
PHYSICAL REVIEW C 96, 024604 (2017)

Calculation of the rate of nuclear excitation by electron transition in an 84mRb plasma under the
hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach
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One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-
lifetime isomeric state in 84Rb, which can be excited via a 3.5-keV transition to a higher lying state. According to
our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET)
may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough
examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a
detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a
rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10−2 g/cm3

and based on a more precise energy measurement of the nuclear transition involved in the excitation.

DOI: 10.1103/PhysRevC.96.024604

I. INTRODUCTION

Nuclear excitation by electronic transition (NEET) is the
inverse process of internal conversion between bound atomic
states which was first demonstrated in 125Te [1]. It is a resonant
process in which an electron on a weakly bound shell decays
down to an inner shell. The energy released in this process
is transferred to the nucleus of the same atomic system. It
may take place if the energies of the atomic and nuclear
transitions are close enough and if the two transitions share
the same multipolarity. It was first suggested by Morita for the
excitation of the level at 13 keV in 235U [2] and later demon-
strated in experiments where nuclear ground-state targets of
197Au, 189Os, 193Ir, and 237Np were irradiated with photon
beams [3–6]. However, it has never been evidenced in plasma,
where it is predicted to be the dominant nuclear excitation
process under specific conditions of plasma temperature and
density [7,8].

The main difficulty in observing such a process lies in the
detection of a nuclear transition in the high background due
to plasma emissions. To overcome this difficulty the plasma
target can be a long-lived nuclear excited state whose induced
deexcitation in plasma will be signaled by the detection of
γ -rays with energies higher than the plasma x-ray emission.
The Jπ = 6−, T1/2 = 20.26(3) min isomeric state of the
unstable 84Rb nucleus lies at an excitation energy of 463 keV,
about 3 keV lower than the Jπ = 5−, T1/2 = 9 ns state [9].
Thus, upon providing it an energy of only about 3 keV, 466 keV
of the nuclear excitation energy might be released in the plasma
within a few tens of nanoseconds.

In a plasma at local thermodynamic equilibrium (LTE)
with a temperature of T = 400 eV and a density of ρ =
10−2 g/cm3, the 6− → 5− excitation is predicted to take
place by NEET in calculations in which rubidium ions in
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plasma are described with the relativistic average atom model
(RAAM) [10]. However, one may question the relevance of
the RAAM model for describing a resonant process, for two
reasons: first, the use of average configurations at temperatures
where the number of real configurations, although high, may
not be high enough to average out all the atomic properties;
and, second, the RAAM average configuration is used, which
may be quite different from real configurations able to induce
a NEET transition. Another significant issue is the large
uncertainty, a few hundred eV, in the nuclear transition
energy.

As a first step towards the prediction of more precise
84Rb nuclear excitation rates in plasma, we have developed
a numerical method based on multiconfiguration Dirac-Fock
(MCDF) [11] calculations to describe highly charged Rb ions
in plasma [12] and we have performed experiments to measure
more precisely the nuclear transition energy involved in the
NEET process [13]. The most restrictive hypothesis in our
study is to consider a laser-created plasma at LTE. Indeed, this
kind of plasma is generally non-LTE and the atomic physics
involved is more complex. However, we have already shown
that some spectroscopic properties of a non-LTE plasma can
be reproduced using an LTE plasma with a similar charge state
distribution [12].

In this paper, we present new NEET excitation rates for the
84Rb 6− isomeric state in a plasma at an LTE temperature
of T = 400 eV and a density of ρ = 10−2 g/cm3. The
latter corresponds to the critical density for a λ = 1.06 μm
laser.

II. EXPRESSION OF THE NEET RATE IN AN LTE
PLASMA USING MULTICONFIGURATION

DIRAC-FOCK CALCULATIONS

A. The NEET probability

In the initial state of a NEET process the atom is in an
excited level (labeled i) at energy Ei and the nucleus is in a
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level (labeled 1) at energy E1. The final state corresponds to
the atom in a final level f at energy Ef < Ei and the nucleus
in an excited level labeled 2 at energy E2 > E1.

The width of the initial or final NEET state is expressed as a
sum over the widths of the atomic and nuclear levels involved.
Usually, nuclear level widths are negligible in comparison
to atomic level ones. For the 84Rb nucleus the widths of
the 5− and 6− levels are 5.1 × 10−8 and 3.8 × 10−19 eV,
respectively [9]. For plasma densities higher than 10−2 g/cm3,
the collisional atomic level widths with typical values of
a few meV are dominant. Therefore, only the atomic state
widths (initial �i , final �f ) are taken into account in our
calculations.

Theoretical calculations of NEET rates have been the
subject of numerous publications since the first description by
Morita [2]. In 1976, Grechukhin and Soldatov demonstrated
that the interaction Hamiltonian proposed by Morita was
wrong [14]. In 1992, Tkalya described the NEET process with
the help of quantum electrodynamics [15]. In 1999, Harston
and Chemin published an overview of the different nuclear
excitation processes in plasma [16]. In the case of 235U,
with the help of an MCDF code they calculated the NEET
rate for three atomic transitions suggested by Tkalya [15] to
contribute the most to the process. In this paper, the NEET
probability calculated by Tkalya has been slightly modified
to correct for the erroneous definition of the nuclear reduced
transition probability as explained by Harston in Ref. [17].
Harston has presented all available NEET experimental data
and discussed the corresponding theoretical evaluations. In
2004, Morel et al. proposed a description of the NEET process
in the framework of the formal theory of reactions [8], based
on a decay theory developed by Golberger and Watson [18].
The NEET probability proposed by these authors reaches an
asymptotic value P

i1→f 2
NEET (t → ∞) with a characteristic time

τ
i1→f 2
∞ given by

τ i1→f 2
∞ = h̄

2

(
1

�i

+ 1

�f

)
, (1)

P
i1→f 2
NEET (t → ∞) =

(
1 + �f

�i

) |Ri1,f 2|2

(δi1,f 2)2 +
(

�i + �f

2

)2 ,

(2)

where |Ri1,f 2|2 is defined as a sum over the final atomic
and nuclear magnetic substates of the squared atom-nucleus
coupling matrix element averaged over the initial magnetic
and nuclear ones (see the Appendix). The energy mismatch
δi1,f 2 is defined as

δi1,f 2 = 	Eif − 	E12, (3)

where 	Eif = Ei − Ef and 	E12 = E2 − E1 are
the atomic and nuclear transition energy differences,
respectively.

This asymptotic NEET probability is identical to the one
published by Harston [17]. In the following, we consider
an 84mRb plasma produced with a nanosecond-duration laser
pulse. Under this condition, the NEET probability reaches its
asymptotic value after about 1 ps (see Sec. III C 2). We have
therefore used only this asymptotic value in the calculations
and removed the time dependence in the equations to lighten
the notations: P

i1→f 2
NEET (t → ∞) = P

i1→f 2
NEET .

Recently, Dzyublik used the collision theory in combination
with quantum electrodynamics to express the NEET cross
section [19,20]. In particular, he described the behavior of
the NEET cross section around the photoabsorption threshold
in order to explain the NEET fine structure observed by
Kishimoto et al. [21]. This behavior is modelized by a NEET
edge function F (E) which depends on the photon energy E.
The NEET probability is the product of the asymptotic
NEET probability [Eq. (2)] and this edge function. Far from
resonance, F (E) → 1 and the NEET probability is the same
as Eq. (2). In our calculations, the impact of this accurate
description of the NEET around the absorption threshold
is expected to be weak in comparison to the other sources
of uncertainties and therefore we consider F (E) = 1 in the
following. Moreover, as the description of the atomic state
formation in plasma is more complex than in the case of a solid
target (only photoionization was considered by Dzyublik), we
do not take into account this stage of the NEET process in our
calculations.

The expression of the atom-nucleus coupling term |Ri1,f 2|2
depends on the basis used to express the atomic and nuclear
states. To select the atomic transitions which can match
the nuclear one, we used the MCDF code developed by
Bruneau [11]. The MCDF method is described in detail in
several papers (see, for example, [22–26]). In each MCDF
calculation, the Dirac-Fock equation is solved to determine
the atomic eigenstates using the average level method. An
eigenstate |JiMi
i〉 is characterized by its energy, parity 
i ,
total angular momentum Ji and the projection Mi of the total
angular momentum. It is expressed as a linear combination of
configuration state functions (CSFs) |νtJtMt
t 〉,

|JiMi
i〉 =
∑

t

cit |νtJtMt
t 〉, (4)

where cit are real coefficients and νt represents all the other
quantum numbers required to describe a CSF unambiguously.
A CSF is a linear combination of Slater’s determinants, which
are built with the atomic orbitals |nκjm〉 of the electronic
configurations used as inputs in MCDF calculations. An orbital
is described by the principal quantum number n, the total
angular momentum j and its projection m, and the relativistic
quantum number κ related to the total angular momentum j
by j = |κ| − 1

2 .
In the |JM
〉 basis and for one πL (π = E or M)

transition, the term |Ri1,f 2|2 is given by (see the Appendix
for more details)

|Ri1,f 2|2 = 4πe2

2Ji + 1

(k12)2L+2

[L(2L + 1)!!]2
BI1→I2 (πL)

∣∣∣∣∣
∑
t t ′

∑
kk′

√
2jk′ + 1cit ′cf tat ′tk′k

〈
jk′L

1

2
0

∣∣∣∣ jk

1

2

〉
Me

k′k(πL)

∣∣∣∣∣
2

, (5)
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where e is the electric charge, L is the multipolarity of the
considered atomic and nuclear transitions, k12 is the wave
vector of the nuclear transition, BI1→I2 (πL) is the reduced
transition probability of the nuclear transition, 〈jk′L 1

2 0 | jk
1
2 〉

is a Clebsch-Gordan coefficient, and at ′tk′k is a coefficient
which links the reduced matrix element of a tensor operator O
in the CSF basis and the reduced matrix element in the orbital
basis (see [24] for more details):

〈νt ′Jt ′
t ′ ‖O ‖ νtJt
t 〉 =
∑
kk′

at ′tk′k〈nk′κk′jk′ ‖O ‖ nkκkjk〉.

(6)

In Eq. (5), Me
k′k(πL) is the electronic matrix element

between the orbitals k and k′. For an electric transition EL,
Me

k′k(EL) is given by

Me
k′k(EL) =

∫ +∞

r=0

(
L

[
Pk(r)Pk′(r) + Qk(r)Qk′(r)

]
×hL(k12r) + [

(κk − κk′ − L)Pk(r)Qk′(r)

+ (κk − κk′ + L)Pk′(r)Qk(r)
]
hL−1(k12r)

)
dr,

(7)

where Pk(r) and Qk(r) are the large and small components
of the wave function of subshell k, respectively, and hL is the
Hankel’s function of the first kind and of L order. In the case
of a magnetic transition ML, Me

k′k(ML) is written as

Me
k′k(ML) = (κk + κk′)

∫ +∞

r=0

([
Pk(r)Qk′(r)

+Pk′ (r)Qk(r)
]
hL(k12r)

)
dr. (8)

Fully taking into account the configuration interaction (CI)
in an MCDF calculation would require making a calculation
with all significant atomic configurations. This is obviously
out of reach for even the fastest computers currently available.
Two more realistic approaches can be envisaged. CI within
nonrelativistic configurations groups in a single MCDF cal-
culation all atomic configurations having the same number
of electrons in the same (n,l) subshells. As the gain in
accuracy with this technique is small for our purpose [12], we
have adopted a simpler approach considering only the initial
and final (n,l,j ) configurations. In this case, for an atomic
transition α → β between the initial (nα,lα,jα) relativistic
subshell and the final (nβ,lβ,jβ) one, Eq. (5) is simplified
as the sum over the subshells k and k′ reduces to one term
because only the at ′tβα coefficient is nonvanishing. Thus, the
coupling term |Ri1,f 2|2 becomes

|Ri1,f 2|2 = 4πe2

(∑
t t ′

cit ′cf tat ′tβα

)2
2jβ + 1

2Ji + 1

× (k12)2L+2

[L(2L + 1)!!]2

〈
jβL

1

2
0

∣∣∣∣ jα

1

2

〉2

× ∣∣Me
βα(πL)

∣∣2
BI1→I2 (πL). (9)

By applying the inversion rules of the Clebsch-Gordan
coefficients, Eq. (9) can be written as

|Ri1,f 2|2 = 4πe2

(∑
t t ′

cit ′cf tat ′tβα

)2
2jα + 1

2Ji + 1

× (k12)2L+2

[L(2L + 1)!!]2

〈
jαL

1

2
0

∣∣∣∣ jβ

1

2

〉2

× ∣∣Me
βα(πL)

∣∣2
BI1→I2 (πL). (10)

If we adopt the same convention as Harston and
Chemin [16] for the electronic matrix element, which is equal
to Me

βα(πL) divided by L, expression (10) is identical to
equation (9) in their paper. This indicates that we have used
the same treatment of the CI.

B. NEET rate in plasma

In a nonplasma target, the atomic state f is always the
ground state and the NEET probability rate is expressed as
the product of the atomic hole formation λf →i and the NEET
probability P

i1→f 2
NEET [19,20,27,28].

In a plasma, the excited atomic states are also populated
by several processes (photoexcitation, electron collisions, the
Auger effect, etc.). The probability that an atomic state i of
a charge state Q is populated, P

Q
i , depends on the plasma

thermodynamic conditions. If we consider an LTE plasma at a
temperature T (expressed in energy units), the probability P

Q
i

is evaluated by a partition function,

P
Q
i = gi exp(−Ei/T )∑

j gj exp(−Ej/T )
, (11)

where gi and Ei are, respectively, the statistical weight and the
energy of state i. The NEET excitation rate from an excited
atomic state i to a less excited state f can be expressed in an
LTE plasma by analogy with the nonplasma case by taking
into account the occupation probability of state f ,

λ
i1→f 2
NEET = PQP

Q
f λf →iP

i1→f 2
NEET , (12)

where PQ is the fraction of the charge state Q. Under the LTE
hypothesis, excitation λf →i and deexcitation λi→f rates are
related by [29]

λf →i

λi→f

= gi

gf

e(Ef −Ei )/T = P
Q
i

P
Q
f

(13)

⇒ λi→f P
Q
i = λf →iP

Q
f . (14)

By introducing (14) into (12), the NEET excitation rate can be
expressed with the deexcitation rate of the excited state i and
its occupation probability:

λ
i1→f 2
NEET = PQP

Q
i λi→f P

i1→f 2
NEET . (15)

As a great number of atomic lines may contribute to the NEET
process in a plasma, the total NEET rate λNEET is obtained as
a sum over all corresponding atomic lines i → f :

λNEET =
∑
Q

∑
i→f

PQ P
Q
i λi→f P

i1→f 2
NEET . (16)
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FIG. 1. Partial level scheme of 84Rb [9].

This expression has been used for the previous NEET rate
estimations in plasmas [8,16,30]. As reported in Ref. [8], the
atomic deexcitation rate can be related to the state width �i by
λi→f = �i

h̄
.

III. EVALUATION OF THE 84mRb EXCITATION RATE
IN A PLASMA UNDER THE LTE HYPOTHESIS

The NEET excitation rate in plasma is expressed as a sum
over all contributing πL atomic lines in the plasma (see the
Appendix). MCDF calculations for all atomic configurations
and transitions leading to these lines are required to evaluate
the atomic wave functions. In these calculations, the ions
are isolated and the plasma temperature and density are not
taken into account. The description of the plasma, considered
at LTE, is thus introduced a posteriori. In practice, these
calculations are performed only for selected charge states,
atomic transitions and configurations most contributing to
the rate. In this work, these are selected using the RAAM,
which allows fast excitation rate calculations [31]. In this
model, all the atoms of the plasma are replaced by one average
atom. Its properties, such as orbital occupations, charge state,
and wave functions, are averages over all the ions present in
the plasma. The average transition energies are calculated as
described in [32]. The RAAM is implemented in the ISOMEX
code [7,32–34]. This has been used for the first calculations of
the 84mRb excitation rates in plasma [10].

NEET rate computations with the MCDF are performed
at the temperature T = 400 eV, which corresponds to the
maximum of the NEET rate in the ISOMEX calculations,
and at a plasma density of 10−2 g/cm3. In the following,
the different contributions to the NEET rate [Eq. (16)] are
evaluated and discussed.

A. Characterization of the 5− → 6− transition

1. Measurement of its transition energy

A partial level scheme of the 84Rb nucleus is shown in
Fig. 1. The energy of the 5− → 6− transition has never been
measured. It has been deduced from other transition energies
or level energy differences. The values reported in the literature

TABLE I. Published energies for the 5− → 6− transition in
84Rb [9].

5− → 6− Reference
transition energy
(keV)

4 Han et al. [35]
3.31 (31) Schwengner et al. [36]
3.4 Doring et al. [37]

are listed in Table I. Depending on the estimation method, the
transition energy lies between 3.31 and 4 keV, with associated
uncertainties of a few hundred eV. The last evaluation of these
data occurred in 2009 and recommended a value of 3.4 keV [9].
The energy of this nuclear transition is a key parameter of
the NEET excitation rate. Therefore, prior to our NEET rate
evaluation, we have undertaken the indirect measurement of
this transition energy with a higher accuracy.

The energy of the 5− → 6− transition was measured as the
difference between the energy of the 5− → 3− and that of the
6− → 3− transitions.

First, the energy of the 215.61-keV γ line was more
precisely measured in the off-line deexcitation of the 6−
isomeric state populated in 85Rb(γ , n) reactions. These were
induced by Bremsstrahlung photons produced at the ELSA
electron beam facility of the CEA/DAM/DIF research center.
After irradiation the natural rubidium sample was set in
front of a properly shielded low-background Ge detector and
counted [38]. Special attention was paid to the stability of
the Ge power supply and amplifier gain.152Eu and 133Ba γ -ray
sources were measured simultaneously with the Rb activated
samples. Besides the europium and barium standard lines,
rubidium lines emitted in the deexcitation of the 84mRb 6−
isomeric state are visible in the spectrum displayed in Fig. 2.
Analysis of the Ge spectra was done using the Radware
software package [39]. We have used the precisely known
energies of the europium and barium lines to calibrate the
Ge spectra accumulated over different runs [40,41]. The
average values of the energies of the Rb lines of interest
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FIG. 2. Typical spectrum recorded during the ELSA experiment.
Europium and barium sources were counted together with the
rubidium sample.
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FIG. 3. Typical spectrum recorded during the Orsay experiment.
The line at 248 keV is the 3− → 2− transition to the ground state of
84Rb. Inset: Zoom-in centered on the 5− → 3− γ line of interest.

measured over 10 of these runs are 215.601(1), 248.013(2),
and 463.618(3) keV, respectively. The given uncertainties
account for the published uncertainties in the calibration
lines and the statistical uncertainties as well as the ones
related to the fitting procedure used in the line centroid
evaluation.

Second, the energy of the 218.3-keV γ line was re-
measured online in an experiment performed at the Orsay
Tandem accelerator using the ORGAM multidetector array
composed of 12 Compton suppressed high-volume (70 %) Ge
detectors. The high-spin states of 84Rb were populated via
76Ge(11B, 3n) reactions at a beam energy of 40 MeV. In order
to avoid Doppler broadening of the γ lines of interest, 99%
enriched 76Ge targets deposited on thick gold backing were
used. In order to isolate the 218.3-keV line of interest, γ -γ
coincidences were recorded. A total projection of the recorded
γ -γ coincidence events is shown in Fig. 3. The inset shows
a zoom-in on the energy region of interest for our purpose.
The Ge online spectra were precisely calibrated using the
well isolated Rb lines at 248.013(2) and 463.618 (3) keV
measured previously and the 278.010(50)-keV gold line. The
centroid of the line tabulated as 218.3(2) keV was measured
at 219.099(5) keV, allowing us to deduce the new value of
3.498(6) keV for the 5− → 6− transition energy. This new
value is about 500 eV higher than the one used for previous
NEET calculations [10]. As NEET is a resonant process, this
new transition energy will have an important impact on its rate
and therefore all previous NEET rate estimations should be
reevaluated.

2. Determination of its electromagnetic nature and reduced
transition probability

An M1 electromagnetic nature is assumed for the 5− → 6−
nuclear transition in the last evaluation [9]. The associated M1
reduced transition probability is not precisely known and no
error bars are given on the published value of 0.08 W.u. [9].
Shell model calculations using the effective interaction of
Honma et al. for the f5/2-g9/2 space predict a value of 0.116
W.u. [42,43], which is not too far from the published one.
We have used the published value and considered a maximal
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FIG. 4. NEET rate for the 6− → 5− transition calculated with
ISOMEX as a function of the plasma temperature for the M1 and E2
components. The plasma density is 10−2 g/cm3.

uncertainty of a factor of 2, which is probably overestimated.
This induces an uncertainty of the same magnitude in the
NEET rate because the reduced transition probability is a
multiplicative factor in Eq. (5).

According to nuclear shell model calculations, the
5− → 6− nuclear transition also has an E2 component with
a weak, reduced transition probability [B6−→5−(E2) = 0.762
W.u.] [43]. The corresponding E2 NEET rate is negligible
in comparison to the M1 one as illustrated in Fig. 4,
which represents the NEET rate calculated with ISOMEX
as a function of the plasma temperature for the M1 and
E2 components and for a density of ρ = 10−2 g/cm3.
In this work, the contributions of E2 transitions to the
NEET rate based on MCDF calculations have therefore been
neglected.

B. Evaluation of the plasma charge state distribution

For each plasma temperature and density there is a
corresponding average charge state. In order to select the
charge states contributing most to the NEET rate, we have
calculated the ISOMEX excitation rates for average charge
states lying between Q = 24+ and Q = 37+ at a plasma
density of 10−2 g/cm3. Besides NEET, nuclear excitation
by electron capture, photoexcitation, and inelastic electron
scattering have been considered [10,16]. Figure 5 shows that
NEET is the dominant excitation process for average charge
states ranging from Q = 29+ to Q = 34+. Therefore only
these charge states are considered in the MCDF calculations.

The charge state distribution required to evaluate a NEET
rate [term PQ in Eq. (16)] in an LTE 84Rb plasma at a
given temperature and density is obtained thanks to the
FLYCHK code [44]. It is plotted in Fig. 6 for T = 400 eV and
ρ = 10−2 g/cm3. With these plasma characteristics, the ionic
fraction PQ of the Rb ions ranges from 29+ to 34+, which
corresponds to the charge states where the NEET process is
dominant (see Fig. 5).
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FIG. 5. ISOMEX total excitation rate (including photoexcitation,
nuclear excitation by electron capture, and inelastic electron scatter-
ing) and NEET rate as functions of the average charge state in an
84mRb plasma at a density of 10−2 g/cm3.

C. Description of the atomic transitions involved
in the NEET process

1. Determination of the atomic shells to consider
in the calculations

To determine the number of shells required to describe
the atomic configurations in plasma, ISOMEX computations
were performed with different values of the maximal principal
quantum number nmax, allowing atomic transitions between
shells n ∈ [[4,nmax]] to n = 2. Figure 7 presents the results
of these calculations. It shows that the lower the plasma
temperature, the higher the principal quantum number which
must be considered to take into account all the transitions
contributing to the NEET rate. For example, at T = 270 eV
and ρ = 10−2 g/cm3, shells up to n = 12 must be considered,
whereas at T = 400 eV, shells up to n = 6 are sufficient. In
this work, the electronic configurations have been described
with shells up to n = 8.

The procedure based on RAAM calculations used to select
the most probable atomic configurations at given plasma
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FIG. 6. Charge state distribution of an 84Rb plasma at T = 400 eV
and ρ = 10−2 g/cm3 calculated with the FLYCHK code under the
LTE hypothesis [44].

0.25 0.30 0.35 0.40 0.45
Temperature (keV)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

λ N
E

E
T
 (

s-1
) n

max
= 6

n
max

= 8
n

max
= 10

n
max

= 12
n

max
= 15

FIG. 7. NEET rate as a function of the plasma temperature for
different values of the maximal principal quantum number used in
the configuration description. The plasma density is 10−2 g/cm3.

temperature and density is described in detail in Ref. [12].
In that paper, it was used to calculate the x-ray spectra emitted
by a Rb plasma. These spectra were compared to experimental
ones. An excellent agreement was achieved, which validated
the computation method.

2. Calculations of the atomic state widths in plasma

Calculation of the atomic state widths in plasma is a
complex subject and dedicated codes have been developed
for this purpose [45]. For our study, a fast evaluation of the
state widths in an LTE plasma is required since many atomic
states are considered in the NEET calculations. In the laser-
produced plasma considered (T = 400 eV, ρ = 10−2 g/cm3),
the dominant line-broadening process is due to electron
collisions. The collisional width of an electronic configuration
can be expressed following the work of Baranger [46]. The
sum �α + �β of the initial and final configuration widths of
the α → β transition is given by

�α + �β = α2
FSh̄c

4
√

2

3
√

3
π3/2ne

√
mec2

T

× (〈ψα | r2 | ψα〉 + 〈ψβ | r2 | ψβ〉), (17)

where αFS is the fine-structure constant, ne is the plasma
electronic density (in cm−3), me is the electron mass, T is the
plasma electronic temperature, r is the position operator, and
|ψα〉 is the wave function of subshell α: |ψα〉 = |nα κα jα mα〉.

Evaluation of the atomic state widths is complex and we
have considered several hypotheses. In our NEET calculations,
we have supposed that the total atomic level width is
equal to the total transition width: �i + �f = �α + �β . This
assumption is based on the fact that the energy of a level is only
slightly different from the energy of the configuration used to
build this level.

The calculations of the atomic widths with Eq. (17) for all
lines determined by the MCDF lead to an average value of the
characteristic time τ∞ = 0.7 ps [see Eq. (1)]. The asymptotic
value of the NEET probability is thus reached in a plasma
produced with a nanosecond-pulse laser. The approximation
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FIG. 8. M1 NEET rate as a function of the uncertainty 	.
Calculations with the MCDF and ISOMEX codes for a Rb plasma
at T = 400 eV and ρ = 10−2 g/cm3. Transitions between shells
n ∈ [[4,8]] to n = 2 for charge states ranging from Q = 29+ to
Q = 34+ are considered.

consisting in taking into account only the asymptotic value of
the NEET probability is therefore valid.

We assume an uncertainty of one order of magnitude in
the atomic widths. According to Eq. (2) and if δi1,f 2 → 0,
the impact of the atomic state width uncertainty is clearly
visible. Indeed, if these widths are increased (decreased) by
one order of magnitude, the peak value of the NEET rate is
decreased (increased) by the same factor. However, far from
resonance conditions, the influence of the widths on the NEET
rate is reversed as the mismatch term in Eq. (2) becomes the
dominant term in the denominator.

D. 84mRb NEET rate in a plasma at T = 400 eV
and ρ = 10−2g/cm 3

NEET is a resonant process which is very sensitive to the
mismatch between the atomic and the nuclear transition ener-
gies. Therefore, one must take into account the uncertainties
in these energies to obtain a realistic value of the NEET rate.
To study the evolution of the NEET rate as a function of the
mismatch uncertainty, the parameter 	 is introduced as in
Refs. [16] and [32]:

λNEET(	) =
∑
Q

∑
i→f

PQ P
Q
i

�i + �f

h̄

× |Ri1,f 2|2
(δi1,f 2 + 	)2 + (�i+�f

2

)2 . (18)

The statistical uncertainty in the newly measured nuclear
transition energy was evaluated as 6 eV at 1σ . The uncertainty
in the atomic line energies were estimated as 5 eV in
a comparison between theoretical and experimental x-ray
spectra [12]. In the following, we consider a maximum
variation of 	 = ±23 eV which corresponds to an uncertainty
at 3σ on the nuclear transition energy in addition to the atomic
line energy uncertainty (5 eV).
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FIG. 9. M1 NEET rate as a function of the energy uncertainty
	 for an 84mRb plasma at T = 400 eV and ρ = 10−2 g/cm3. The
NEET rate of charge states (a) Q = 30+, (b) Q = 31+, and (c)
Q = 32+ and the total NEET rate (for Q = 29+ to Q = 34+) are
plotted.

Figure 8 presents the evolution of the M1 NEET rates,
calculated with the MCDF and ISOMEX, respectively, as
functions of the uncertainty 	.

According to MCDF calculations, the M1 NEET rate
exhibits variations of several orders of magnitude in the
energy uncertainty range considered. Indeed it is located in
the range 4.4 × 101 � λM1

NEET � 3.7 × 105 s−1. The NEET rate
calculated with the ISOMEX code is constant and does not
reproduce the detailed structure of the MCDF NEET rate. This
is a consequence of the average atom description implemented
in this code: as the atomic line density is low, the average
value calculated with ISOMEX is not representative of the
NEET rate variations. Therefore in this case, this code can
only be used to predict the general behavior of the NEET
rate. It is not suitable for an accurate description of the
NEET rate in an 84mRb plasma at the temperature and density
considered.

In Fig. 9, the total NEET rate at T = 400 eV is shown
for charge states Q = 29+ to Q = 34+ and one can see that
charge states Q = 30+ to Q = 32+ contribute the most to the
rate. This is consistent with the fact that these charge states
are dominant in the plasma at 400 eV. At this temperature, the
average plasma charge state is Q = 31.7.

These transitions are from shells n ∈ [[5,7]] to n = 2.
As shown in Fig. 7, ISOMEX predicted that atomic shells
with n > 6 contributed little to the global NEET rate.
Figure 10 contradicts this conclusion by showing that tran-
sitions from n = 7 to n = 2 appear three times in the
nine highest contributors to the MCDF-evaluated NEET
rate.

E. Discussion

In this work, we have reduced by approximately one
order of magnitude the uncertainty in the 84Rb 5− → 6−
nuclear transition energy. It has been lowered to a level
comparable to what is currently achievable in terms of atomic
transition energy uncertainties in an MCDF approach with
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our treatment of the CI. A more accurate measurement of the
nuclear transition energy is no longer necessary. However, the
remaining uncertainties in the nuclear and atomic transition
energies still lead to important variations of the NEET rate
in the density and temperature region considered. Therefore
only a range of NEET rates could be evaluated at these plasma
temperatures and densities.

If we consider the uncertainties in the energy mismatch,
the reduced transition probability, and the atomic state widths
discussed above and summarized in Table II, we obtain
the following NEET rate range at T = 400 eV and ρ =
10−2 g/cm3: 2.2 × 100 � λM1

NEET � 7.4 × 106.

TABLE II. Summary of the uncertainties used in the NEET rate
computations.

Quantity Value Uncertainty

Atomic line energy MCDF 5 eV at 1σ

Nuclear line energy 3.498 keV 6 eV at 1σ

Atomic line width Eq. (17) Factor 10
Reduced transition probability 0.08 W.u. Factor 2

IV. CONCLUSION

The NEET rate excitation of the 84Rb 6− isomeric state
has been evaluated in an LTE plasma at a temperature of
400 eV and a density of 10−2 g/cm3. The uncertainties in the
different experimental and theoretical quantities involved in
the calculations have been estimated. The MCDF NEET rates
have been compared to the ISOMEX ones. ISOMEX does
not reproduce the detailed structure of the MCDF NEET rates
for the rubidium plasma considered in this work. Furthermore,
although ISOMEX predictions correctly show the temperature
or charge state range where the NEET rate is at its highest,
its detailed predictions of which atomic transitions contribute
should not be taken at face value but must be more thoroughly
investigated.

In the MCDF NEET rate computations presented in this
paper, a simple treatment of the CI has been performed due
to computational limitations. The CI in the nonrelativistic
configuration method could be used to obtain more accurate
NEET rates. Indeed, the CI not only enriches the x-ray spectra
but also has an impact on the atom-nucleus matrix element and
therefore on the NEET rate.

The high-repetition rate and shorter pulse lasers under
development such as Apollon [47] and ELI [48] may be an
interesting alternative to study nuclear excitations in plasma.
To use the model reported in this paper, we will have to reassess
the relevance of using the asymptotic expression of the NEET
probability as well as to devise a new evaluation of the charge
states and configuration probabilities.
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APPENDIX: EXPRESSION OF THE SQUARED
ATOM-NUCLEUS COUPLING MATRIX ELEMENT IN THE

|J M�〉 STATE BASIS

1. Expression of the atom-nucleus coupling matrix element

a. Expression in the orbital basis

The expression of the atom-nucleus matrix element in
the orbital basis |nκjm〉 has been published by several
authors [8,15,27,49]. In this basis, it is expressed for an atomic
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transition between the initial state |�k1〉 and the final state
|�k′2〉 as

Wk1,k′2 =
∑

π={E,M}

∑
LM

〈�k′2 | Hπ
LM | �k1〉

=
∑

π={E,M}

∑
LM

〈nk′κk′jk′mk′ | Hπ
LM | nkκkjkmk〉

× 〈I2M2 | Hπ
LM | I1M1〉, (A1)

where Hπ
LM is the atom-nucleus interaction Hamiltonian for a

πL electromagnetic transition, |nkκkjkmk〉 and |nk′κk′jk′mk′ 〉
are the initial and final atomic orbitals, respectively, and |I1M1〉
and |I2M2〉 are the initial and final nuclear states, respectively.
The parities of the atomic and nuclear states are not specified,
to lighten the notation.

In Eq. (A1), the point-nucleus approximation was
considered to allow the separation between the nuclear
〈I2M2 | Hπ

LM | I1M1〉 and atomic 〈κk′jk′mk′ | Hπ
LM | nkκkjkmk〉

parts [49]. If the long-wavelength limit is considered for the
nuclear part, Wk1,k′2 is given by

Wk1,k′2 =
∑

π={E,M}

∑
LM

(−1)M+1+I2−M2+mk′ +1/2i
√

4πe(k12)L+1

√
(2L + 1)(2jk + 1)(2jk′ + 1)

L(2L + 1)!!

×
(

I2 L I1

−M2 −M M1

)(
jk′ L jk

−mk′ M mk

)(
jk′ L jk
1
2 0 − 1

2

)
〈I2 ‖M(πL) ‖ I1〉Me

k′k(πL), (A2)

where Me
k′k(πL) is the electronic matrix element and M(πL)

is the electromagnetic transition operator. The nuclear matrix
element 〈I2 ‖M(πL) ‖ I1〉 is linked to the reduced transition
probability BI1→I2 (πL) by

BI1→I2 (πL) = 1

2I1 + 1
|〈I2 ‖M(πL) ‖ I1〉|2. (A3)

b. Expression in the |J M�〉 state basis

In the |JM
〉 basis, the atom-nucleus matrix element
between an initial |�i1〉 and a final |�f 2〉 state is expressed
as

Wi1,f 2 =
∑

π={E,M}

∑
LM

〈�f 2 | Hπ
LM | �i1〉

=
∑

π={E,M}

∑
LM

〈Jf Mf | Hπ
LM | JiMi〉

× 〈I2M2 | Hπ
LM | I1M1〉, (A4)

where |JiMi〉 and |Jf Mf 〉 are the initial and final atomic
states, respectively, and |I1M1〉 and |I2M2〉 are the initial and
final nuclear states, respectively. Equations (A4) and (A1) are
formally identical. But atomic shells k and k′ in (A1) have
been replaced by atomic states i and f in (A4).

The atomic part 〈Jf Mf | Hπ
LM | JiMi〉 of Eq. (A4), can be

written, after application of the Wigner-Eckart theorem, as

〈Jf Mf | Hπ
LM | JiMi〉

= (−1)Jf −Mf

(
Jf L Ji

−Mf M Mi

)

×
∑
t t ′

∑
kk′

cit cf t ′at ′tk′k〈nk′κk′jk′ ‖Hπ
L ‖ nkκkjk〉. (A5)

In Eq. (A5), we have introduced the decomposition of the
atomic states [Eq. (4)], |JiMi〉 = ∑

t cit |νtJtMt 〉, and we have
expressed the matrix element in the orbital basis [Eq. (6)],
〈νt ′Jt ′ ||Hπ

L ||νtJt 〉 = ∑
kk′ at ′tk′k 〈nk′κk′jk′ ||Hπ

L ||nkκkjk〉.
The atom-nucleus matrix element can be written as

Wi1,f 2 =
∑

π={E,M}

∑
LM

∑
t t ′

∑
kk′

(−1)Jf −Mf

(
Jf L Ji

−Mf M Mi

)

× cit cf t ′at ′tk′k〈nk′κk′jk′ ‖Hπ
L ‖ nkκkjk〉

× 〈I2M2 | Hπ
LM | I1M1〉. (A6)

Upon introducing the expression obtained in the orbital basis
[see Eq. (A2)], Eq. (A6) becomes

Wi1,f 2 =
∑

π={E,M}

∑
LM

∑
t t ′

∑
kk′

i(−1)Jf −Mf +M+I2−M2−jk′ +1/2
√

4πe(k12)L+1

√
(2L + 1)(2jk + 1)(2jk′ + 1)

L(2L + 1)!!

× cit cf t ′at ′tk′k

(
Jf L Ji

−Mf M Mi

)(
I2 L I1

−M2 −M M1

)(
jk′ L jk
1
2 0 − 1

2

)
〈I2 ‖M(πL) ‖ I1〉Me

k′k(πL). (A7)

2. Expression of the squared atom-nucleus coupling matrix element in the |J M�〉 state basis

In the expression of the NEET probability, the element |Ri1,f 2|2 is defined as a sum over the final atomic and nuclear magnetic
substates and an average over the initial ones of the squared matrix element Wi1,f 2:

|Ri1,f 2|2 = 1

(2Ji + 1)(2I1 + 1)

∑
M1M2

∑
MiMf

|Wi1,f 2|2. (A8)
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The selection rules for the (3j ) Wigner coefficients lead to the following expression for Eq. (A8):

|Ri1,f 2|2 =
∑

π={E,M}

∑
L

4πe2

(2Ji + 1)(2I1 + 1)

(k12)2L+2

[L(2L + 1)!!]2
|〈I2 ‖M(πL) ‖ I1〉|2

×
∣∣∣∣∣
∑
t t ′

∑
kk′

(−1)−jk′
√

(2jk + 1)(2jk′ + 1)cit ′cf tat ′tk′k

(
jk′ L jk
1
2 0 − 1

2

)
Me

k′k(πL)

∣∣∣∣∣
2

. (A9)

By introducing Eq. (A3), and the relation between the (3j ) Wigner and the Clebsh-Gordan coefficients,
(jk′ L jk

1
2 0 − 1

2

) =
(−1)jk′ −L+1/2

√
2jk+1

〈
jk′L 1

2 0 | jk
1
2

〉
, we obtain

|Ri1,f 2|2 =
∑

π={E,M}

∑
L

4πe2

2Ji + 1

(k12)2L+2

[L(2L + 1)!!]2
BI1→I2 (πL)

∣∣∣∣∣
∑
t t ′

∑
kk′

√
2jk′ + 1cit ′cf tat ′tk′k

〈
jk′L

1

2
0

∣∣∣∣ jk

1

2

〉
Me

k′k(πL)

∣∣∣∣∣
2

.

(A10)

Indeed, if only one πL transition is considered for the NEET process, the sum over π and L is reduced to only one term.
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