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From local correlations to regional systematics
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Local correlations of 21
+ excitation energies and B(E2,21

+ → g.s.) values require linear NpNn systematics
in a logarithmic scale, as confirmed by an experiment survey. Based on local correlations of α-decay energies,
neutron separation energies, and proton separation energies, one can decouple them into their proton and neutron
contributions separately. These contributions exhibit smooth regional systematics beyond the NpNn scheme.
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I. INTRODUCTION

It is known that 21
+ excitation energies (denoted by E2)

and B(E2,21
+ → g.s.) values [denoted by B(E2)] of heavy

nuclei can be systematized by their NpNn product, where Np

and Nn are the numbers of valence protons and neutrons (or
holes), respectively [1–3]. Recently, local correlations of E2
and B(E2) as

F (Np,Nn) + F (Np + i,Nn + j ) − F (Np + i,Nn)

−F (Np,Nn + j ) � 0 (1)

was empirically suggested to be a generalization of the NpNn

scheme [4], where F refers to the nuclear observable under
investigation; i and j can take the value of 1 or 2. Actually, such
E2 and B(E2) local correlations were already found in the
1970s through schematic Hartree-Fock and collective-model
derivations [5]. Later, they were verified by an experimental
survey [6], and successfully applied for data prediction [7].
We note that α-decay energies (denoted by Qα), neutron
separation energies (denoted by Sn), and proton separation
energies (denoted by Sp) are also regulated by the same local
correlations as Eq. (1) [8,9]. These nuclear-mass-related local
correlations were derived from the Garvey-Kelson relations
[10], the linearity in the evolution of neutron (Sn) and proton
(Sp) separation energies [11]. and the odd-even cancellation
of nuclear binding energies [12,13]. Using the AME2012
database [14], their accuracy was demonstrated [8,9]. Thus,
we believe that Eq. (1) is theoretically and empirically reliable
for E2, B(E2), Qα , Sn, and Sp values.

In Ref. [4], the local correlation behavior of E2 and B(E2)
values was derived from the functional continuity of the NpNn

scheme, which corresponds to a first-order approximation of
the function F around (Np,Nn). If higher-order precision is
desired, Eq. (1) requires additional constraints on the NpNn

scheme. In contrast, the Qα , Sn, and Sp data do not yet have
NpNn systematics. It is still desirable, however, to find some
regularity in regional Qα , Sn, and Sp evolution in terms of Np

and Nn. Thus, in this work we try to clarify the necessary
constraint on the NpNn scheme from the high-precision
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requirement of Eq. (1), and to develop a new description of
nuclear regional systematics from this relation.

II. FORMULISM

We take the nuclear observable F as a two-dimensional
function of (Np,Nn) in Eq. (1), and expand the function F to
second order. In this way, Eq. (1) is reduced to a second-order
partial differential equation about Np and Nn according to

∂2F

∂Np∂Nn

� 0. (2)

If F is also a smooth one-dimensional function of the
product NpNn, then Eq. (2) becomes

∂2F

∂Np∂Nn

= dF

d(NpNn)
+ NpNn

d2F

d(NpNn)2
� 0. (3)

The solution of Eq. (3) is

F = c1 ln(NpNn) + c2, (4)

where c1 and c2 are arbitrary constants. Equation (4) indicates
that when constrained by the high-precision requirement
of Eq. (1) the NpNn plot should exhibit linearity in the
logarithmic scale.

On the other hand, the general solution of Eq. (2) is

F (Np,Nn) = fp(Np) + fn(Nn), (5)

where fp and fn are arbitrary functions of Np and Nn,
respectively. Equation (5) indicates that any nuclear observable
bound by Eq. (1) can be decoupled into separate proton
and neutron contributions. If such an observable varies
smoothly across the chart of nuclides, its proton and neutron
contributions should also exhibit smooth regional systematics
as functions of Np and Nn. It is noteworthy that Eq. (4) is just
an example of Eq. (5), given that ln(NpNn) = ln Np + ln Nn.

III. LOGARITHMIC-Np Nn LINEARITY OF E2 AND B(E2)
VALUES

E2 and B(E2) values are bound both by Eq. (1) and by
the NpNn scheme. Thus, they provide the best platform to
illustrate the constraint of Eq. (1) on the NpNn scheme, i.e.,
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FIG. 1. E2 values plotted vs the logarithmically scaled NpNn

product. All the data are from the ENSDF [15] compilation. Solid
lines represent the results of fitting to Eqs. (4) and (6) with the best-fit
results listed in Table II. Three abnormal branches due to the Z = 64
subshell are highlighted by circles in (c).

the logarithmic linearity defined by Eq. (4). In Figs. 1 and 2 we
plot the experimental E2 and B(E2) values [15,16] against the
logarithmically scaled NpNn product for all six of the major
regions of A > 100 nuclei, partitioned by magic numbers: 28,
50, 82, 126, and 184. Table I specifies the range of proton and
neutron numbers for each mass region.

A. E2

As expected, Fig. 1 exhibits a linear behavior of E2
values against ln(NpNn) in all of the regions, except for the
N = 84, 86, and 88 isotones around A � 150. The N = 84–88

FIG. 2. B(E2) against the logarithmically scaled NpNn product.
All the data are from Ref. [16]. Solid lines demonstrate the linear
relation with best-fit variables listed in Table III. The fitting of (a)
is not convergent due to lack of data. Still, we present this divergent
fitting result with a dotted line as a guide to the eye.

TABLE I. The range of proton and neutron numbers for the six
mass regions under investigation in this work.

Z N Z N

A � 120 39–50 66–82 A � 170 66–82 82–104
A � 130 50–66 66–82 A � 190 66–82 104–126
A � 150 50–66 82–104 A � 230 82–104 126–155

anomaly in the NpNn scheme has been attributed to the
role of the Z = 64 subshell [17,18]. If we exclude these
anomalous data in Fig. 1(c), linearity also emerges for the
A � 150 region. This indicates that the constraint of Eq. (4)
is indeed of general relevance when treating E2 values in
the NpNn scheme. We also note that the slope of the E2
linearity dramatically changes around some critical point
in the A > 140 regions, corresponding to the known E2
saturation [19]. To quantitatively determine the critical point,
we have performed a bilinear fit for the E2 vs NpNn plots
in the A > 140 regions. The corresponding fitting function is
defined as

F =
{
c1 ln(NpNn) + c2 for NpNn < (NpNn)c
c3 ln(NpNn) + c4 for NpNn > (NpNn)c

, (6)

where c1, c2, c3, and (NpNn)c are fitting variables, and
c4 = c1 ln(NpNn)c + c2 − c3 ln(NpNn)c to keep functional
continuity. Note that the subscript c refers to the critical
value of NpNn. E2 values in A � 120 and 130 do not
reach saturation. Thus, in Figs. 1(a) and 1(b) we perform
single-segment linear fits to Eq. (4) with c1 and c2 as fitting
variables.

The best-fit results are listed in Table II, and the corre-
sponding linear fits are illustrated in Fig. 1 by solid lines.
One sees that the linear fits reasonably describe the tendency
of E2 values, further confirming the general validity of
Eq. (4). In Table II, all the A > 140 regions have c3 � 0
and (NpNn)c � 90 within fitting errors. c3 � 0 is a natural
result of E2 saturation noted above. The rough uniformity
of the (NpNn)c � 90 critical point may be explained by
the Federman-Pittel mechanism [20], which emphasized that
nuclear deformation, which may be empirically represented
by E2 values, is mostly governed by the pn interaction
between orbits with the same orbital angular momentum
(spin-orbit partners), e.g., 1g9/2 − 1g7/2, 1h11/2 − 1h9/2, and
1i13/2 − 1i11/2. The occupation-number limits for all of these
orbits are near 10. Thus, the (NpNn)c � 90 critical point

TABLE II. Best-fit results from the E2 vs NpNn plots in Fig. 1;
see Eqs. (4) and (6) for definitions.

c1 c2 c3 (NpNn)c

A � 120 − 0.38(2) 1.00(3)
A � 130 − 0.59(2) 1.41(4)
A � 150 − 0.170(9) 0.85(3) − 0.03(2) 88 ± 12
A � 170 − 0.37(2) 1.89(8) − 0.10(4) 105 ± 11
A � 190 − 0.14(1) 0.80(4) − 0.0(3) 178 ± 105
A � 230 − 0.28(1) 1.24(4) − 0.01(1) 73 ± 7
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TABLE III. Best-fit results of B(E2) vs NpNn plots shown in
Fig. 1 [see Eqs. (4) and (6) for definitions]. The fit for the A � 120
region is not convergent, and is thus omitted here.

c1 c2 c3 (NpNn)c

A � 130 0.34(1) − 0.45(4) 1.7(2) 40 ± 2
A � 150 0.4(1) − 0.6(4) 3.9(3) 56 ± 4
A � 170 8.5(4) −14(1)
A � 190 0.43(2) − 0.18(5) 2.1(2) 43 ± 3
A � 230 2.5(9) −7(3) 6.2(1) 47 ± 5

seems to correspond to almost full occupation of the relevant
spin-orbit partners. For nuclei with NpNn > 90, the Pauli
principle prevents additional valence nucleons/holes from
occupying the spin-orbit partners, and thus these nucleons
contribute little to the deformation. As a result, the E2 value
saturates.

B. B(E2)

In Fig. 2, the B(E2) values are plotted against the logarith-
mically scaled NpNn values for the same mass regions as were
used for E2 values. Here too a roughly linear behavior emerges
in most of the regions considered, as expected. Another NpNn

critical point of the B(E2) evolutions is also evident, across
which the evolution of B(E2) values exhibits slopes that are
clearly enlarged. Again, we have performed a bilinear fit for the
E2 vs NpNn plots with Eq. (6), but now omitting the A � 120
and 170 regions. Due to a lack of experimental data, the fit for
the A � 120 region is not convergent. In the A � 170 region,
experimental B(E2) values with NpNn smaller than the critical
value cannot be determined, since the corresponding nuclei are
all near 164Pb and thus beyond the proton drop line. Thus, for
the B(E2) systematics in the A � 170 region we only use a
single-segment linear fit of Eq. (4).

We illustrate the best linear fits with solid lines in Fig. 2
and list the corresponding best-fit parameters in Table III. As is
clear from the table, the best-fit NpNn critical points associated
with B(E2) values all cluster around (NpNn)c � 45, very
different from those that emerged in the treatment of E2
values (see Table II). The E2 critical point corresponds to
its saturation. In contrast, the B(E2) values do not saturate
near their critical value, but rather continue to increase, albeit
with a more pronounced slope. It would seem therefore
that the (NpNn)c of B(E2) corresponds to an underlying
transition in the nature of collective motion, rather than to
saturation. The detailed mechanism that gives rise to this
critical point still requires further investigation. The fact that
the critical value of NpNn associated with B(E2) values is
half of that for E2 values might provide a useful clue to its
origin.

IV. DECOUPLING OF Qα , Sn, AND Sp

Since the quantities Qα , Sn, and Sp are all governed by
Eq. (1), they can be decoupled as in Eq. (5). Because they
all vary smoothly, despite the odd-even staggering of Sn and
Sp, some regional systematics may be examined via these

decoupled results. To accomplish this, we carry out a χ2 fit of
Eq. (5) to decouple the experimental Qα , Sn, and Sp data. The
analysis is carried out for nuclei in the 82 < Z � 104, 126 <
N � 155 region. All of the experimental data are extracted
from the AME2012 mass table [14]. Details on the decoupling
procedure are described in the Appendix. The final results of
the decoupling analysis are presented in Fig. 3.

According to Figs. 3(a)–3(c), our decoupled fp(Np) +
fn(Nn) values fit well to the F (Np,Nn) values from experiment
for all of the nuclear observables under investigation, thereby
demonstrating the validity of the decoupling scheme based on
Eq. (5). The regional systematics for fp(Np) and fn(Nn) in
Figs. 3(d)–3(f) are evident.

In Fig. 3(d), the Qα values decrease with increasing Nn

and decreasing Np, i.e., dfn/dNn < 0 and dfp/dNp > 0. This
can be attributed to the negative effect of the Coulomb and
symmetry energies on nuclear binding as follows. The nuclear
binding energy of the Bethe-Weizsacker formula [21,22] is
given by

B(N,Z) = avA − asA
2/3 − acZ

2A−1/3

− aI

(
A

2
− Z

)2

A−1 + apδA−1/2, (7)

where av , as , ac, aI , ap are parameters associated with the
volume term, the surface term, the Coulomb energy, the
symmetry energy, and the pairing energy, respectively. From
this, Qα can be expressed as

Qα = Bα − [B(N,Z) − B(N − 2,Z − 2)]

= Bα − 4av + 8as

3A1/3
+ 4ac

Z

A1/3

(
1 − Z

3A

)

− aI

(
N − Z

A

)2

, (8)

where the pairing energies approximately cancel each other for
heavy nuclei, and Bα is the binding energy of the α particle.
The 1/A and 1/A1/3 term should vary slowly for heavy nuclei.
Thus, we assume them to be constant, so that derivatives of
Qα become simplified as(

∂Qα

∂N

)
Z

= dfn

dNn

� −2aI

N − Z

A2
,

(9)(
∂Qα

∂Z

)
N

= dfp

dNp

� 4ac

A1/3

(
1 − 2Z

3A

)
+ 2aI

N − Z

A2
.

The Coulomb and symmetry energies decrease nuclear stabil-
ity, i.e., ac and aI are positive, which leads to dfn/dNn < 0
and dfp/dNp > 0, given that N > Z for heavy nuclei. This
explains the observed tendencies exhibited by fn(Nn) and
fp(Np) in Fig. 3(d). We note that because of the Coulomb
energy, i.e., the first term of (∂Qα/∂Z)N in Eq. (9), dfp/dNp

always has a larger magnitude than dfn/dNn. As a result, the
fp(Np) evolution of Qα is sharper than that of fn(Nn), as
observed in Fig. 3(d).

In Figs. 3(e) and 3(f), the odd-even staggering of
fn(Nn)/fp(Np) for Sn/Sp is observed clearly, and corre-
sponds to the effect of pairing between like nucleons.
By smoothing the odd-even staggering, Sn/Sp generally
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FIG. 3. Final results of the decoupling analysis of the Qα , Sn, and Sp experimental data in 82 < Z � 104, 126 < N � 155 region. The
data are extracted from the AME2012 [14] mass table. In (a)–(c), the experimental Qα , Sn, and Sp values are plotted against the decoupled
fp(Np) + fN (Nn), respectively. The diagonal dotted lines in (a)–(c) correspond to the exact F (Np,Nn) = fp(Np) + fn(Nn) relation. Panels
(d)–(f) illustrate the evolution of the decoupled fp(Np) and fn(Nn) results for Qα , Sn, and Sp , respectively. The results exhibit smooth regional
systematics with the expected odd-even staggering for Sn and Sp .

decreases with increasing Nn/Np, and increases with increas-
ing Np/Nn, implying that the nonpairing interaction between
like nucleons is repulsive and that the pn interaction is
attractive.

We also note that the observed evolution of Sn and Sp

in Figs. 3(e) and 3(f) agrees with their previously proposed
linear systematics with respect to the Z/N and N/Z ratios
[23]. We adopt empirical formulas from Ref. [23] to compare
the sharpness of the evolution of Sn and Sp as follows:

Sn = a
Z

N
+ b,

(10)

Sp = a
N

Z
+ b − acZA−1/3,

where a and b are constants within a major shell, the acZA−1/3

term comes from the Coulomb energy, and the pairing
term is neglected here to smooth the odd-even staggering.
Thus,(

∂Sn

∂N

)
Z

= dfn

dNn

= −a
Z

N2

(
∂Sn

∂Z

)
N

= dfp

dNp

= a
1

N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for Sn

(
∂Sp

∂N

)
Z

= dfn

dNn

= a
1

Z(
∂Sp

∂Z

)
N

= dfp

dNp

= −a
N

Z2
− acA

−1/3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for Sp

. (11)

According to the analysis in Ref. [23], a and ac are always
positive. Thus,

∣∣∣∣ dfn

dNn

∣∣∣∣ <

∣∣∣∣ dfp

dNp

∣∣∣∣ (12)

for both Sn and Sp, indicating that the nucleon separation
energy is always more sensitive to the proton number, as
illustrated in Figs. 3(e) and 3(f).

V. SUMMARY

To summarize, we have studied the regional systematics
of E2, B(E2), Qα , Sn, and Sp values based on their local
correlations, as defined by Eq. (1). Constrained by such
local correlations, NpNn plots of E2 and B(E2) should and
indeed do present robust linearity in the logarithmic scale.
Such a linear behavior is adopted to quantitatively probe
the saturation of E2 in the vicinity of NpNn ∼ 90, which
was then explained using the Federman-Pittel mechanism.
A new and unified critical point of B(E2) evolution is
identified around NpNn ∼ 45, which we believe deserves
further clarification. Using the decoupling scheme of Eq. (5),
as derived from the generalization of Eq. (1), we then extracted
the proton and neutron contributions to the experimental Qα ,
Sn, and Sp values. These decoupled results exhibit smooth
regional systematics beyond the NpNn scheme. Such regional
systematics agree with previous empirical models, suggesting
that the decoupling scheme is a practical way to study regional
evolution of non-NpNn systematized nuclear observables that
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follow Eq. (1). In closing, the results presented here suggest
that local correlations may provide a new and perhaps clearer
vision of nuclear regional evolution.
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APPENDIX A: DECOUPLING PROCESS

We adopt a χ2 fitting of F (Np,Nn) = fp(Np) + fn(Nn),
with fp(Np) and fn(Nn) as fitting parameters, to decouple the
F (Np,Nn) values that come from experiment. To simplify our
description, we denote the number of Np and Nn values under
investigation as �π and �ν , respectively. Thus, the variables
to be fitted are �π fp(Np) and �ν fn(Nn).

We note that if a pair of fp(Np) and fn(Nn) variables
satisfies the F (Np,Nn) = fp(Np) + fn(Nn) relation, another

pair fp(Np) + C and fn(Nn) − C also does, with an arbitrary
constant C. To remove this arbitrariness, and to ensure that
fp(Np) and fn(Nn) have the same order of magnitude, we
further require ∑

Np

fp(Np)

�π

=

∑
Nn

fn(Nn)

�ν

. (A1)

We define our χ2 function as

χ2 =
∑

Np,Nn

{F (Np,Nn) − fp(Np) − fn(Nn)}2. (A2)

The χ2 minimum under the constraint of Eq. (A1) provides
the best fit of F (Np,Nn) = fp(Np) + fn(Nn). To reach this
minimum, we introduce the Lagrangian

L = χ2 + λ

⎧⎨
⎩�ν

∑
Np

fp(Np) − �π

∑
Nn

fn(Nn)

⎫⎬
⎭, (A3)

with λ as a Lagrange multiplier. The solution of the set of
partial differential equations,

∂L
∂fp(Np)

= 0,
∂L

∂fn(Nn)
= 0,

∂L
∂λ

= 0, (A4)

corresponds to the desired χ2 minimum, i.e., our decoupling
result.
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