in the 0h11/2 orbit. At N > 82, the 1f7/2 orbit
accommodates further neutrons up to N = 90. With the SkI3
interaction, the Fermi energy becomes very small, accounting
for larger enhancement of the low-lying E1 strength at N >
82, compared to those with the SkM* and SLy4 interactions
(see Ref. [4] or Fig. 5 in Sec. III D).

This excitation mechanism is similar to that found in
22C [11] in which the E1 strength is governed by the
single-particle excitations from the outermost sd orbits, 1s1/2

and 0d5/2, which are energetically almost degenerate. The
enhancement of the E1 strength is found as the Fermi energy
decreases due to the spatial extension of the sd orbits. In case
of 134Sn, the root-mean-square (rms) radii of the outermost
single-particle orbit, 1f7/2, are 5.96, 6.13, and 6.44 fm with
the SkM*, SLy4, and SkI3 interactions, respectively. The rms
radius with the SkI3 interaction extends very much compared
to the others, accounting for the large enhancement of the
low-lying E1 strength at N = 84. The corresponding single-
particle energies are −3.21, −2.15, and −1.53 MeV for SkM*,

024605-5



W. HORIUCHI, S. HATAKEYAMA, S. EBATA, AND Y. SUZUKI PHYSICAL REVIEW C 96, 024605 (2017)

 0

 2

 4

 6

 8

 10

 12

 14 (a1) 100A MeV
40Ca target

E1

E3
E2

E1 SkM*
SLy4
SkI3

E2 SkM*
SLy4
SkI3

E3 SkM*
SLy4
SkI3

(a2) 200A MeV (a3) 550A MeV (a4) 1000A MeV

E1

E2

E3

 0

 10

 20

 30

 40

P
er

ce
nt

ag
e 

(%
)

(b1) 100A MeV
120Sn target

(b2) 200A MeV (b3) 550A MeV (b4) 1000A MeV

 0

 10

 20

 30

 40

 50  60  70  80  90

208Pb target

(c1) 100A MeV

E1

E3
E2

 50  60  70  80  90

(c2) 200A MeV

 50  60  70  80  90

Neutron number of Sn isotopes

(c3) 550A MeV

 50  60  70  80  90

(c4) 1000A MeV
E1

E2

E3

FIG. 3. Percentages of the Coulomb breakup cross sections with electric multipoles, E1,E2, and E3, in the total reaction cross sections of
Sn isotopes, 100–140Sn, incident on (a1)–(a4) 40Ca, (b1)–(b4) 120Sn, and (c1)–(c4) 208Pb targets at the incident energies of 100, 200, 550, and
1000 A MeV. The SkM*, SLy4, and SkI3 interactions are employed.

SLy4, and SkI3 interactions, respectively. The rms radius is
well correlated with the single-particle energy. In contrast, the
rms radius of the fully occupied 0h11/2 orbit in 134Sn remains at
almost the same values: 5.57, 5.61, and 5.67 fm with the SkM*,
SLy4, and SkI3 interactions, respectively. Since those neutrons
are deeply bound at −7.8 to −8.6 MeV and the radii do not
change drastically at N � 82, the interaction dependence of
the low-lying E1 strength is small at N � 82.

A bump of σC at N = 70 appears only with the SkI3
interaction, and it is due to an increase of the E3 strength func-
tion. Pairing correlations always play a role of suppressing a
sudden structure change with increasing neutron number [26].
The pairing effect actually vanishes at N = 70 for the SkI3
interaction, giving the sudden increase of the E3 cross section.

It should be noted that σC becomes very large and
comparable to σN especially for large-Z targets at high incident
energies because of the increase of the photon numbers (4).
With 208Pb target, the σC is almost equal to σN at incident
energies higher than ∼500A MeV. This suggests that the
information of the Eλ strength function can be observed by
measuring σR at different combinations of the incident energy
and the target nucleus.

C. Coulomb multipole excitations

The Coulomb multipole excitations are expected to
play an important role in particular at the low-incident

energies [26,27]. To quantify the contribution of each mul-
tipole, we plot in Fig. 3 the percentage of Eλ Coulomb
breakup cross section compared to the total reaction cross
section. The E1 contributions are dominant for all cases
although their percentages depend on the choice of the Skyrme
interaction, target, and incident energy. At N = 82, we see kink
behavior which becomes more evident as the incident energy
is lowered. The E2 and E3 percentages show almost constant
behavior and do not so much depend on the neutron number.
The E3 contribution is even larger than the E2 contribution
when the Sn isotopes are incident on 40Ca, 120Sn, and 208Pb
targets at the incident energies of 100 and 200 A MeV. This
can be explained by the following two factors: In spherical
nuclei, the low-lying E2 strengths are suppressed [48,49].
In fact, all Sn isotopes considered in this paper have a
spherical shape [4,26]. The second is the behavior of the
photon-number spectrum which will be discussed in Sec. III D.
At the high-incident energies, the E2 and E3 contributions
are small, approximately one order of magnitude smaller than
the E1 contribution. As the incident energy decreases, the
E2 and E3 contributions compared to the E1 become larger.
In the case of 208Pb target at 100A MeV, the contribution of
the higher multipole excitations is comparable to that of E1.
Although the isotope dependence of the total reaction cross
sections is dominated by the E1 contributions, the higher
multipole contributions have to be included for a quantitative
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100, 200, 550, and 1000 A MeV. The SkI3 interaction is employed.

evaluation of the cross sections, especially at the low-incident
energy.

To test the validity of our approach, we compare theory with
measurement. Only few experimental data of the total reaction
cross section involving heavy projectile and target nuclei are
available in literature. The total reaction cross sections of
118Sn + 40Ca and 208Pb + 40Ca collisions incident at 77A MeV
are tested. The σR (σC) values calculated with the SkM*, SLy4,
and SkI3 interactions are, in units of barn, 4.20 (0.23), 4.20
(0.22), and 4.18 (0.24) for 118Sn + 40Ca, and 5.46 (0.47), 5.43
(0.45), and 5.47 (0.52) for 208Pb + 40Ca, respectively. The
interaction dependence is negligibly small. The corresponding
experimental σR values are 4.89 ± 0.53 and 5.33 ± 0.50 [50],
in fair agreement with the theoretical ones. The theoretical
cross sections may be further improved by including higher
multipole contributions (λ > 3) as the incident energy is low.

D. Coulomb breakup and Eλ strength functions

All discussions in the previous subsection can be under-
stood by making explicit the nuclear structure information
contained in the Coulomb breakup cross section. For this pur-
pose, we rewrite σC of Eq. (19) as an integral of the Eλ strength
function, S(Eλ; ω), over the excitation (photon) energy:

σC =
∑

λ

∫ ∞

0
dω F (Eλ; ω)S(Eλ; ω), (20)

where the weight function F (Eλ; ω) contains the dynamical
aspect of the Coulomb breakup reaction, especially the
equivalent photon numbers:

F (Eλ; ω) = (2π )3(λ + 1)

λ[(2λ + 1)!!]2
ω2λ−1

×
∫

db r(b,ω)NEλ(b,ω)|eiχ(b)|2. (21)

The expression of σC as an integral over ω is more natural than
that over b. This is because the Coulomb breakup occurs even
at large impact parameter due to the fact that the Coulomb
force is long-ranged and rather we are interested in the nuclear
response as a function of the excitation energy.

Figure 4 plots S(Eλ), F (Eλ), and their product
F (Eλ)S(Eλ), Eλ Coulomb breakup cross section per unit
energy, as a function of ω for the Coulomb breakup of 134Sn
(N = 84) by 208Pb target. The SkI3 interaction is employed.
For the sake of simplicity, only the excitation of 134Sn is taken
into account, whereas the contribution of the 208Pb excitation
is ignored. The S(E1) exhibits the so-called pygmy dipole
resonance below 10 MeV and the giant dipole resonance peak
at around 13 MeV. The E1 weight function F (E1) decreases
rapidly as the excitation energy increases. As the incident
energy increases, the falloff of F (E1) with the excitation
energy becomes more gentle because of the increase of the
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photon number. The E1 Coulomb breakup cross section per
unit energy, F (E1)S(E1), does not depend on the incident
energies at low excitation energies up to about 7 MeV, while
it is enhanced with the increasing incident energy in the giant
dipole resonance region. The excitation-energy dependence
of the E1 Coulomb breakup cross section at 1000A MeV is
similar to that of S(E1). The Coulomb breakup cross section
at the high-incident energy can therefore be a probe of the
nonenergy weighted E1 sum rule, which is closely related to
the radii of the proton distribution [44,51].

We turn to the E2 contribution. S(E2) shows some low-
lying peaks at about 5 MeV and two large peaks at the higher
energy region, while F (E2) has almost no vital dependence on
the incident energy up to 10 MeV but becomes larger and larger
beyond 10 MeV as the incident energy increases. Thus the E2
cross section increases with the increase of the incident energy.
Since the E2 strengths are suppressed in spherical Sn isotopes
and therefore F (E2)S(E2) is small, the E2 contribution to σC

is much smaller than E1.
In the E3 case, F (E3)S(E3) at the low excitation energy

becomes smaller and smaller with increasing incident energy,

in contrast to the E1 and E2 cases. This is understood from the
excitation-energy dependence of F (E3). This specific energy
dependence plays a role in enhancing the E3 contribution at
the low-incident energy as displayed in Fig. 3.

Since the E1 contributions dominate in σC , it is interesting
to examine the extent to which S(E1) and F (E1)S(E1)
change with the neutron number. Figure 5 displays the
results of 100,110,120,132,134Sn calculated with the three Skyrme
interactions. The low-lying E1 strength contributes signifi-
cantly to the reaction probability at the low-incident energy
because the photon numbers or F (E1; ω) concentrate at the
low-energy region. At 100A MeV the low-lying strength is
significantly enhanced compared to that in the giant dipole
resonance region, while at 1000A MeV no such enhancement
occurs and the reaction probability distribution is similar
to that of the E1 strength distribution. Since the photon
number in the low-excitation energy region becomes large
at the low-incident energy, the information on the low-lying
E1 strength can possibly be obtained by a measurement
involving the E1 Coulomb breakup process at the low-incident
energy.
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E. Total reaction cross sections of Ca and Ni isotopes

The mechanism of the cross section enhancement in the
Ca and Ni isotopes is similar to that of the Sn isotopes but
different single-particle orbits are involved. Figure 6 plots the
total reaction cross sections of Ca and Ni isotopes incident
on 208Pb target with various incident energies. Though the
Coulomb breakup cross sections are not as large as those
of Sn isotopes because of smaller-Z values of Ca and Ni
isotopes, as expected, large enhancement of the Coulomb
breakup cross sections is found at N > 28 and N > 50 for
Ca and Ni isotopes, respectively. The enhancement becomes
more prominent with lowering the incident energy. At N = 28
(N = 50), 0f7/2 (0g9/2) orbit is fully occupied and the weakly
bound neutron orbits in the higher major shell play a primarily
important role at N > 28 (N > 50). Similarly to the Sn case,
the enhancement is due to sudden changes of the Fermi
energies or rms radii of the outermost neutron orbit. For
the most prominent case, 80Ni (N = 52), the single-particle
energies and rms radii of the dominant outermost orbit, 1d5/2,
are −2.72, −1.62, −1.31 MeV, and 5.46, 5.71, and 6.05 fm for
the SkM*, SLy4, and SkI3 interactions, respectively. In fact,
the SkI3 interaction gives a drastic increase at N = 52. For
50Ca (N = 30), those of the outermost 1p3/2 orbit are −5.76,
−6.59, and −5.16 MeV, and 4.60, 4.47, and 4.79 fm for the
SkM*, SLy4, and SkI3 interactions, respectively. Since the
single-particle energy (radius) of the outermost neutron orbit
in 50Ca is not as small (large) as that of 80Ni, the E1 transition
is suppressed. Therefore, the enhancement of the Coulomb

breakup cross section at N > 28 of the Ca isotopes is not so
significant compared to that at N > 50 of the Ni isotopes.

IV. CONCLUSIONS

The low-lying E1 strength crucially depends on the shell
structure near the Fermi surface. We have investigated the
extent to which information on the E1 strength function of
neutron-rich Ca, Ni, and Sn isotopes is imprinted on the total
reaction cross sections. The nuclear breakup contributions are
calculated based on the Glauber model with density distri-
butions obtained by the Skyrme-Hartree-Fock+BCS method.
The Coulomb multipole excitations of E1, E2, and E3 are also
included with the use of the equivalent photon method (EPM),
where the point-charge is replaced by the realistic finite-charge
distribution and the strength function corresponding to the Eλ
excitation is obtained by the canonical-basis-time-dependent-
Hartree-Fock-Bogoliubov method.

No significant dependence of the E1 strength distribution
appears with the small-Z target, 40Ca, because the nuclear
breakup cross section, which mostly reflects the matter radius,
dominates in the total reaction cross section.

We have found that the low-lying E1 strength gives rela-
tively large contribution to the total reaction cross section at the
low-incident energy. At low-incident energy, the contributions
of higher multipoles also get larger. In such a case, however,
the neutron number dependence of the total reaction cross
sections is still governed by the low-lying E1 strength because
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the E2 and E3 contributions are not strongly dependent on the
number of the neutrons, showing almost constant behavior.
As the incident energy increases, the contribution from the
strength in the giant dipole resonance region becomes large.
The multipole excitations higher than E1 get small with
increasing incident energy. With use of Pb target, the nuclear
and Coulomb contributions of Sn isotopes become comparable
and the E1 contribution is dominant at the incident energy
higher than 500A MeV

With use of the larger-Z targets, Sn and Pb, the difference
of the Skyrme interaction or the shell structure near the Fermi
surface can be seen clearly in the Coulomb breakup cross
sections, which strongly depend on the excitation mechanism
of the projectile and target nuclei. A comparison of the
theory and experiment is desired to understand the shell
structure of Ca, Ni, and Sn isotopes beyond N = 28, 50 and
82, respectively. Since the Coulomb breakup cross sections
strongly depend on the low-lying E1 strength or the interaction
employed at N > 28, 50, and 82 in the Ca, Ni, and Sn isotopes,
respectively, it also gives strong constraint on the effective
interaction.

In the present paper, we have discussed only spherical
nuclei in which the E2 transitions are suppressed and change
moderately on the neutron number. If the projectile nuclei
exhibit different deformation, the E2 contribution may become
large and changes significantly as a function of the neutron
number. Further investigation for such systems is an interesting
subject for future.

Our calculation of the Coulomb breakup cross section
is performed on the basis of the EPM. Since the mutual
Coulomb excitation of the projectile and target nuclei are
treated independently in the present paper, its validity has
to be tested by a comparison with experiment. Though our
calculations agree with the few existing data, more data
on accurate total reaction cross sections of nucleus-nucleus
collisions are needed. As discussed in Ref. [52], the channel
coupling effects becomes important in the Coulomb breakup
process at the low-incident energy. It is certainly desirable to

develop a consistent theory that can describe nucleus-nucleus
inclusive Coulomb excitations.

ACKNOWLEDGMENTS

The work was in part supported by JSPS KAKENHI Grant
No. JP15K05072.

APPENDIX: EVALUATION OF EQ. (16)

The aim of this appendix is to carry out the integration in
Eq. (16) for a finite-charge distribution. For ρT (r) given as a
superposition of Gaussians

ρT (r) =
∑

i

Cie
−ai r

2
, (A1)

the integration (16) is reduced to the following form:∫
d r ei ω

v
ze−ar2

K0

(∣∣∣∣ξ
(

b̂ + 1

b
s
)∣∣∣∣

)
= 2π

√
π

a

b2

ξ 2
exp

(
− ω2

4av2
− ab2

)

×
∫ ∞

0
dp p e

−a b2

ξ2 p2

I0

(
2a

b2

ξ
p

)
K0(p), (A2)

and ∫
d r ei ω

v
ze−ar2

̂

ξ

(
b̂ + 1

b
s
)

K1

(∣∣∣∣ξ
(

b̂ + 1

b
s
)∣∣∣∣

)

= 2π

√
π

a

b2

ξ 2
exp

(
− ω2

4av2
− ab2

)

×b̂
∫ ∞

0
dp p e

−a b2

ξ2 p2

I1

(
2a

b2

ξ
p

)
K1(p), (A3)

where Im is the mth order modified Bessel function of the first
kind. The p-integration in Eqs. (A2) and (A3) can easily be
done numerically.
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