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Variational calculation of the ground state of closed-shell nuclei up to A = 40
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Variational calculations of ground-state properties of 4He, 16O, and 40Ca are carried out employing realistic
phenomenological two- and three-nucleon potentials. The trial wave function includes two- and three-body
correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster
expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal
wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by
means of a nonlinear optimization library. We present results for the binding energy, charge radius, one- and
two-body densities, single-nucleon momentum distribution, charge form factor, and Coulomb sum rule. We find
that the employed three-nucleon interaction becomes repulsive for A � 16. In 16O the inclusion of such a force
provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the
three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We
find that the high-momentum region of the momentum distributions, determined by the short-range terms of
nuclear correlations, exhibits a universal behavior independent of the particular nucleus. The comparison of the
Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of
the nucleon form factors.
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I. INTRODUCTION

Atomic nuclei are self-bound systems of strongly inter-
acting fermions. Understanding their structure, reactions, and
electroweak properties in terms of the individual interactions
among their constituents, protons and neutrons, has been a
long-standing goal of theoretical nuclear physics. Ab initio
approaches are aimed at solving the many-body Schrödinger
equation associated with the nuclear Hamiltonian. This is
made particularly difficult by the strong coupling of spin and
spatial degrees of freedom which characterize nuclear forces.
In addition, the nuclear many-body solution has to feature a
self-emerging shell structure and should be able to encompass
clusters of highly correlated nucleons.

One of the key advantages of ab initio approaches is that
they allow the disentanglement of the theoretical uncertainty
coming from modeling the nuclear potential and currents from
that due to the approximations inherent in other many-body
techniques. This is crucial for performing a comprehensive
study of nuclear forces and properly assessing the theoretical
uncertainty of the calculation.

Light nuclei, i.e., those with A � 12, where A is the number
of nucleons, have proven to be an effective laboratory to test a
variety of nuclear interaction models. In this realm, quantum
Monte Carlo (QMC) methods have been extensively used to
compute binding energies for both the ground and the low-
lying excited states at �1% accuracy level (see Ref. [1] for a
recent review).

The definition of the potential describing three-nucleon
(3N ) interactions is a central issue in nuclear theory. These
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forces are known to yield attractive contributions to the energy
per particle of light nuclei. On the other hand, a repulsive
contribution is needed for the stability of neutron stars
against gravitational collapse and to reproduce the equilibrium
properties of isospin-symmetric nuclear matter (SNM) [2–4].

The most accurate phenomenological Hamiltonian for A �
12 nuclei comprises the Argonne v18 (AV18) [5] two-nucleon
(NN ) potential and the Illinois-7 (IL7) [6,7] 3N potential.
This provides a good description of the spectrum of nuclei up
to 12C [8] but yields a pathological equation of state of pure
neutron matter [9]. On the other hand, when constraints on
the 3N interaction are inferred from saturation properties of
symmetric nuclear matter, the resulting predictions for neutron
stars are compatible with astrophysical observations [10,11].
However p-shell light nuclei turn out to be underbound
compared to experiment by about 0.25–0.75 MeV/A [6].

Elucidating the role of 3N forces in the region of medium-
mass nuclei, such as 16O and 40Ca, is of paramount importance.
Studying these two nuclei will help us to understand the
mass region where the 3N contribution might already become
repulsive. This aspect is strongly connected to the long-
standing problem of the oxygen and calcium drip lines, which
will be a major experimental focus of the Facility for Rare
Isotope Beams [12].

An accurate description of 16O, in particular its interaction
with neutrinos, is also of immediate importance for the detec-
tion of supernova neutrinos [13]. The large water-Cherenkov
detectors require precise determination of their backgrounds,
especially the one involving neutron knockout through neutral-
current scattering of atmospheric neutrinos on 16O [14]. The
computation of the electromagnetic responses of 16O using
realistic nuclear interactions is a first step in this direction. In
addition, studying the Coulomb sum rules of both 16O and 40Ca
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allows the investigation of putative in-medium modifications
of the nucleon electromagnetic form factors [15].

Highly advanced nuclear many-body techniques, such as
the coupled cluster method [16], the no-core shell model
[17], the similarity renormalization group [18], and the
self-consistent Green’s function [19], have been successfully
employed to study oxygen and calcium isotopes. In this work
we use nuclear quantum Monte Carlo methods, which are
capable of dealing with a wider range of momentum and
energy, and allow the use of nuclear interactions characterized
by high-momentum components.

Standard quantum Monte Carlo techniques, namely varia-
tional Monte Carlo (VMC) and Green’s function Monte Carlo
(GFMC), work in the complete spin-isospin space, which
grows exponentially with A [1]. As a consequence, these meth-
ods are currently limited to A � 12 nuclei by available compu-
tational resources. Over the last two decades, the auxiliary field
diffusion Monte Carlo (AFDMC) method [1,20,21], which
uses Monte Carlo to also sample the spin-isospin degrees of
freedom, has emerged as a more efficient algorithm for dealing
with larger nuclear systems, but so far only for somewhat
simplified interactions. Within cluster variational Monte Carlo
(CVMC) [22,23], expectation values are evaluated with a
cluster expansion for the spin-isospin dependent correlations.
The cluster expansion drastically reduces the computational
effort necessary for the study of an A-body system, and it
enables the study of medium-mass nuclei. Another approach
based on a cluster expansion of nuclear correlations has been
recently used to study the high-momentum components of
nuclear wave functions (see [24] and references therein). This
work, not based on Monte Carlo techniques, has been carried
out employing two-body nuclear interactions only and limiting
the cluster expansion to the leading order.

In this work we employ CVMC to perform variational
calculations of three closed-shell nuclei, 4He, 16O, and 40Ca.
We use as input a realistic phenomenological Hamiltonian,
capable of describing the nucleon-nucleon data, both in
scattering and bound states, with remarkable accuracy. The
binding energy of the 3N system and the saturation density
of isospin-symmetric nuclear matter are also well reproduced.
We present results for the binding energy, charge radius, point
density, single-nucleon momentum distribution, charge form
factor, and Coulomb sum rule, fully taking into account the
high-momentum components of the nuclear interaction.

In Sec. II we briefly introduce the nuclear Hamiltonian and
many-body wave functions used here. Section III is devoted
to the description of the cluster variational Monte Carlo
technique. In Sec. IV we present our results for 4He, 16O,
and 40Ca. Finally, our conclusions are summarized in Sec. V.

II. NUCLEAR HAMILTONIAN AND WAVE FUNCTIONS

Over a substantial range of energy and momenta, atomic
nuclei can be described as collections of pointlike particles
of mass m, whose dynamics is dictated by a nonrelativistic
Hamiltonian

H = − h̄2

2m

∑
i

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk. (1)

Phenomenological NN potentials include electromagnetic and
one-pion-exchange terms at long range, and parametrize the
intermediate- and short-distance region with phenomeno-
logical contributions that reproduce nucleon-nucleon elastic
scattering data up to the pion-production threshold:

vij = v
γ
ij + vπ

ij + vR
ij . (2)

A standard version in this class of potentials is the AV18
[5] interaction. In AV18, the electromagnetic term v

γ
ij includes

one- and two-photon-exchange Coulomb interactions, vacuum
polarization, Darwin-Foldy, and magnetic moment terms, with
appropriate form factors that keep terms finite at rij = 0, where
rij = |r i − rj | is the interparticle distance. The one-pion-
exchange and phenomenological contributions can be written
as a sum of 18 operators,

vij =
18∑

p=1

vp(rij )Op
ij . (3)

The first six operators, corresponding to the static components
of the NN interaction, are

Op=1,6
ij = [1,σ i · σ j ,Sij ] ⊗ [1,τ i · τ j ], (4)

where σ i and τ i are Pauli matrices acting in spin and isospin
space, respectively, and

Sij = 3 (σ i · r̂ ij )(σ j · r̂ ij ) − (σ i · σ j ) (5)

is the tensor operator. The operators p = 7, . . . ,14 are asso-
ciated with the nonstatic components of the NN force. They
have the form

Op=7,14
ij = [L · S,L2,L2(σ i · σ j ),(L · S)2] ⊗ [1,τ i · τ j ],

(6)

where

L = 1

2i
(r i − rj ) × (∇i − ∇j ),

S = 1

2
(σ i + σ j )

(7)

are the relative angular momentum and the total spin of the pair
ij , respectively. Overall, the first 14 operators of AV18 describe
the charge-independent part of the NN interaction. The last
four operators account for small violations of isospin symme-
try, and are grouped into charge-dependent (p = 15,17) and
charge-symmetry breaking (p = 18) components,

Op=15,17
ij = [1,σ i · σ j ,Sij ] ⊗ Tij ,

Op=18
ij = τzi

+ τzj
, (8)

where Tij = 3 τzi
τzj

− τ i · τ j is the isotensor operator.
AV18 fits the 1993 Nijmegen database [25], which includes

4301 NN scattering data up to Elab = 350 MeV, with a
χ2/Ndata � 1.1, as well as the deuteron binding energy and
nn scattering length. It is also found to be qualitatively good
to much higher energies (up to 600 MeV) [26].

The inclusion of the 3N interaction Vijk is needed to explain
the binding energies of the 3N systems and the saturation
properties of SNM. The derivation of Vijk was first discussed
in the pioneering work of Fujita and Miyazawa [27], who
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argued that its main contribution originates from the two-pion-
exchange process in which the NN interaction leads to the
excitation of one of the participating nucleons to a (virtual)
� resonance, which then decays by interacting with a third
nucleon.

In this work we use a phenomenological model of the 3N
force, namely the Urbana IX (UIX) potential [28], which is
written as a sum of three contributions:

Vijk = V
2π,A
ijk + V

2π,C
ijk + V R

ijk. (9)

The Fujita-Miyazawa anticommutator and commutator terms
are

V
2π,A
ijk = A2π

∑
cyc

{Xij ,Xjk}{τ i · τ j ,τ j · τ k}, (10)

V
2π,C
ijk = A2π

4

∑
cyc

[Xij ,Xjk][τ i · τ j ,τ j · τ k], (11)

where cyc denotes a cyclic sum over the three particle indexes
and

Xij = Yπ (μπrij ) σ i · σ j + Tπ (μπrij ) Sij , (12)

Yπ (x) = e−x

x
ξ (r), (13)

Tπ (x) =
(

1 + 3

x
+ 3

x2

)
Yπ (x) ξ (r), (14)

with μπ = mπ/h̄c the pion mass, and Yπ (x) and Tπ (x) the
Yukawa and tensor Yukawa functions respectively, with cutoffs

ξ (r) = 1 − e−cr2
. (15)

The purely phenomenological repulsive term is given by

V R
ijk = AR

∑
cyc

T 2
π (μπrij ) T 2

π (μπrik). (16)

The parameters A2π and AR are adjusted to reproduce the
ground-state energy of the 3N systems and the SNM saturation
density when used in conjunction with the AV18 NN interac-
tion. The IL7 3N potential also includes multi-pion-exchange
components. The resulting AV18+IL7 Hamiltonian leads to
predictions of �100 ground- and excited-state energies up to
A = 12 nuclei in very good agreement with the corresponding
empirical values [1]. However, when used to compute the
neutron star matter equation of state, IL7 does not provide
sufficient repulsion to guarantee the stability of observed stars
against gravitational collapse [9]. We have therefore used the
simpler UIX interaction in this study.

We note that the local NN potentials recently derived within
chiral perturbation theory [29–33] are written in the same
fashion as in Eq. (3). Because local versions of the chiral
3N potentials [4,34,35] have spin-isospin structure analogous
to that of UIX, the formalism developed in this paper can be
readily applied to this class of interactions.

Variational Monte Carlo exploits the stochastic Metropolis
algorithm [36] to evaluate the expectation value of a given
many-body operator using a suitably parametrized trial wave
function �V . The nuclear potential introduces spin-isospin
correlations into the nuclear wave function so the variational

wave function should, to the extent possible, contain operator
correlations of vij and Vijk . In the same spirit of Ref. [23],
in this work we assume that a good variational wave function
for the ground state of a closed-shell nucleus can be expressed
as the product of two- and three-body correlation operators
acting on a Jastrow wave function �J :

|�V 〉 =
⎛
⎝1 +

∑
i<j<k

Uijk

⎞
⎠
⎡
⎣S∏

i<j

(
1 + U 2−6

ij

)⎤⎦

×
⎡
⎣1 +

∑
i<j

U 7−8
ij

⎤
⎦|�J 〉, (17)

|�J 〉 =
⎡
⎣∏

i<j

fc(rij )

⎤
⎦A |	〉. (18)

In the above equations, Uij and Uijk are correlations
depending upon the spin and isospin of particles ij and ijk,
respectively. The U 2−6

ij are static correlations (they contain no

derivatives) while U 7−8
ij are L · S correlations, fully defined

following Eq. (23). The first term in the parentheses comes
from the approximation of the independent triplet product
of (1 + Uijk) to the linear term only. The symmetrization
operator S is needed for the wave function to be fully
antisymmetric, because [U 2−6

ij ,U 2−6
jk ] �= 0. To avoid multiple-

order derivatives, the spin-orbit correlations U 7−8
ij are done as

a sum and act first on just the Jastrow wave function. In the
Jastrow wave function, fc(rij ) denotes a central pair correlation
function, A is the antisymmetrization operator, and 	 is an
independent-particle wave function.

For doubly closed-shell nuclei, we can use a single product
of four determinants Dτσ , one each for protons and neutrons,
spin up and spin down, for 	:

|	〉 = {Dp↑ Dp↓ Dn↑ Dn↓}, (19)

where each determinant contains A/4 nucleons. It follows that
A|	〉 of Eq. (18) is a sum over all the possible partitions of
the A nucleons into four groups of A/4 nucleons.

Each determinant is constructed from single-particle radial
wave functions

φnlm(r) = Rnl(r) Ylm(θ,ϕ), r = (r,θ,ϕ), (20)

calculated on the relative coordinates r̃ i ,

r̃ i = r i − Rc.m., Rc.m. = 1

A

∑
i

r i , (21)

in order to make 	 translationally invariant. Ylm(θ,ϕ) is the
spherical harmonic. The radial wave functions Rnl(r) are
obtained from the bound-state solutions of the Woods-Saxon
wine-bottle potential,

V (r) = Vs

[
1

1 + e(r−Rs )/as
− αse

−(r/ρs )2

]
, (22)

where the five parameters VS , Rs , as , αs , and ρs are determined
variationally.
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As stated above, the two-body correlation operator Uij

should reflect the spin-isospin structure of the underlying
NN potential. In this work we consider only the first eight
spin-isospin operators, which capture the dominant features in
the NN phase shifts,

Uij =
8∑

p=2

βp up(rij )Op
ij , (23)

with up(rij ) = fp(rij )/fc(rij ). The radial correlation functions
fc,p(rij ) are obtained by minimizing the two-body cluster
contribution to the energy per particle of SNM at the Fermi
momentum kF . Euler-Lagrange (EL) equations are solved in
a partial-wave (S,T ) basis for a quenched potential,

v̄ij =
14∑

p=1

αp vp(rij )Op
ij , (24)

by imposing the boundary conditions [37]:

fc(r � d1) = 1,

up(r � dp) = 0. (25)

In the present calculations we assume

βp=2−4,7−8 = βc, αp=1,9,13−14 = 1,

βp=5−6 = βt , αp=2−8,10−12 = α, (26)

and we consider three independent healing distances,

dp=1−4,7−8 = dS,dP,

dp=5−6 = dt , (27)

where dS �= dP are used in order to differentiate s-wave (1S
and 3S − 3D) from p-wave (1P and 3P − 3F ) channels, and
the general relation dS < dP < dt should hold. The functions
fc,p(rij ) are projected from the solutions of the (S,T ) partial-
wave EL equations. The pair correlation functions are thus
fully specified by a total of seven variational parameters: kF ,
α, βc, βt , dS, dP, and dt .

In a many-body system it has been found advantageous
to screen the spin- and isospin-dependent pair correlation
functions when other particles are nearby [38,39]. This can be
achieved by multiplying Uij by three-body correlation factors,

Uij →
∏
k �=i,j

f3(rij ; rik,rjk) Uij , (28)

where

f3(rij ; rik,rjk) = 1 − t1

(
rij

Rijk

)t2

e−t3Rijk ,

Rijk = rij + rik + rjk. (29)

The three parameters t1, t2, and t3 are found variationally.
Explicit triplet correlations significantly improve the varia-

tional energy for Hamiltonians including a 3N interaction. In
this work we employed the form

Uijk = ε2π,A Ṽ
2π,A
ijk + εR Ṽ R

ijk, (30)

where Ṽijk have the structures of Eqs. (10) and (16) but the two-
particle distances are rescaled by a factor η, and two different
constants cy and ct are used for the cutoff function ξ (r) of
Eq. (15) used in Eqs. (13) and (14). The triplet correlation
functions are then given in terms of five variational parameters:
ε2π,A, εR , η, cy , and ct .

We did not include correlations arising from the commuta-
tor of Eq. (11) because it is significantly more computationally
expensive to evaluate than the anticommutator of Eq. (10).
However, it has been shown that most of the correlations
induced by the commutator can be effectively obtained by
an appropriate choice of the coefficient ε2π,A [39].

III. CLUSTER VARIATIONAL MONTE CARLO

In VMC, once the form for the trial wave function is
assumed, one optimizes the variational parameters, typically
by minimizing the expectation value and/or the variance of the
total energy with respect to the variations of the parameters.
The energy expectation value is given by

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (31)

and it is always greater than or equal to the ground-state energy
with the same quantum numbers as �V . By minimizing EV

the optimal �V is obtained, and it is used to evaluate other
quantities of interest.

In general, for spin-isospin dependent interactions, the wave
function is a sum of complex amplitudes for each spin-isospin
state. The number of these components grows exponentially
with the number of particles. This scaling can be mitigated
by considering charge conservation and by assuming that the
nucleus has good isospin T . However, for A > 12 nuclei,
quantum Monte Carlo calculations employing the complete
many-body wave function currently represent a computational
challenge [1].

One way to overcome the scaling problem and perform
calculations for larger systems is to employ a cluster ex-
pansion scheme. The expectation value 〈�V |H |�V 〉 as well
as 〈�V |�V 〉 can be expanded according to the number of
nucleons connected by the spin-isospin correlations Uij and
Uijk . The resulting cluster expansion for the expectation value
EV , which is constructed according to Ref. [40], has been
used up to four-body cluster for the VMC study of 16O [23]
and 17

� O [41] with earlier versions of the phenomenological
NN+3N potentials. In this work the calculations have been
performed including up to five-body cluster contributions and
considering closed-shell nuclei as large as 40Ca. The modern
AV18 NN potential plus the UIX 3N force has been employed.

A. Cluster expansion

The trial wave function of Eq. (17) contains a large number
of terms because there are many ways of partitioning A
nucleons into four groups of A/4 nucleons that preserve the
antisymmetrization of �V . However, since H is a symmetric
operator, we can reduce the problem by considering a trial
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wave function �R not fully antisymmetric,

|�R〉 =
⎛
⎝1 +

∑
i<j<k

Uijk

⎞
⎠
⎡
⎣S∏

i<j

(
1 + U 2−6

ij

)⎤⎦

×
⎡
⎣1 +

∑
i<j

U 7−8
ij

⎤
⎦∣∣�R

J

〉
, (32)

∣∣�R
J

〉 =
⎡
⎣∏

i<j

fc(rij )

⎤
⎦|	〉, (33)

and by redefining the energy expectation value as

EV = 〈�V |H |�R〉
〈�V |�R〉 . (34)

The cluster expansion adopted in this work is the one
associated with expectation values of the form (34). In the
reference work [23] this cluster expansion is referred to as
“CEA.”

Let us consider the expectation value of a symmetric one-
body operator Oi :

〈�V |∑i Oi |�R〉
〈�V |�R〉 = N

D
= C. (35)

The numerator N and denominator D can be expanded as a
sum of n-body contributions,

N =
∑

i

ni +
∑
i<j

nij +
∑

i �=j<k

ni,jk +
∑

i<j<k

nijk + · · · , (36)

D = 1 +
∑
i<j

dij +
∑

i<j<k

dijk +
∑

i<j �=k<l
i<k

dij,kl + · · · . (37)

Obviously extending the sums to A-body contributions gives
the exact expectation value. We define the generic expectation
value 〈X〉, to be used for both N and D terms in Eq. (35), as

〈X〉 = 〈	|A[∏i<j fc(rij )
]
X
[∏

i<j fc(rij )
]|	〉

〈	|[∏i<j fc(rij )
]2|	〉

. (38)

The contributions nij... and dij... then take the following form:

ni = 〈Oi〉,
nij = 〈(1 + U

†
ij )(Oi + Oj )(1 + Uij )〉 − ni − nj ,

ni,jk = 〈(1 + U
†
jk)Oi(1 + Ujk)〉 − ni,

nijk =
〈[

S
∏
cyc

(1 + U
†
ij )

]
(1 + U

†
ijk)(Oi + Oj + Ok)

(1 + Uijk)

[
S
∏
cyc

(1 + Uij )

]〉
−
∑
cyc

(ni,jk + nij + ni),

(39)

dij = 〈(1 + U
†
ij )(1 + Uij )〉 − 1. (40)

The expansions (36) and (37) for N and D are divergent.
On the other hand, a convergent expansion is achieved by

considering the linked cluster expansion

C =
∑

i

ci +
∑
i<j

cij +
∑

i �=j<k

ci,jk +
∑

i<j<k

cijk + · · · , (41)

whose coefficients can be obtained from the equation C · D =
N by equating terms containing the same number of particles,

ci = ni,

cij = nij − (ci + cj ) dij

1 + dij

,

ci,jk = ni,jk − cidjk

1 + djk

,

cijk = nijk −∑cyc[cidijk + (cij + ck,ij )(dik + djk + dijk)]

1 +∑cyc dij + dijk

.

(42)

The cluster expansion for the expectation value of two-
body operators Oij and three-body operators Oijk , such as
vij and Vijk , resembles the one for the one-body operator
Oi . However, in the case of Oij , there are no one-body
terms ni , nor terms such as ni,jk in the numerator (36).
Therefore the cluster expansion (41) only contains terms
of the kind cij , cijk, cij,kl, cijkl, . . .. In a similar fashion, the
cluster expansion for

∑
ijk Oijk only comprises terms like

cijk, cijkl, cijk,lm, cijklm, . . ..
Terms such as ci,jk are referred to as semifactorizable. They

are typically small because of the large cancellation between
ni,jk and cidjk , but they are finite. It is not necessary to treat
them separately from the others. For example it is possible to
define cluster contributions c̃ijk as the sum of all those that
contain particles ijk so that

c̃ijk = cijk + ci,jk + cj,ik + ck,ij . (43)

The corresponding ñijk can also be directly computed without
separating their semifactorizable contributions. The total n-
body cluster contribution Cn is then obtained from the sum

Cn =
∑

i1<i2<...<in

c̃i1i2...in , (44)

and Eq. (41) can be simply rewritten as

C =
∑

n

Cn. (45)

In the present work the cluster expansion is carried out
up to five-body cluster, n = 5. Since the operators in the
expectation value nij...l or dij...l only contain the spin and
isospin of particles ij . . . l, the spin and isospin of the other
particles are unchanged and can be ignored. If ij . . . l are in
a single determinant Dτσ in |	〉, then only the term 〈	| in
〈	|A contributes, and the rest can be ignored. If i is in Dτ ′σ ′

and j . . . l are in Dτσ in |	〉, then only the direct term 〈	| and
those obtained by exchanging i with j . . . l in 〈	|A need to
be considered. This implies a large reduction of the number of
contributions to be calculated at each order, allowing for a full
evaluation up to five-body cluster.

All the expectation values ni, nij , . . . and dij , dijk, . . .
are calculated up to four-body cluster. Five-body cluster
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contributions are instead sampled according to the probability

P (x) = 1 − Pmin

1 + e(x−b)/a
+ Pmin, (46)

where x =∑i<j rij , and typical values are Pmin = 0.02,
b = 35 fm, and a = 3.2 fm. If P (x) is larger than ξ , where
ξ is a random number in the interval [0,1], then the five-body
contribution is calculated. For 16O it has been verified that
sampling five-body cluster terms yields an energy expectation
value that is compatible to the one obtained with the full
five-body cluster calculation (Pmin = 1). In 16O the sampling
procedure speeds up the evaluation of EV by a factor of
1.7 when using the NN potential only, and by a factor of
2.2 when also 3N interactions are included. This is crucial
for the calculation of 40Ca, in particular when using the full
AV18+UIX potential. In 16O there are 4368 quintuplets, while
in 40Ca there are 658 008 quintuplets, making the full five-body
cluster calculation extremely time demanding.

Further simplifications can be made by looking at the
structure of the employed trial wave function. |	〉 is a
product of four determinants in which particle (1 : d), (d + 1 :
2d), (2d + 1 : 3d), and (3d + 1 : 4d), with d = A/4 are,
respectively, p ↑, p ↓, n ↑, and n ↓. 〈	|A is instead fully
antisymmetric, so that when particle i and i ′ belong to the same
determinant, the following equivalences among expectation
values apply:

nij...l = ni ′j ...l ,

dij ...l = di ′j ...l . (47)

By neglecting the effects of the Coulomb potential on the
wave function, for the isospin-symmetric nuclei considered
in this work it follows that, for instance, there are only four
nonequivalent classes of nij contributions:

np↑p↑ = np↓p↓ = nn↑n↑ = nn↓n↓,

np↑p↓ = nn↑n↓,

np↑n↑ = np↓n↓,

np↑n↓ = np↓n↑. (48)

We note that the employed cluster expansion treats exactly
all the exchanges and central correlations among the A
nucleons. Every term in the cluster expansion (39) and (40)
contains the complete product of central correlations. In the
conventional cluster expansions [40], one also expands in
powers of f 2

c (r) − 1 and this does not necessarily keep all
the exchange terms.

The current work includes the L · S correlations and L · S,
L2, and (L · S)2 potentials in all cluster expansion orders.
Reference [23] included these in only the two-body clusters,
arguing that their total contribution is small. However we find
a large, repulsive, three-body contribution from these potential
terms.

Note that in the process of expanding the numerator and
the denominator of the Hamiltonian’s expectation value of
Eq. (34), the variational principle is not guaranteed to hold.
However, since summing up to the A-body contribution gives
the exact expectation value, the convergence of the cluster
expansion itself will restore the validity of the variational prin-

ciple. For this reason, during the optimization of the variational
parameters, the convergence of the cluster expansion has been
carefully checked for each of the analyzed cases.

B. VMC sampling

The spatial integrals in Eq. (38) are evaluated using
Metropolis Monte Carlo techniques [36]. The Metropolis
method allows one to sample points in large-dimensional
spaces according to a probability distribution W (R), where
R = {r1, . . . ,rA}. The algorithm generates a sequence of
points (random walk) in the 3A-dimensional space. This is
achieved by a sequence of moves that can either be accepted
or rejected depending upon the ratio of the function W
computed at the original and proposed points. According to
the central limit theorem, the generic expectation value 〈I 〉
can be written as

〈I 〉 =
∫

d R W (R) I (R)∫
d R W (R)

= lim
Nc→∞

1

Nc

∑
i=1,Nc

I (Ri), (49)

where Nc is the number of configurations Ri sampled with
probability proportional to W (R). The Monte Carlo statistical
error associated to 〈I 〉 can be estimated with εI = √

σI /Nc,
where σI is the variance of I .

The weight function W (R) must be positive definite and
normalizable. The choice adopted in this work is to use the
Jastrow part of the trial wave function �R

W (R) = 	∗(R)

⎡
⎣∏

i<j

fc(rij )

⎤
⎦

2

	(R) F (R). (50)

The expectation value 〈X〉 is

〈X〉 =
∫

d R W (R) 	∗(R)AX 	(R)/[|	(R)|2F (R)]∫
d R W (R)/F (R)

, (51)

and the function to evaluate at a sampled Ri is 	∗(R)AX	(R)
[with the normalization factor |	(R)|2F (R)], where the spin-
isospin summations are implicit. In the present case 	(R) is
real, so that 	∗(R) = 	(R).

The factor F (R) is introduced in the weight function W (R)
in order to prevent the quantity 	∗(R)AX 	(R)/|	(R)|2
from becoming very large. It is chosen so that
	∗(R)AX 	(R)/[|	(R)|2F (R)] is finite at all R. All the
exchanges that contribute to 	∗(R)AX 	(R) are included
in |	(R)|2F (R) so that

|	(R)|2F (R) = |	(R)|2 +
∑
i<j

ω(rij )|Pij	(R)|2

+
∑

i<j<k

ω(rij ) ω(rjk) ω(rik)

× [|PijPik	(R)|2 + |PikPij	(R)|2]

+ · · · , (52)
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where Pij is the exchange operator acting on particles i and j .
In the present work contributions up to four-body exchanges
are considered in Eq. (52). The function ω(r) is chosen to
be proportional to the sum of the squares of up(r), since the
exchange of particles i and j with different spin-isospin states
in 	(R) must be accompanied by a vij , Uij , Vijk , or Uijk .
The use of the importance function F (R) drastically reduces
the variance on the expectation values. For instance, in 16O
the same statistical error for the energy expectation value can
be achieved by using just half of the configurations when
F (R) �= 1.

The 	(R)AX 	(R) for a given cluster is calculated with
methods developed for few-body systems [38,42]. The terms
in 	(R)A that can contribute are summed, and 	(R)A is
represented as a vector whose components give the amplitudes
of the spin-isospin states of the nucleons in the cluster. The
corresponding vector representing 	(R) has only one nonzero
component since all particles have definite values of τz and
σz in 	(R). The vij , Vijk , Uij , and Uijk operate on these
vectors as discussed in Refs. [38,42]. The expectation values
of the kinetic energy operators are obtained by computing
�R at slightly shifted positions and using finite differences to
evaluate terms in ∇2�R .

Due to the tremendous increase in computer power of
the last decades, many of the approximations implemented
in the reference work [23] are no longer necessary. For
instance, in the current calculations the three-body correlation
operators Uijk act last in �R and �V of Eqs. (32) and (17),
as in the original formulation of the trial wave function. In
Ref. [23], because of the computational limitations of the
time, �R and �V were approximated acting first with the
Uijk on the sparse vectors representing 	(R) and A	(R), and
then operating with the two-body correlations Uij . The latter
are now implemented in all orders, including the spin-orbit
correlations that were previously calculated at the two-body
level only.

Moreover, the calculation of the contribution of the kinetic
energy NN and 3N potential operators is fully carried out at
each order of the cluster expansion. For the five-body cluster,
all the one-, two-, and three-body operators are evaluated,
although their contributions to C5 are sampled as previously
discussed.

C. Optimization

The trial wave functions of Eqs. (32) and (17) contain
a total of 15 variational parameters when only two-body
correlations are considered, and up to 20 parameters if three-
body correlations are also included. In order to perform the
minimization of the energy expectation value with respect to
these sets of parameters, we used the NLopt optimization tool,
as recently done in other standard VMC calculations [33].

NLopt is a free/open-source library for nonlinear optimiza-
tion developed at the Massachusetts Institute of Technology
[43]. It provides a common interface for a number of different
free optimization routines available online as well as original
implementations of various other algorithms, including both
global and local optimization algorithms, both derivative-free
and user-supplied gradients algorithms, and algorithms for

unconstrained optimization, bound-constrained optimization,
and general nonlinear inequality/equality constraints.

In this work we implemented different local derivative-free
algorithms, and in particular we made extensive use of the
COBYLA (constrained optimization by linear approxima-
tions) [44] and Nelder-Mead simplex [45] algorithms. It
has been observed that both algorithms perform well in the
case of 4He [33]. For heavier systems, Nelder-Mead simplex
seems instead to be the optimal algorithm, providing better
convergence and reliability of the minimization search. This
is probably related to the fact that the minimization was done
using correlated energy differences [42] for A = 4 but not for
the larger nuclei.

For both 4He and 16O the energy minimization was carried
out in the full parameter space, with the energy expectation
value calculated up to the highest cluster contribution for
the system under study. In order to reduce the computational
cost of the optimization process, the spin-orbit correlations
are turned off during the variational search. However, once
the optimal set of parameters is found, the full two-body
correlations of Eq. (23) are employed in the calculation of
the expectation values. In the case of 40Ca, the computation
of five-body cluster contributions to the total energy is quite
demanding, even with the sampling procedure. Each CVMC
run for A = 40 requires approximately two hours on 18
32-core Intel Haswell 2.3 GHz nodes to obtain a statistical
error of �0.5 MeV/A for the energy of the full NN plus
3N Hamiltonian. The variational search over the entire 20-
dimensional parameter space would have required at least
∼140 h on the same hardware configuration, i.e., more than
80 × 103 CPU hours.

Relying on the observation that short-range correlations
for medium-heavy systems should be independent of A, the
energy minimization for 40Ca has been carried out in a
subset of the parameter space. When using AV18 only, the
optimal parameters for the two-body correlations found in
16O for the same potential were employed, as were the wine-
bottle coefficients and the induced three-body correlations
of Eq. (28). The variational search was performed for only
the three parameters defining the Wood-Saxon potential of
Eq. (22). When the 3N potential is also included, from the
best set of parameters for 16O with the same interaction,
we minimized over the three parameters of the Wood-Saxon
potential and over two of the five parameters of the three-body
correlations. For the latter, cy and ct appear to be the most
effective to produce appreciable changes in the total energy.
All the parameters for the systems under study for both AV18
and AV18+UIX are listed in the Appendix.

IV. RESULTS

The expectation values of all observables are calculated
for each nucleus by summing all cluster contributions up to
five-body cluster (four-body in the case of 4He). For 16O and
40Ca, the full expansion should consider contributions up to 16-
and 40-body clusters, respectively. Under the observation that
the ratio between the last successive cluster contributions is
small and approximately constant, we can estimate the cluster
contribution C6−A by assuming uniform convergence, i.e., by
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TABLE I. Cluster contributions to the energy per nucleon and point radius in 4He when using the AV18 potential. Energies are in MeV/A

and radii in fm2. Averages are calculated using Nc = 2 × 106 configurations. In this and the following tables, the Monte Carlo statistical errors
of the last digits are given in parentheses. A (0) indicates an error of less than 5 in the following digit.

Observable 1b 2b 3b 4b Sum

T 12.22(2) 12.51(1) −1.12(1) 0.23(1) 23.84(3)
v1−6

ij −30.07(3) 0.52(1) −0.22(1) −29.77(3)

v7−14
ij −1.00(0) 1.07(0) −0.08(0) −0.01(0)

v
γ
ij 0.20(0) 0.01(0) 0.00(0) 0.21(0)

vij −30.86(3) 1.58(1) −0.29(1) −29.57(3)
T + vij 12.22(2) −18.35(2) 0.47(1) −0.06(0) −5.73(1)
r2

pt 2.813(2) −0.568(1) 0.046(0) −0.003(0) 2.289(1)

using the relation

Ck+1

Ck

= Ck

Ck−1
. (53)

Given the cluster expansion at order k, the total extrapolated
result is obtained by summing over all the cluster contributions,
including the extrapolated ones,

Cext =
k∑

n=1

Cn +
A∑

n=k+1

Cext
n . (54)

Under the assumption of uniform convergence, the Cext
n form

a geometric progression, and we can then recast the total Cext

using the sum of the geometric series,

Cext =
k−2∑
n=1

Cn + Ck−1
1

1 − x
, x = Ck

Ck−1
. (55)

Note that in the employed cluster expansion, successive cluster
contributions Ck and Ck−1 have decreasing magnitude and
opposite sign, so that |x| < 1.

Equations (54) and (55) give consistent results for all the
observables under study. In the following, unless otherwise
specified, we will report results for 16O and 40Ca using
the extrapolation of Eq. (54) for contributions above the
five-body cluster. Errors on

∑A
n=k+1 Cext

n are estimated by

propagating the CVMC statistical errors from the previous
cluster contributions.

A. Energies, radii, and densities

The contributions of the cluster expansion to the kinetic
energy T , to the NN and 3N potentials, and to the point radius
are listed in Tables I and II for 4He, in Tables III and IV for
16O, and in Tables V and VI for 40Ca. The expectation value
of v15−18

ij is zero for all the systems under study, as we are
assuming pure T = 0 ground states. Since one-, two-, and
three-body operators exhibit different convergence patterns in
the cluster expansion, for A > 4 the total energy is estimated
as the sum of the extrapolated results for T , vij , and Vijk , and
it is italicized in the tables.

Let us first consider the 4He nucleus. By comparing the
energy per nucleon obtained with AV18 and AV18+UIX
Hamiltonians, both reported in Table VII, it is apparent that the
3N force gives overall �1 MeV/A more binding. This result
is consistent with VMC and GFMC calculations [6,46] for the
same interactions. It is interesting to note that the best wave
function for the full Hamiltonian including UIX sacrifices
�0.3 MeV/A from the T + vij contribution which is made
up by increasing the attraction from UIX.

The more sophisticated two-body correlations employed in
the VMC wave function for s-shell nuclei yield �0.2 MeV/A
additional binding compared to the CVMC results.

TABLE II. Cluster contributions to the energy per nucleon and point radius in 4He when using the AV18+UIX potential. Energies are in
MeV/A and radii in fm2. Averages are calculated using Nc = 2 × 106 configurations.

Observable 1b 2b 3b 4b Sum

T 13.12(2) 15.55(2) −2.30(1) 0.44(1) 26.80(3)
v1−6

ij −33.74(3) 1.45(1) −0.30(1) −32.60(3)

v7−14
ij −1.31(0) 1.66(0) −0.19(0) 0.17(3)

v
γ
ij 0.21(0) 0.01(0) 0.00(0) 0.22(0)

vij −34.83(3) 3.10(2) −0.48(1) −32.21(3)

V 2π,A
ijk −1.67(0) 0.04(0) −1.64(0)

V 2π,C
ijk −1.02(0) 0.04(0) −0.98(0)

V R
ijk 1.36(0) −0.03(0) 1.33(0)

Vijk −1.34(0) 0.05(0) −1.29(0)
T + vij 13.12(2) −19.29(2) 0.80(0) −0.04(1) −5.41(1)
T + vij + Vijk 13.12(2) −19.29(2) −0.54(1) 0.01(1) −6.70(1)
r2

pt 2.646(2) −0.600(1) 0.070(0) −0.005(0) 2.111(1)
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TABLE III. Cluster contributions to the energy per nucleon and point radius in 16O when using the AV18 potential. Energies are in MeV/A

and radii in fm2. Averages are calculated using Nc = 6 × 105 configurations.

Observable 1b 2b 3b 4b 5b 6-16b Sum

T 19.78(2) 16.67(2) −6.13(3) 2.24(3) −0.44(3) 0.07(1) 32.19(5)
v1−6

ij −48.30(4) 10.69(3) −2.42(4) −0.59(5) −0.19(2) −40.81(6)

v7−14
ij −0.46(0) 3.48(1) −1.70(1) 0.69(1) −0.20(2) 1.82(3)

v
γ
ij 0.91(0) 0.03(0) −0.02(0) 0.00(0) 0.00(0) 0.91(0)

vij −47.85(4) 14.20(3) −4.15(4) 0.10(5) 0.00(0) −37.70(3)

T + vij 19.78(2) −31.18(2) 8.07(2) −1.91(3) −0.34(3) – − 5.51(2)

r2
pt 6.235(2) −0.672(2) 0.277(1) −0.074(1) −0.010(1) −0.002(0) 5.754(3)

Nevertheless, the CVMC energies are within 5% from the
GFMC values, and charge radii are remarkably close for all
the three quantum Monte Carlo methods. This corroborates
the accuracy of the wave functions employed in this work
to describe the ground state of closed-shell nuclei, which,
combined with the cluster expansion technique, allows reliable
variational calculations for nuclei as heavy as 40Ca.

The total energies of 16O and 40Ca for both AV18 and
AV18+UIX are reported in Tables VIII and IX, respectively.
Our variational calculations show that the AV18+UIX Hamil-
tonian underbinds both 16O and 40Ca, by 2.83(3) MeV/A and
3.63(10) MeV/A, respectively. The results obtained for 40Ca
are consistent with variational calculations for SNM performed
with the same interaction [2], which yields −11.85 MeV/A,
to be compared to the empirical value of � − 16 MeV/A.
This underbinding can be only partly ascribed to deficiencies
of the variational wave function, which has proven to be
accurate for describing infinite matter properties [47]. To
gauge the accuracy of the CVMC wave function in describing
closed-shell nuclei, we performed a benchmark calculation
with AFDMC using the AV6′ potential. This is a reprojection
of the full AV18 onto the first six operators that preserves the
deuteron binding energy and many of the properties of elastic
NN scattering [48]. To obtain 16O energies that are bound
against α-particle break up, the Coulomb interaction was
omitted. The results listed in Table X show a �0.25 MeV/A

and a �0.45 MeV/A energy difference in 4He and 16O
respectively between CVMC and AFDMC results. This is
expected for a variational versus a diffusion Monte Carlo
calculation. Charge radii are instead compatible between the
two methods, confirming the quality of the employed wave
function. Therefore, a large fraction of the missing binding
in 16O and 40Ca is due to limitations of the AV18+UIX
Hamiltonian. Note that these results show significantly less
binding per nucleon for both 16O and 40Ca than for 4He, i.e.,
they predict that 16O and 40Ca would break apart into 4He
nuclei. However, Table X indicates that 16O is stable against
breakup with the AV6′ interaction if the Coulomb interaction
is omitted.

For both 16O and 40Ca the expectation value of V 2π
ijk is

negative, and that of V R
ijk is positive, leading to an overall

attractive contribution of the 3N force, as for 4He. However,
by comparing the total energies for AV18 and AV18+UIX,
it turns out that 16O and 40Ca are less bound when the 3N
force is included. This is particularly evident in 40Ca, where
the UIX potential reduces the binding energy of �1 MeV/A.
This is somewhat consistent with the fact that the UIX force
is repulsive in SNM. Finally, it is interesting to notice how,
within a variational approach, the change in the behavior of the
employed 3N force—from attractive to repulsive—is already
manifest in relatively small nuclear systems, like 16O.

TABLE IV. Cluster contributions to the energy per nucleon and point radius in 16O when using the AV18+UIX potential. Energies are in
MeV/A and radii in fm2. Averages are calculated using Nc = 6 × 105 configurations.

Observable 1b 2b 3b 4b 5b 6-16b Sum

T 16.29(2) 16.34(2) −3.79(2) 0.90(2) −0.05(3) 0.00(0) 29.70(4)
v1−6

ij −41.90(3) 6.61(2) −0.95(4) −0.36(3) −0.22(4) −36.83(8)

v7−14
ij −0.82(0) 2.93(1) −1.01(1) 0.27(1) −0.06(1) 1.31(2)

v
γ
ij 0.83(0) 0.03(0) −0.02(0) 0.00(0) 0.00(0) 0.84(0)

vij −41.89(3) 9.57(2) −1.98(4) −0.10(4) −0.01(0) −34.41(2)

V 2π,A
ijk −2.49(1) 1.12(0) −0.29(1) 0.06(1) −1.59(2)

V 2π,C
ijk −1.69(0) 0.79(0) −0.26(0) 0.06(0) −1.10(0)

V R
ijk 2.83(1) −0.70(0) 0.12(1) −0.02(0) 2.23(1)

Vijk −1.35(1) 1.21(0) −0.43(1) 0.11(1) −0.45(2)
T + vij 16.29(2) −25.54(2) 5.78(2) −1.08(2) −0.14(2) – −4.70(2)
T + vij + Vijk 16.29(2) −25.54(2) 4.43(2) 0.13(2) −0.57(2) – −5.15(2)
r2

pt 7.353(3) −0.680(2) 0.217(1) −0.035(2) −0.007(1) −0.002(0) 6.846(3)
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TABLE V. Cluster contributions to the energy per nucleon and point radius in 40Ca when using the AV18 potential. Energies are in MeV/A

and radii in fm2. Averages are calculated using Nc = 5 × 105 configurations.

Observable 1b 2b 3b 4b 5b 6-40b Sum

T 20.80(1) 18.00(1) −8.60(3) 4.04(3) −1.22(10) 0.28(6) 32.29(15)
v1−6

ij −54.52(3) 15.80(2) −5.09(6) 0.05(9) 0.00(0) −43.76(8)

v7−14
ij −0.16(0) 4.45(1) −2.78(1) 1.47(2) −0.51(5) 2.47(7)

v
γ
ij 1.86(0) 0.07(0) −0.08(0) 0.00(0) 0.00(0) 1.85(0)

vij −52.81(3) 20.31(2) −7.95(6) 1.52(10) −0.24(3) −39.17(11)
T + vij 20.80(2) −34.81(2) 11.71(3) −3.91(5) 0.30(9) – −5.88(10)
r2

pt 11.204(3) −0.920(4) 0.506(3) −0.188(5) 0.006(7) 0.000(0) 10.609(7)

Three-nucleon forces significantly affect quantities other
than the energy, such as point radii and point densities.
The latter are related to the charge density, which can be
extracted from electron-nucleus scattering data, but they are
not observables themselves, as many-body currents and single-
nucleon electromagnetic form factors need to be accounted for.

Neglecting small effects, the charge radius 〈r2
ch〉 can be

expressed in terms of the point proton radius 〈r2
pt〉 [49],

〈
r2

ch

〉 = 〈r2
pt

〉+ 〈R2
p

〉+ N

Z

〈
R2

n

〉+ 3h̄2

4M2
pc2

, (56)

where 〈R2
p〉 = 0.770(9) fm2 is the proton radius [50], 〈R2

n〉 =
−0.116(2) fm2 is the neutron radius [50], and 3h̄2/(4M2

pc2) �
0.033 fm2 is the Darwin-Foldy term. Charge radii in 4He,
16O, and 40Ca for both AV18 and AV18+UIX are reported
in Tables VII–IX, respectively. In 4He AV18 produces a
charge radius larger than the experimental value. However, the
3N force shrinks the nucleus, improving the agreement with
experiment. Both CVMC values are reasonably consistent with
the VMC ones. In 16O and 40Ca instead, the NN interaction
alone results in too small radii, while the UIX potential
increases them towards and above their experimental values.
This is consistent with the observation that, as opposed to 4He,
for A = 16 and A = 40 the net effect of the UIX potential is
to make the systems more loosely bound.

The single-nucleon, two-nucleon, and two-nucleon opera-
tor point densities are defined as

ρN (r) = 1

4πr2

〈�V |∑i δ(r̃i)PNi
|�V 〉

〈�V |�V 〉 , (57)

ρNN (r) = 1

4πr2

〈�V |∑i<j δ(r − rij )PNi
PNj

|�V 〉
〈�V |�V 〉 , (58)

ρ2,p(r) = 1

4πr2

〈�V |∑i<j δ(r − rij )Op
ij |�V 〉

〈�V |�V 〉 , (59)

where N = p,n, PNi
= (1 ± τzi

)/2 are isospin projection
operators, and the operators Op

ij are given in Eq. (4). With
these definitions, ρN (r) is normalized to the number of protons
or neutrons, and ρNN to the number of pp, np, or nn pairs.
Note that for some of the alternative expansion schemes
normalization is ensured order-by-order by construction (ei-
ther defining a “number conserving” expansion [24,51–53],
or requiring a normalization factor [54]). In our expansion
scheme, the central one- and two-body densities are properly
normalized order-by-order. The first term of the corresponding
cluster expansion carries the full normalization, and higher
order contributions integrate to zero within Monte Carlo
statistical errors. This reflects the fact that at every order
a 3A dimensional integral is performed. The normalization
of the two-body operator densities is instead recovered only

TABLE VI. Cluster contributions to the energy per nucleon and point radius in 40Ca when using the AV18+UIX potential. Energies are in
MeV/A and radii in fm2. Averages are calculated using Nc = 5 × 105 configurations.

Observable 1b 2b 3b 4b 5b 6-40b Sum

T 17.35(1) 17.86(1) −5.65(2) 1.83(3) −0.54(9) 0.12(5) 30.97(14)
v1−6

ij −47.20(3) 10.20(2) −2.33(5) 0.09(8) 0.00(0) −39.24(7)

v7−14
ij −0.67(0) 3.68(1) −1.60(1) 0.52(2) −0.13(1) 1.80(3)

v
γ
ij 1.72(0) 0.06(0) −0.05(0) 0.00(0) 0.00(0) 1.73(0)

vij −46.15(2) 13.94(2) −3.99(5) 0.62(8) −0.08(2) −35.66(9)

V 2π,A
ijk −2.98(0) 1.86(0) −0.71(1) 0.20(1) −1.63(2)

V 2π,C
ijk −2.10(0) 1.33(0) −0.61(1) 0.19(1) −1.19(2)

V R
ijk 3.59(1) −1.25(0) 0.28(1) −0.05(0) 2.57(1)

Vijk −1.48(0) 1.93(1) −1.05(1) 0.37(3) −0.23(4)
T + vij 17.35(1) −28.29(2) 8.30(2) −2.16(3) 0.08(8) – −4.69(9)
T + vij + Vijk 17.35(1) −28.29(2) 6.81(2) −0.23(3) −0.97(8) – −4.92(10)
r2

pt 13.025(3) −0.903(4) 0.393(2) −0.091(5) −0.022(7) −0.007(4) 12.394(11)
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TABLE VII. Total energies (in MeV/A) and charge radii (in fm)
in 4He for different potentials. VMC and GFMC results are taken
from Refs. [6,46].

Obs Potential CVMC VMC GFMC Expt.

〈E〉 AV18 −5.73(1) −5.93(1) −6.02(1) −7.07
AV18+UIX −6.70(1) −6.95(1) −7.08(1)√

〈r2
ch〉 AV18 1.725(3) 1.734(3) 1.676(3)

AV18+UIX 1.673(3) 1.665(3) 1.661(3)

at convergence, and each order of the cluster expansion
contributes to it.

Figures 1–3 show the point proton densities of 4He,
16O, and 40Ca, respectively, obtained with the AV18 and
AV18+UIX interactions. They are compared to the values
obtained from the “sum-of-Gaussians” parametrization of the
charge densities given in Ref. [56] by unfolding the nucleon
form factors and subtracting the small contribution of the
neutrons. As discussed at length in Sec. IV C, neglecting
two-body meson exchange currents (MECs) is likely to have
little effect in 16O and 40Ca. On the other hand, MECs are
important in the description of the 4He elastic form factor,
from which the charge densities are extracted. Hence, the
discrepancy between theory and experiment of Fig. 1 does
not have to be ascribed to deficiencies of the CVMC wave
function. In fact, the 4He point proton density obtained within
CVMC for AV18+UIX agrees very well with the GFMC result
for the same interaction.

For the lightest system the effect of the 3N force on the
density is not dramatic, as expected by looking at the small
difference in the charge radii of Table VII. In oxygen and
calcium, instead, the addition of the UIX potential pushes the
nucleons far away from the center of mass. For both systems
the density at small distances is substantially depleted, with
a �25% reduction of both the peak in 16O at 1.4 fm and the
plateau in 40Ca around 2 fm. Remarkably, this effect results
in a better description of the structure of 16O, for which the
AV18+UIX prediction of the charge radius is less than 2%
different from the experimental value, as shown in Table VIII.
However, the situation is different in the case of 40Ca, for which
the employed 3N force is too repulsive and pushes the nucleons
towards the surface of the nucleus yielding an excessively large
charge radius, as in Table IX. The point proton density of 40Ca
turns out to be 0.8 fm−3 at 1 fm, and 0.7 fm−3 in the plateau
after 1.6 fm. These values are consistent with the saturation
density of SNM obtained employing the same Hamiltonian,

TABLE VIII. Total energies (in MeV/A) and charge radii (in fm)
in 16O for different potentials.

Obs. Potential CVMC Expt.

〈E〉 AV18 −5.51(2) −7.98
AV18+UIX −5.15(2)√

〈r2
ch〉 AV18 2.538(2) 2.699(5)

AV18+UIX 2.745(2)

TABLE IX. Total energies (in MeV/A) and charge radii (in fm)
in 40Ca for different potentials.

Obs. Potential CVMC Expt.

〈E〉 AV18 −5.88(10) −8.55
AV18+UIX −4.92(10)√

〈r2
ch〉 AV18 3.361(2) 3.478(1)

AV18+UIX 3.617(2)

while AV18 alone significantly overpredicts the saturation
density [2].

It is interesting to compare the densities of these nuclei
in which α clustering can potentially occur. In Fig. 4 we
collect the CVMC results for the point proton densities of
4He, 16O, and 40Ca obtained with AV18+UIX together with
those for 8Be and 12C coming from VMC calculations using
the same interaction [55]. The 4He density shows a very
large point density at small distance. When integrated over
the volume, about half the nucleons reside inside 1.25 fm,
where the density is above 0.08 fm−3. The 8Be density has a
low, broad peak with half the nucleons residing inside 2.25 fm,
consistent with a two-α cluster structure as observed in Fig. 15
of Ref. [57]. The 12C density peaks at a slightly smaller
distance and noticeably higher value, with a larger dip at the
center. This is consistent with a more tightly bound three-α
cluster—either in a triangular configuration with a low-density
region at the center of mass, or alternatively with one α in the
s shell and two α’s in the p shell. Similarly, 16O can be viewed
as a tetrahedral four-α cluster with the α’s at somewhat greater
distance from the center of mass, or as one s-shell and three
p-shell α’s with a larger dip-peak difference than in 12C. The
40Ca density is more complicated, but might be thought of as
two s-shell α’s giving a larger central peak, while three p-shell
and five d-shell α’s give a broad shoulder at 1–3 fm.

The two-nucleon point densities of 4He, 16O, and 40Ca
are reported in Figs. 5–7, respectively, for both AV18 and
AV18+UIX. Upper and lower curves refer to np and pp pairs,
respectively. The fact that ρNN is very small for r � 0 is a
consequence of the repulsive core of the NN potential. As
observed for the point-proton densities, the effect of the 3N
force on the two-nucleon densities is appreciably different
in light- and medium-heavy systems. In 4He the pp density is
almost unchanged, while the np density is enhanced around the
peak at 1.1 fm. In heavier systems there is a severe depletion
of both pp and np densities, again due to the peculiar repulsive
effect of the UIX potential that tends to push nucleons apart.

TABLE X. Total energies (in MeV/A) and charge radii (in fm)
in 4He and 16O for the AV6′ potential. The electromagnetic term v

γ
ij

is not included. AFDMC energies are taken from Ref. [21].

Obs. Nucleus CVMC AFDMC

〈E〉 4He −6.53(1) −6.77(1)
16O −6.79(3) −7.23(2)√

〈r2
ch〉 4He 1.678(3) 1.674(9)

16O 2.580(2) 2.52(3)
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FIG. 1. Point proton densities in 4He. The solid green line refers
to the “experimental” result; see text for details. The dash-dotted
brown line is the GFMC result for AV18+UIX [55].

Both figures and tables for the CVMC single-nucleon and
two-nucleon point densities for 16O and 40Ca, together with
the VMC results for A � 12, are available online [55,58].

The two-nucleon operator point densities are shown in
Figs. 8–10 for 4He, 16O, and 40Ca, respectively. It can be
observed that the larger the system, the wider the range of
central two-body density. In fact, the central two-body operator
density is just the sum of pp, np, and nn densities in Figs. 5–7.
On the other hand, spin-isospin densities are appreciably
nonvanishing only for r � 3.5 fm, and are largely independent
of the nucleus, with the position of the peaks situated around
1 fm. This extends the results of Ref. [59], where the two-body
densities normalized at short distances in A = 3 and A = 4
systems exhibit a universal behavior up to about 1 fm in all
nuclei. Among the spin-isospin densities, ρ2,σ τ and ρ2,tτ are
characterized by longer ranges and larger amplitudes, as they
arise from the one-pion-exchange part of the NN interaction.
These results are qualitatively consistent with the findings of
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FIG. 2. Point proton densities in 16O. The green line refers to the
“experimental” result; see text for details.
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FIG. 3. Point proton densities in 40Ca. The green line refers to the
“experimental” result; see text for details.

Ref. [51], although no 3N forces were employed in that work.
The peak values of the ρ2,σ τ and ρ2,tτ scale as 1 : 4 : 10 for
4He : 16O : 40Ca, or just as the number of α-particle clusters.

B. Momentum distributions

The probability of finding a proton or neutron with
momentum k is proportional to the momentum distribution,

nN (k) =
∫

d r ′
1 d r1 d r2 · · · d rA �†(r ′

1,r2, . . . ,rA)

×e−ik·(r1−r ′
1) PN1 �(r1,r2, . . . ,rA), (60)

which is normalized as

NN =
∫

dk
(2π )3

nN (k), (61)

NN being the number of protons or neutrons (Np ≡ Z). In
this work we present results for symmetric nuclei implying
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FIG. 4. Point proton densities for AV18+UIX. 4He, 16O, and 40Ca
are the results of this work. 8Be and 12C are VMC results collected in
Ref. [55].
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FIG. 5. Two-nucleon densities of 4He.

np(k) = nn(k). Equation (60) can be rewritten as

nN (k) = 1

A

∑
i

∫
d r1 · · · d r i · · · d rA

∫
d�x

∫ xmax

0
dx x2

×�†(r1, . . . ,r i , . . . ,rA) e−ik·x

×PNi
�(r1, . . . ,r i + x, . . . ,rA). (62)

The Fourier transform can be computed by Monte Carlo
integration. Spatial configurations are sampled as explained
in Sec. III B. The average over all particles i in each
configuration is then performed, and for each particle, a
grid of Gauss-Legendre points xi is used to compute the
Fourier transform. The polar angle d�x is also sampled by
Monte Carlo integration, with a randomly chosen direction for
each particle in each configuration. For all the nuclei under
study we calculated n(k) up to k = 10 fm−1, integrating to
xmax = 20 fm using 200 Gauss-Legendre points.

As reported in Ref. [23], with the employed expansion the
three-body clusters give small contribution to the momentum
distribution. In this work, nN (k) is evaluated up to three-
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FIG. 6. Two-nucleon densities of 16O.
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FIG. 7. Two-nucleon densities of 40Ca.

body cluster and then extrapolated using Eq. (55). In order
to save computing time, spin-orbit correlations are turned
off in the calculation of the momentum distribution. This
approximation, also used in standard VMC calculations [60],
is justified by the small effect of spin-orbit correlations on
nN (k) compared to the first six operators of the two-body
correlations. The results for 4He, 16O, and 40Ca are shown
in Figs. 11–13, respectively. For A = 4 the VMC result
for AV18+UIX [61] is also displayed for comparison. The
proton momentum distributions are reported for both AV18
and AV18+UIX. The 3N force makes only small changes to
nN (k). Near k = 2 fm−1 the momentum distribution manifests
a sharp change in slope, as previously observed in both light-
[60] and medium-mass [52] nuclei. This is attributed to the
strong tensor correlations induced by the one-pion-exchange
part of the NN potential, further enhanced by the two-pion-
exchange part of the 3N potential, when included. At higher
momentum, the tail of nN (k) manifests the expected universal
behavior determined by the short-range correlations, i.e., by
the short-range structure of the employed Hamiltonian, as
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FIG. 8. Operator two-nucleon densities in 4He. 1, τ, σ, στ, t, tτ

correspond to operators p = 1, . . . ,6 in Eq. (4).
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FIG. 9. Operator two-nucleon densities in 16O.

shown in Fig. 14 and discussed at length in a number of
other works [24,53,59,62]. Such universality refers to the
independence of the tail with respect to the specific nucleus.
On the other hand, the high-momentum tail strongly depends
on the nuclear interaction model. The recently developed
local chiral interactions, which are significantly softer than
the phenomenological interactions employed in this work,
yield a momentum distribution characterized by weaker high-
momentum components [63] than those of Figs. 11–13.

Compared to the other local or nearly local operators, like
the kinetic energy, the potential energy, and the densities, the
momentum distribution is strictly a nonlocal operator. In order
to check the convergence of the cluster expansion for such
operator we computed the kinetic energy by integrating the
momentum distribution

Ekin
N (k) = h̄2

2mN

4π

∫ k

0
dk′ k′ 4 nN (k′), (63)

for each order of the expansion. The contributions for 16O
with AV18+UIX up to k = 10 fm−1 are 16.3(2) MeV/A
for one-body cluster, 16.0(5) MeV/A for two-body cluster,
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FIG. 10. Operator two-nucleon densities in 40Ca.
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FIG. 11. Proton momentum distributions in 4He. Averages are
calculated on Nc = 107 configurations. The brown line is the VMC
result for AV18+UIX [61].

and −4.4(4) MeV/A for three-body cluster. The integration
of the extrapolated nN (k) leads to 28.9(6) MeV/A. This
is compatible with the cluster contributions reported in the
first line of Table IV. The missing 4- to 16-body cluster
contributions to the integrated kinetic energy, that account
for �1 MeV/A, are fully recovered by the extrapolation
of nN (k). This validates the convergence of the expansion
and confirms the negligible effect of spin-orbit correlations
on the momentum distribution. Similar outcomes are found
for the other nuclei considered in this work. The errors on
the integrated kinetic energies are larger than those of the
direct calculation because of the propagation of uncertainties
in the integration of nN (k), which above 5 fm−1 has large
statistical errors due to the cancellation of positive and negative
small cluster contributions. However, as discussed in the
next paragraph, the integrated strength of the momentum
distribution saturates before 5 fm−1. Simulations for nN (k)
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FIG. 12. Proton momentum distributions in 16O. Averages are
calculated on Nc = 107 configurations for AV18, and on Nc = 8 ×
106 configurations for AV18+UIX.
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FIG. 13. Proton momentum distributions in 40Ca. Averages are
calculated on Nc = 107 configurations for AV18, and on Nc = 8 ×
106 configurations for AV18+UIX.

have been thus carried out with good statistics up to that
momentum value, using up to 107 Monte Carlo configurations.

The momentum distribution integrated strength as a func-
tion of k is reported in Fig. 15 for AV18+UIX. At low
momentum it decreases as A increases, because the nuclei
become more tightly bound, and the fraction of nucleons at
low momentum decreases. At k = 2 fm−1 for all the systems
analyzed, the integrated strength is already �93% of the total,
and it becomes �99% at k = 4 fm−1. Less than 1% of the
total strength is given by the tail of the momentum distribution
above 4 fm−1.

The figures and the tables for the CVMC momentum
distributions for 16O and 40Ca, together with the VMC results
for A � 12, are available online [61].

C. Charge form factors and Coulomb sum rules

The double differential cross section of the inclusive
electron-nucleus scattering process in which an electron of
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FIG. 14. Proton momentum distributions for AV18+UIX.
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FIG. 15. Integrated strengths for AV18+UIX. See text for details.

initial four-momentum ke = (ke,Ee) scatters off a nuclear
target to a state of four-momentum k′

e = (k′
e,E

′
e), the hadronic

final state being undetected, can be written in the one-photon-
exchange approximation as

d2σ

dEe′d�e′
=
(

dσ

d�e′

)
M

[ALRL(q,ω) + AT RT (q,ω)], (64)

where

AL =
(

Q2

q2

)2

, AT = 1

2

Q2

q2
+ tan2 θe′

2
, (65)

and (
dσ

d�e′

)
M

=
[

α cos θe′
2

2Ee sin2 θe′
2

]2

(66)

is the Mott cross section. In the above expressions, α �
1/137 is the fine structure constant, d�e′ is the differential
solid angle in the direction of ke′ , q = ke − ke′ = (q,ω) is
the four-momentum transfer, and Q2 = −q2 = q2 − ω2. The
longitudinal and transverse response functions are defined as

Rα(q,ω) =
∑
f

〈f |jα(q,ω)|0〉〈f |jα(q,ω)|0〉∗δ(Ef −ω−E0),

α = L,T , (67)

where |0〉 and |f 〉 represent the nuclear initial and final states
of energies E0 and Ef , and jL(q,ω) and jT (q,ω) are the
electromagnetic charge and current operators, respectively.

Recently, the quasielastic electromagnetic response func-
tions of 4He and 12C have been computed within GFMC using
realistic nuclear two- and three-body forces and consistent
one- and two-body electroweak currents [64,65]. Besides the
transverse enhancement brought about by two-body current
contributions, the authors of Ref. [65] have found no evidence
of in-medium modification of the nucleon form factor in the
analysis of the longitudinal response function of 12C. This is
at variance with the findings of Ref. [15], where changes to
the proton Dirac form factor induced by the nuclear medium
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leads to a dramatic quenching of the Coulomb sum rule,

SL(q) = 1

Z

∫ ∞

w+
th

dω
RL(q,ω)

G
p 2
E (Q2)

, (68)

where ωth is the energy transfer corresponding to the inelastic
threshold, and G

p
E(Q2) is the proton electric form factor

evaluated at four-momentum transfer Q2.
The one-body charge operator employed in the GFMC

calculations has the standard expressions obtained from a
relativistic reduction of the time component of the covariant
single-nucleon current,

jL(q,ω) =
[

εi(Q2)√
1 + Q2/(4m2)

− i
2μi(Q2) − εi(Q2)

4m2
q

· (σ i × pi)

]
eiq·r i , (69)

with

εi(Q
2) = G

p
E(Q2)

1 + τzi

2
+ Gn

E(Q2)
1 − τzi

2
,

μi(Q
2) = G

p
M (Q2)

1 + τzi

2
+ Gn

M (Q2)
1 − τzi

2
. (70)

In this work we adopted Kelly’s parametrization [66] for the
nucleon electric and magnetic form factors G

p,n
E,M .

In RL(q,ω), the ω dependence enters via the energy-
conserving δ function and the four-momentum transfer Q2

of the electroweak form factors of the nucleon. The latter
can be removed by evaluating these form factors at Q2

qe =
q2 − ω2

qe, where ωqe is the energy transfer corresponding to the
quasielastic peak, and by dividing the response by the factor
G

p 2
E (Q2

qe). Therefore, the Coulomb sum rule can be very well
approximated by the following ground-state expectation value:

SL(q) = 1

Z
[〈0|O†

L(q)OL(q)|0〉 − |〈0; q|OL(q)|0〉|2], (71)

where OL(q) = jL(q,ωqe)/G
p
E(Q2

qe) [67]. The Coulomb sum
rule defined in Eq. (68) only includes the inelastic contribution
to Rα(q,ω), i.e., the elastic contribution represented by the
second term on the right-hand side of Eq. (71), where |0; q〉
denotes the ground state of the nucleus recoiling with total
momentum q, has been removed. This term is proportional to
the longitudinal elastic form factor, which is given by

FL(q) = 1

Z
G

p
E

(
Q2

el

)〈0; q|OL(q)|0〉, (72)

where Q2
el = q2 − ω2

el, and ωel is the energy transfer corre-
sponding to elastic scattering, ωel =

√
q2 + m2

A−mA (mA is the
mass of the target nucleus).

Neglecting the small spin-orbit contribution of Eq. (69), the
Coulomb sum rule and the elastic form factor can be expressed
as

SL(q) = 1

Z

1

G
p 2
E

(
Q2

qe

) 1

1+Q2
qe/(4m2)

{
G

p 2
E

(
Q2

qe

)
[ρ̃pp(q)+Z]

+Gn 2
E

(
Q2

qe

)
[ρ̃nn(q) + (A − Z)]
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FIG. 16. Longitudinal elastic form factors for 4He. Shaded areas
indicate propagated Monte Carlo statistical errors in the Fourier
transforms. Experimental data are from an unpublished compilation
by I. Sick, based on Refs. [68–72].

+ 2 G
p
E

(
Q2

qe

)
Gn

E

(
Q2

qe

)
ρ̃np(q)

− [Gp
E

(
Q2

qe

)
ρ̃p(q) + Gn

E

(
Q2

qe

)
ρ̃n(q)

]2}
, (73)

FL(q) = 1

Z

G
p
E

(
Q2

el

)
ρ̃p(q) + Gn

E

(
Q2

el

)
ρ̃n(q)√

1 + Q2
el/(4m2)

, (74)

where ρ̃N (q) and ρ̃NN(q) are the Fourier transform of the
densities defined in Eqs. (57) and (58).

Here we compute the Coulomb sum rules and the elastic
form factors of 4He, 16O, and 40Ca, to provide a useful
benchmark for current and future analysis of electron-nucleus
scattering data. In particular, our results for 16O and 40Ca, when
compared to experiment, should further elucidate the role of
in-medium modification of the nucleon form factors.

The 4He longitudinal elastic form factor is compared to
experimental data in Fig. 16. Our theoretical results for
the AV18 interaction significantly overpredict the diffraction
minimum and maximum positions. Inclusion of the 3N force
brings theory closer to experiment, but it is known that MECs
are needed to further shift the peaks of the longitudinal elastic
form factor to lower values of the momentum transfer and
achieve agreement with experiment [1,73]. This is shown in
Fig. 17 where the GFMC longitudinal elastic form factor with
and without MEC contributions is displayed. Note that up to
�6 fm−1 the CVMC form factor perfectly matches the GFMC
result obtained without MECs.

The longitudinal form factor of 16O is shown in Fig. 18. The
experimental data are well reproduced by our calculations once
the 3N force is included. In analogy to 12C [67], it is plausible
that two-body current contributions are negligible at low q,
and become appreciable only for q > 3 fm−1. In fact, in the
high-momentum region MECs interfere destructively with the
one-body contributions, bringing theoretical prediction of 12C
into closer agreement with experiment. This is consistent with
the findings of Ref. [74], where MECs improve the description
of 16O experimental data above 2.5 fm−1.
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FIG. 17. Longitudinal elastic form factors for 4He. Results
employing the AV18+UIX potential are reported for CVMC and
GFMC, the latter with and without MECs. Experimental results are
the same as in Fig. 16.

As for the 40Ca nucleus, a better agreement with experi-
ments is achieved when AV18 only is present in the Hamilto-
nian (see Fig. 19). Assuming that, as for 12C and 16O, two-body
current contributions have little effect for q � 3 fm−1, we can
infer that the UIX potential moves the diffraction peaks to
excessively low values of q. This failure of the UIX interaction
is directly related to the behavior of the point proton density
displayed in Fig. 3, where nucleons are pushed too far away
from the center of mass when UIX is employed.

The longitudinal sum rules of 4He, 16O, and 40Ca for
AV18+UIX obtained from Eq. (73) are displayed in Fig. 20.
The best GFMC estimates for SL(q) in 4He and 12C [67]
are also shown for comparison (solid symbols). GFMC
calculations have been carried out employing the AV18+IL7
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FIG. 18. Longitudinal elastic form factors for 16O. Shaded areas
indicate propagated Monte Carlo statistical errors in the Fourier
transforms. Experimental data are from an unpublished compilation
by I. Sick, based on Refs. [75–77].
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FIG. 19. Longitudinal elastic form factors for 40Ca. Shaded areas
indicate propagated Monte Carlo statistical errors in the Fourier
transforms. Experimental data are from an unpublished compilation
by I. Sick, based on Refs. [77–79].

potential and considering the full contribution of one- and two-
body electromagnetic currents. The latter have only a relatively
small effect on the longitudinal sum rule, mainly affecting the
magnitude of the peak for 12C and the region above 3 fm−1.
In this region, in addition to MECs, the discrepancies between
CVMC and GFMC are due to the spin-orbit contribution in the
charge operator, neglected in CVMC calculations but included
in Ref. [67]. In the large q limit, the CVMC sum rules differ
from unity because of relativistic corrections in the charge
current, which gives the factor 1/[1 + Q2

qe/(4m2)] of Eq. (73).
Extracting the Coulomb sum rules from the experimental

response functions involves nontrivial difficulties. The experi-
mental determination of SL(q) requires measuring the associ-
ated RL(q,ω) from the inelastic threshold to infinity. However,
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FIG. 20. Coulomb sum rules for A � 40. Symbols with statistical
error bars show GFMC calculations employing the AV18+IL7
potential [67]. The curves show CVMC results for AV18+UIX.
Shaded areas indicate propagated Monte Carlo statistical errors in
the Fourier transforms.
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inclusive electron scattering experiments can only explore the
spacelike region of the four-momentum transfer ω < q. There-
fore, a meaningful comparison between theory and experiment
requires estimating the strength outside the region covered by
electron-scattering experiments. Furthermore, the authors of
Ref. [65] have shown that the transitions to the low-lying states
of 12C give significant contributions to 〈0|O†

L(q)OL(q)|0〉
that are not present in the longitudinal response functions
extracted from inclusive (e,e′) cross sections. Therefore,
before comparing experiment with the present theory, which
computes the sum rule of the total inelastic response rather
than just the quasielastic one, these contributions have to
be explicitly removed from the theoretical sum rule. In the
12C case, the transition form factors to Jπ = 2+, 0+

2 (Hoyle),
and 4+ states were taken from experiments. However, this
approach is not suitable to the present work because of the
large numbers of low-lying transitions of 16O and 40Ca. For this
reason we refrain from reporting experimental data in Fig. 20.

V. CONCLUSIONS

A variational Monte Carlo analysis of the properties of three
closed-shell nuclei, 4He, 16O, and 40Ca, has been performed.
We employed the accurate phenomenological nuclear Hamil-
tonian AV18+UIX, which is capable of simultaneously de-
scribing two-nucleon bound and scattering states, the binding
energy of 4He, and the saturation density of isospin-symmetric
nuclear matter. The CVMC algorithm has been improved by in-
cluding five-body terms in the cluster expansion of all the spin-
isospin dependent correlations. Therefore, this work represents
significant progress with respect to Ref. [22,23], in which
the older AV14+UVII Hamiltonian was employed, the cluster
expansion was limited to four-body terms only, spin-orbit cor-
relations were treated only at two-body cluster level, and other
approximations were made in the construction of the wave
function and in estimating the variational expectation values.

In order to perform extensive searches for the optimal
variational parameters in the multidimensional parameter
space defined by the employed wave functions, we
implemented in the CVMC program the open-source library
for nonlinear optimization NLopt [43]. The accuracy of the
optimized wave function has been tested against standard
VMC and GFMC calculations for 4He using both AV18 and
AV18+UIX, and against AFDMC results for 4He and 16O
employing the AV6′ potential.

We present results for the binding energy, charge radius,
one- and two-body densities, single-nucleon momentum dis-
tribution, charge form factor, and Coulomb sum rule, fully
accounting for the high-momentum components of the nuclear
interaction. We find that the UIX three-body potential, known
to be attractive for A � 12, becomes repulsive for A � 16. At
variance with the 4He case, the addition of the UIX potential
makes 16O and 40Ca less bound. This repulsive effect is not
limited to the binding energies. In 16O and 40Ca nucleons are
pushed far away from the center of mass when the 3N force is
included, resulting in larger radii, broader densities, and a shift
of the charge form factor diffraction peaks towards smaller
momenta. Although relying on different interaction schemes,
a similar behavior of three-body interactions is found in CC and

IM-SRG calculations for medium-heavy nuclei (see [16,18,80]
and references therein). We note that within CVMC there is
no need to soften the NN potential and to employ either the
normal ordering procedure or a two-body density dependent
approximation for the three-body force.

Although the UIX three-nucleon interaction manifests a
change in behavior—from attractive to repulsive—for A � 16,
it appears to provide a better description of radii, densities,
and charge form factors, of nuclei at least up to A = 16.
For instance, the charge radius and the position of the first
peak in the longitudinal elastic form factor of 16O are better
reproduced by the full AV18+UIX interaction than by the
AV18 potential alone. This is no longer true in 40Ca, where
the inclusion of the 3N potential yields a too large charge
radius and shifts the diffraction peaks of the charge form factor
towards too small momenta. The experimental data for 40Ca
lie in between the CVMC theoretical predictions for AV18 and
AV18+UIX. The fact that the AV18+UIX Hamiltonian is not
adequate to describe medium-mass nuclei is consistent with the
deficiencies in the theoretical prediction of isospin-symmetric
nuclear matter employing the same interaction. Although the
correct saturation density is obtained, the binding energy
per nucleon is too small [2]. In this regard, as a follow up
of this work, we will consider local NN potentials recently
derived in coordinate space within chiral perturbation theory
[4,29,30,32–35]. The latter are characterized by a spin-isospin
structure analogous to the one of AV18+UIX so the CVMC
can be straightforwardly extended to this class of interactions.
It will be interesting to see whether local chiral effective field
theory Hamiltonians provide a satisfactory description of 16O,
40Ca, and light nuclei.

We also computed the single-nucleon momentum distri-
butions of 16O and 40Ca. These extend the VMC collection
of Refs. [60,61] obtained using realistic phenomenological
Hamiltonians, which include both NN and 3N interactions.
Together with the inclusion of three-body and higher-order
terms in the cluster expansion, this makes the calculations of
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FIG. 21. Central correlation functions for AV18 and AV18+UIX
for A = 4 and A > 4 (the same two-body correlations have been
employed in 16O and 40Ca; see text for details).
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FIG. 22. Radial correlation functions for A = 4 and AV18.
τ, σ, στ, t, tτ, ls, lsτ correspond to operators p = 2, . . . ,8 in Eqs. (4)
and (6).

n(k) accurate in both the high- and low-momentum regions.
The universality of the tail of the momentum distribution,
i.e., the independence of the high-momentum component
upon the specific nucleus, has been confirmed for the selected
interaction scheme. The momentum distributions are of
immediate use for the studies of the high-momentum structure
of nuclei, which includes the EMC effect and the analysis
of short-range correlations in nuclei [81]. For the latter, the
analysis of two-nucleon momentum distributions derived
employing realistic two- and three-body nuclear interactions
will be of great interest. A future project will focus on the
CVMC computation of two-nucleon momentum distributions
in medium-heavy nuclei, extending the VMC collection of
Refs. [60,82] and providing a comparison with the findings of
Ref. [24].

We plan to employ the momentum distributions, and the
average separation energies, computed in this work to evaluate
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FIG. 23. Radial correlation functions for A = 4 and AV18+UIX.
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FIG. 24. Radial correlation functions for A > 4 and AV18.

the electroweak response functions of 16O and 40Ca in the
impulse approximation, with particular emphasis on the role
of three-nucleon forces, extending the study of Ref. [83] to
heavier nuclei. This will be relevant for neutrino-oscillation
experiments, such as the Deep Underground Neutrino Exper-
iment (DUNE) [84], and to elucidate quark and gluon effects
in nuclei, which have long been actively sought, but never
unambiguously identified.

We computed the Coulomb sum rules for closed-shell nuclei
ranging from A = 4 to A = 40. Our calculations show very
little A dependence of the sum rules for A � 12 for momentum
transfers as low as 1 fm−1. These results are also consistent
with the recent GFMC calculation for 12C [65].

Another future project will be to examine closed-shell
nuclei +/− one nucleon, e.g., 15N, 15O, 17O, 17F, to study
various properties such as spin-orbit splitting, which was
previously evaluated in 15N using CVMC in Ref. [85], charge-
symmetry breaking [86], and β decay.
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FIG. 25. Radial correlation functions for A > 4 and AV18+UIX.
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TABLE XI. Variational parameters for 4He, 16O, and 40Ca.

Param. 4He 16O 40Ca

AV18 AV18+UIX AV18 AV18+UIX AV18 AV18+UIX

VS −47.824 MeV −51.459 MeV −44.860 MeV −43.032 MeV −47.261 MeV −45.606 MeV
Rs 2.174 fm 2.039 fm 3.325 fm 3.542 fm 4.592 fm 4.872 fm
as 0.371 fm 0.340 fm 0.439 fm 0.641 fm 0.690 fm 0.930 fm
αs 0.126 0.285 −0.056 −0.091 −0.056 −0.091
ρs 1.643 fm 1.131 fm 1.847 fm 1.009 fm 1.847 fm 1.009 fm
kF 1.864 fm−1 1.7036 fm−1 1.604 fm−1 1.309 fm−1 1.604 fm−1 1.309 fm−1

α 0.759 0.745 0.787 0.893 0.787 0.893
βc 0.976 0.994 1.078 1.172 1.078 1.172
βt 1.206 1.341 1.130 1.194 1.130 1.194
dS 3.361 fm 3.539 fm 2.787 fm 2.502 fm 2.787 fm 2.502 fm
dP 4.711 fm 4.039 fm 2.867 fm 3.212 fm 2.867 fm 3.212 fm
dt 6.449 fm 6.716 fm 4.655 fm 4.312 fm 4.655 fm 4.312 fm
t1 5.792 5.769 5.165 4.097 5.165 4.097
t2 4 4 4 4 4 4
t3 0.127 fm−1 0.117 fm−1 0.252 fm−1 0.202 fm−1 0.252 fm−1 0.202 fm−1

ε2π,A −9.60 ·10−4 −8.77 ·10−4 −8.77 ·10−4

εR −8.22 ·10−4 −7.87 ·10−4 −7.87 ·10−4

η 0.693 1.005 1.005
cy 1.337 fm−2 1.601 fm−2 1.619 fm−2

ct 1.811 fm−2 1.616 fm−2 1.734 fm−2
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APPENDIX: WAVE FUNCTION DETAILS

Figures 21–25 and Table XI provide the radial correlation
functions and all the variational parameters for the systems
under study for both AV18 and AV18+UIX.
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