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The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in
68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase
approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy
excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite
temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature.
The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with
the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole
resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies
decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched
and the opening of new excitation channels fragments the low-energy strength at finite temperatures.
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I. INTRODUCTION

Giant resonances in nuclei take an important place in the
field of nuclear physics, allowing us to shed light in a unique
way on several aspects of the structure and properties of
nuclei. For instance, dipole states are very sensitive to the
isovector channel of the nucleon-nucleon effective interaction,
and to the (a)symmetry part of the nuclear equation of
state. In recent decades, the giant dipole resonances (GDRs)
have been widely investigated and their features are well
determined due to the combined use of the current theoretical
models and experimental works. However, there are still
some modes which are elusive and deserve some study. In
addition, investigation of the giant resonances under extreme
conditions (neutron excess, temperature, etc.) provides com-
plementary information about the structure and properties
of nuclei, and yet they constitute a further challenge for
theory.

In recent years, it has been shown that multipole excitations
of nuclei exhibit interesting features with increasing neutron
number. For instance, in neutron-rich nuclei, the formation
of low-energy dipole strength or pygmy dipole resonance
(PDR) has been studied both with different theoretical models
[1–5] and experimental techniques [6–9]. These results are
quite important in order to understand the behavior of nuclei
with the increase of the neutron number. In particular, the
low-energy dipole states are related to the neutron skin
thickness [10], symmetry energy [11], and also astrophysical
processes [12,13] like the r-process nucleosynthesis. Much
less has been done regarding how these correlations evolve
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with temperature. Since the nature of the low-energy modes
is not clear yet, even at zero temperature, investigating
their nature is generating a quite active field of research
[1,6,14].

The study of giant resonances in highly excited nuclei
(hot nuclei) has also been a subject of interest due to their
impact on astrophysical processes. Experimentally, several
groups tried to study the temperature dependence of the mean
energy and width of the giant resonances. In recent decades,
giant dipole resonances built on excited states have been
studied either using inelastic scattering of light particles or
fusion-evaporation reactions [15–19]. Results revealed that,
while the GDR energy remains almost constant, this is not
the case for the width, which changes both as a function of
excitation energy and spin. A comprehensive review of recent
studies about the effect of temperature on giant resonance
properties is given in Refs. [20,21].

Over the years, different theoretical models have been ap-
plied to study the effect of temperature on the evolution of the
multipole response in nuclei: the random phase approximation
(RPA) plus particle-vibration coupling (along the nuclear field
theory formalism) [22,23], the quasiparticle-phonon model
[24], the phonon damping model [25,26], and the extended
time-dependent Hartree-Fock (TDHF) [27,28]. While in most
of these models there are phenomenological inputs, the present
work deals with the fully self-consistent quasiparticle random
phase approximation (QRPA). In this way, although the
damping width of the states under investigation cannot be
described, connections between the properties of the states
and the microscopic effective interaction can be made. Long
ago, the finite temperature RPA (FT-RPA) [29–31] with
schematic interactions was introduced and used in order
to investigate the properties of giant resonances with the
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temperature effect. In addition, the first self-consistent FT-RPA
calculations were performed in Ref. [32] in the case of the
40Ca nucleus. It was shown that the low-energy part of the
isoscalar quadrupole response was rather sensitive to the
temperature due to the particle-particle (pp) and hole-hole (hh)
excitations which start to contribute at finite temperatures.
However, the isovector dipole response of nuclei remained
almost the same with increasing temperature. Recently, the
multipole excitations of nuclei have also been studied us-
ing the self-consistent finite temperature relativistic RPA
[33] and the emergence of low-energy strength has been
predicted for monopole and dipole modes with increasing
temperature.

The quasiparticle random phase approximation (QRPA)
is known to be an appropriate and powerful tool for the
description of the multipole excitations in open-shell nuclei. It
allows for the study of the pairing effect in nuclear excitations,
especially in the low-energy sector which is usually impacted.
However, investigations of hot nuclei require the extension of
the current models to the finite temperature QRPA (FT-QRPA),
which is a rather complicated task. The finite temperature
QRPA equations were first derived in Ref. [34] but the calcu-
lations were performed within a schematic model. Then, the
finite temperature continuum-QRPA equations were derived
using the Green’s function formalism in Ref. [35] to study
the effect of temperature on the open-shell nuclei. However,
calculations were not totally self-consistent because of the so-
called Landau approximation for the velocity dependent terms
of the residual Skyrme interaction. The finite temperature
continuum-QRPA formalism has also been used to study
the low-energy enhancement of the radiative dipole strength
(γ -ray strength) in medium-mass and heavy nuclei [36].
Thereafter, there is no further investigation available on the
effect of temperature on the multipole response of the open-
shell nuclei, neither with Skyrme or Gogny interactions nor
within the relativistic framework. In particular, investigations
within the fully self-consistent FT-QRPA are still lacking.
Additional works are required in this field in order to elucidate
the response of open-shell nuclei at finite temperatures with
respect to the energy density functional framework.

The purpose of the present work is to investigate the effect
of temperature on the multipole excitations of nuclei using for
the first time the fully self-consistent FT-QRPA framework.
The Skyrme-type energy density functional will be considered.
The use of a microscopic self-consistent approach is important
in order to describe nuclear structure under unusual conditions
such as pairing and temperature coupled effects.

The paper is organized as follows. In Sec. II, we briefly
summarize the finite temperature mean-field theory and
introduce the finite temperature QRPA formalism. In Sec. III,
The FT-QRPA calculations are performed on top of the finite
temperature Hartree-Fock BCS (FT-HFBCS) method in order
to investigate the effect of temperature on the isovector dipole
(Jπ = 1−) and isoscalar quadrupole responses (Jπ = 2+) in
68Ni and 120Sn nuclei. The radiative dipole strength function
in the low-energy region is also investigated in 122Sn by
increasing the temperature, and is compared with the available
experimental data. Finally, summary and conclusions are given
in Sec. IV.

II. MICROSCOPIC MODEL: THE FINITE
TEMPERATURE QRPA

In this work, the finite temperature QRPA calculations have
been carried out under the assumption of spherical symmetry,
allowing for the calculation of giant resonances of various
multipolarities in nuclei at finite temperature.

First, finite temperature HFBCS calculations were per-
formed in coordinate space, yielding ground state properties
of nuclei. At finite temperatures, the occupation probabilities
of the states read

ni = v2
i (1 − fi) + u2

i fi, (1)

where ui and vi are the BCS amplitudes. The temperature
dependent Fermi-Dirac distribution function is given by

fi = [1 + exp(Ei/kBT )]−1, (2)

where Ei is quasiparticle (q.p.) energy, kB is the Boltzmann
constant, and T is the temperature. Detailed information about
the FT-HFBCS equations can be found in Refs. [37,38].

In the present calculations, we use a zero-range density-
dependent pairing interaction of surface type [39],

Vpair(r1,r2) = V0

[
1 −

(
ρ(r)

ρ0

)]
δ(r1 − r2), (3)

where ρ0 = 0.16 fm−3 is the nuclear saturation density and
ρ(r) is the particle density. The pairing strength V0 is set
for each nuclei according to the well-known three-point
mass formula [40]. The neutron pairing gap values are
determined as �n = 1.6 and 1.45 MeV for 68Ni and 120Sn
nuclei, respectively. In order to perform calculations at finite
temperatures, the QRPA is extended to the finite temperature
case. Due to the effect of temperature, the excitation operator
now involves both two-quasiparticle creation or annihilation
operators (as in normal QRPA) and one-quasiparticle creation
plus one-quasiparticle annihilation operators. This is due to
the fact that at finite temperature the ground state is no longer
the quasiparticle vacuum. The QRPA excitation operator reads

�†
ν =

∑
a�b

{
Xν

aba
†
aa

†
b − Y ν

ababaa + P ν
aba

†
aab − Qν

aba
†
baa

}
,

(4)

where a† and a are the quasiparticle creation and destruction
operators, respectively. The finite temperature QRPA equa-
tions are obtained from the method of the equation of motion
[41,42]:

〈BCS|[δ�,[H,�†
ν]]|BCS〉 = Eν〈BCS|[δ�,�†

ν]|BCS〉, (5)

where H is the Hamiltonian and |BCS〉 represents the thermal
vacuum. The derivation of the expressions for the matrix
elements in angular momentum coupled form is provided in
the Appendix. The finite temperature QRPA matrix is given
by⎛

⎜⎜⎝
C̃ ã b̃ D̃

ã+ Ã B̃ b̃T

−b̃+ −B̃∗ −Ã∗ −ãT

−D̃∗ −b̃∗ −ã∗ −C̃∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P̃

X̃

Ỹ

Q̃

⎞
⎟⎟⎠ = Eν

⎛
⎜⎜⎝

P̃

X̃

Ỹ

Q̃

⎞
⎟⎟⎠, (6)
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where the eigenvectors and eigenenergies of the matrix are
P̃ , X̃, Ỹ , Q̃, and Eν , respectively. The FT-QRPA matri-
ces are diagonalized in a self-consistent way, providing
a state-by-state analysis for each excitation. This is the
main advantage of the present approach in configuration
space. The temperature dependencies of the matrices are
given by

Ãabcd =
√

1 − fa − fbA
′
abcd

√
1 − fc − fd

+ (Ea + Eb)δacδbd, (7)

B̃abcd =
√

1 − fa − fbBabcd

√
1 − fc − fd, (8)

C̃abcd =
√

fb − faC
′
abcd

√
fd − fc

+ (Ea − Eb)δacδbd, (9)

D̃abcd =
√

fb − faDabcd

√
fd − fc, (10)

ãabcd =
√

fb − faaabcd

√
1 − fc − fd, (11)

b̃abcd =
√

fb − fababcd

√
1 − fc − fd, (12)

ã+
abcd = ãT

abcd =
√

fd − fca
+
abcd

√
1 − fa − fb, (13)

b̃T
abcd = b̃+

abcd =
√

fd − fcb
T
abcd

√
1 − fa − fb. (14)

where Ea(b) is the quasiparticle energy of the states obtained
from the FT-HFBCS results. In addition, the amplitudes read

X̃ab = Xab

√
1 − fa − fb, (15)

Ỹab = Yab

√
1 − fa − fb, (16)

P̃ab = Pab

√
fb − fa, (17)

Q̃ab = Qab

√
fb − fa. (18)

It should be noted that the diagonal part of the FT-QRPA
matrix includes both (Ea + Eb) and (Ea − Eb) configuration
energies. In the FT-QRPA matrix the Ã and B̃ matrices
describe the effects of the excitations of quasiparticle pairs,
which also survive at zero temperature. The other com-
ponents of the FT-QRPA matrix, C̃, D̃, ã, b̃, ã+, and
b̃T play a role with increasing temperature because they
are impacted by the increasing changes in the occupation
factors.

In the present work, the structure of the low-energy peaks
is also analyzed using the FT-QRPA amplitudes. For a given
excited state Eν , the contribution of the proton and neutron
quasiparticle configurations to the excitation is determined by
the FT-QRPA amplitudes

Aab = ∣∣X̃ν
ab

∣∣2 − ∣∣Ỹ ν
ab

∣∣2 + ∣∣P̃ ν
ab

∣∣2 − ∣∣Q̃ν
ab

∣∣2
, (19)

and the normalization condition can be written as∑
a�b

Aab = 1. (20)

At finite temperatures, the reduced transition probability
for any operator F̂J is given by

B(EJ,̃0 → ν) = |〈ν||F̂J ||̃0〉|2 =
∣∣∣∣∑
c�d

{(
X̃ν

cd+Ỹ ν
cd

)
(vcud+ucvd )

√
1−fc−fd

+ (
P̃ ν

cd + Q̃ν
cd

)
(ucud − vcvd )

√
fd − fc

}〈c||F̂J ||d〉
∣∣∣∣2

, (21)

where |ν〉 is the excited state and |̃0〉 is the correlated FT-
QRPA ground state. In the present study, fully self-consistent
calculations are performed; namely, both the finite temperature
HFBCS equations and the FT-QRPA matrices are based on
the same Skyrme energy density functional. The Skyrme-type
SLy5 interaction has been used in the calculations since it
is well tailored for the description of the properties of exotic
nuclei [43]. The continuum is discretized inside a spherical box
of 20 fm with 0.1 fm mesh size. We use a large quasiparticle
energy cutoff (Ecut = 100 MeV) allowing the energy weighted
sum rule (EWSR) to be satisfied: the maximum relative
difference with the theoretical EWSR is usually around 2.0%.

It has been known that the phase transition of nuclei from
superfluid to the normal state takes place at temperatures T ≈
0.5–1 MeV [37,38] and the shape transition from deformed to
spherical shape occurs above T > 1 MeV [44]. Therefore,
the deformation does not play a role above the critical
temperatures, and use of the spherical FT-QRPA is relevant in
the calculation of the multipole response of nuclei. In addition,
contributions from the continuum states become large at
around T ≈ 4 MeV [45]. In order to avoid large contributions

from the continuum states and unphysical neutron vapor,
calculations are performed up to T = 2 MeV.

The Lorentzian averaging is known as a convenient tool to
present the E1 and E2 strength in nuclei [3–5]. In the present
work, the discrete spectrum is averaged with a Lorentzian of
� = 1 MeV width using

S(EJ,Eν) =
∑

ν

1

2π

�

(E − Eν)2 − �2/4
B(EJ,̃0 → ν)

(22)
where Eν is the excitation energy. In the present work, the
centroid energy of the resonance is calculated with

Ec = m1

m0
, (23)

where the energy weighted moments m1 and m0 are defined
using

mk =
∑

ν

B(EJ,̃0 → ν)Ek
ν . (24)

The limits of the FT-QRPA to the QRPA, RPA, and FT-
RPA cases have been checked: in the zero temperature limit,
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the Fermi-Dirac distribution function goes to zero and the
calculations converge towards the QRPA, as expected. In the
zero pairing limit, one obtains the RPA and FT-RPA limits at
zero and finite temperatures, respectively.

III. RESULTS

A. Dipole strength at finite temperatures

We start by investigating the effect of temperature on the
isovector dipole response of 68Ni and 120Sn nuclei. These
two nuclei are benchmark in order to study the mass and
neutron excess dependence on the multipole excitations. In
the finite temperature mean-field approach, nuclei undergo a
sharp phase transition at critical temperatures Tc due to the
vanishing of the pairing correlations [37,38]. In this work, the
critical temperature values are calculated using the FT-HFBCS
method: Tc = 0.96 and 0.84 MeV for 68Ni and 120Sn nuclei,
respectively. The value of the neutron pairing gap at zero
temperature and the critical temperature generally follow the
Tc ≈ 0.57�T =0 empirical rule, as expected [37,38,46,47]. It
should be noted that the use of the grand-canonical description
leads to sharp phase transitions in nuclei within our model
calculations. Recently, it has been shown that the use of the
canonical description of nuclei at finite temperature removes
sharp phase transitions in nuclei, and pairing correlations
persist at high temperatures [48]. However, the effect of
the pairing correlations also weakens above the critical
temperature. Therefore, our model is reliable to explore the
qualitative changes in the multipole response in nuclei within
our temperature range.

1. 68Ni nucleus

In the neutron-rich 68Ni nucleus, the formation of the
pygmy dipole resonance has been predicted within different
theoretical models [3,6,49,50]. Recently, the pygmy dipole
resonance was also obtained at around 11 MeV using γ
decay, following Coulomb excitation of the nucleus on a gold
target [7]. Later, another Coulomb excitation experiment in
inverse kinematics was performed on 68Ni, and the GDR and
pygmy dipole resonance energies were obtained at 17.1(2)
and 9.55(17) MeV, respectively [51]. Since the pygmy dipole
strength has already been observed in 68Ni nucleus, it would
also be interesting to investigate the effect of temperature on
this region.

Before discussing the effect of temperature on the dipole
response of 68Ni nucleus, explaining its main effect on the
proton and neutron states is also necessary to understand
the underlying mechanism driven by the temperature. With
increasing temperature, nucleons are promoted to higher
energy states, which eventually increases (decreases) the
occupation probabilities of states above (below) the Fermi
level. For instance, in the 68Ni nucleus, neutron 1f5/2 state
below the Fermi level and 1g9/2 state above the Fermi level are
partially occupied due to pairing effects at zero temperature.
By increasing the temperature, neutrons are mainly promoted
from 2p3/2, 2p1/2, and 1f5/2 states below the Fermi level
to 1g9/2, 2d5/2, and 3s1/2 states above the Fermi level. The
effect of temperature is also similar for proton states. At zero

FIG. 1. Upper panel: The isovector dipole strength function in
68Ni calculated with FT-QRPA and the Skyrme-type SLy5 interaction
at T = 0, 1, and 2 MeV. Lower panel: The reduced transition
probabilities for the low-energy dipole region at T = 0 MeV and
T = 2 MeV.

temperature, proton states are fully occupied up to 1f7/2 state
and form Z = 28 shell closure, as expected. By increasing the
temperature, protons are also promoted from 1d3/2, 2s1/2, and
1f7/2 states to 2p3/2, 1f5/2, 2p1/2, and 1g9/2 states. Therefore,
new excitation channels become possible due to the thermally
unblocked states at finite temperature.

In the upper panel of Fig. 1 we present the isovector
dipole strength function in 68Ni nucleus at T = 0, 1, and 2
MeV, respectively. At zero temperature, the centroid energy of
the well known isovector giant dipole resonance (IVGDR)
is calculated between 0 and 30 MeV and is obtained at
16.8 MeV. In addition, the pygmy dipole strength is found
around E ≈ 10 MeV and exhausts 1.2% of the EWSR with
the present interaction. Our results are in good agreement
with recent experimental results [51] and theoretical works
[3,4,49,50]. The IVGDR strength and energy slightly change
with increasing temperature. For instance, at T = 2 MeV, the
centroid energy is found at 16.5 MeV. The effect of temperature
on the dipole response function is more striking on the low-
energy part. New excited states appear below 8 MeV, as seen
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TABLE I. The selected low-energy excitations for the 68Ni
nucleus at T = 2 MeV. The excited state energies, configurations,
and their contributions (in percantage) to the norm of the states [see
Eqs. (19) and (20)] are presented, respectively. Herein, π and ν refer
to the proton and neutron, respectively.

Energy Configuration %

E = 1.36 MeV ν3s1/2 → ν3p3/2 99.8
E = 1.39 MeV ν3s1/2 → ν3p1/2 99.8
E = 2.07 MeV ν2d5/2 → ν3p3/2 99.8
E = 3.37 MeV ν2d5/2 → ν2f7/2 99.9
E = 4.73 MeV ν2d5/2 → ν4p3/2 99.9
E = 6.08 MeV ν2d5/2 → ν3f7/2 99.7

in the lower panel of Fig. 1. In order to understand the origin of
these new excited states, the quasiparticle configurations are
analyzed in Table I at T = 2 MeV. In particular, these states are
not collective and are made of almost single neutron transitions
from thermally unblocked and loosely bound neutron 2d5/2

and 3s1/2 states to the continuum at finite temperature. Since
the continuum is discretized, it should be mentioned that
the continuum effects are not taken into account exactly in
our model. Therefore, these transitions in the low-energy
region are just representing the transitions to the single-particle
states in the discretized continuum, and an important effect
can be expected with the exact treatment of the continuum.
Nevertheless, the results show that the continuum plays an
essential role in the formation of these new low-energy excited
states at finite temperatures. This important effect of the
continuum will also be analyzed in Sec. III B by comparing
with the experimental data in the case of the γ -ray strength
function for 122Sn.

The second important change caused by temperature is the
fragmentation of the pygmy dipole states. At T = 2 MeV,
the main PDR state at 10 MeV is fragmented into several
states, and another state, less strong than the one at T =
0 MeV, appears at E = 11.0 MeV. The configurations for these
excitations in the pygmy dipole region are given in Table II at
T = 0 MeV and T = 2 MeV. The region of the pygmy dipole
resonance displays some collectivity at T = 0 MeV, but this
decreases at T = 2 MeV. At T = 0 MeV and E = 10.05 MeV,
the main contributions come from the neutron quasiparticle
excitations, as expected. At T = 2 MeV, the pygmy dipole
resonance region is fragmented into several states, and two
main low-energy peaks are found at 9.62 and 10.3 MeV,
exhausting 0.32% and 0.31% of the EWSR, respectively.
Comparing the PDR states at E = 10.05 MeV (T = 0 MeV)
and E = 9.62 MeV (T = 2 MeV), temperature does not
impact configurations. However, some new excitation channels
(displayed in bold in Table II) are opened and contribute to
the excited states at T = 2 MeV. The configuration analysis
of these states shows that in addition to the neutron states,
thermally occupied proton states also lead to the formation of
the new excitation channels and start to contribute to the PDR
region with increasing the temperature. Especially, thermally
unblocked proton states play a major role at E = 11.0 MeV at
T = 2 MeV (see Table II).

TABLE II. The major low-energy dipole excitations for 68Ni at
T = 0 and 2 MeV. The configurations and their contributions to the
norm of the states (in percentage) are displayed for each excitation
energies, separately. The transitions that appear by increasing the
temperature are also shown in bold.

Configuration T = 0 MeV T = 2 MeV T = 2 MeV
E=10.05 MeV E=9.62 MeV E=11.0 MeV

ν1f5/2 → ν2d3/2 61.4 53.0
ν1f7/2 → ν1g9/2 9.7 4.6 9.4
ν2p3/2 → ν2d5/2 7.1 5.5 4.8
ν1f5/2 → ν2d5/2 5.0 2.4
ν1f5/2 → ν3d3/2 2.6 1.2
ν1g9/2 → ν2h11/2 2.6 18.7
ν2d5/2 → ν4f7/2 5.9
ν2p3/2 → ν3s1/2 4.8
π1f7/2 → π1g9/2 4.4 1.9 2.0
π1f5/2 → π2d5/2 10.1
π2p3/2 → π2d5/2 1.4 47.0
π1d5/2 → π1f7/2 3.5
π2s1/2 → π2p3/2 2.2

Let us now examine the contributions of new quasiparticle
excitations to the dipole strength function. As we mentioned
before, the diagonal part of the FT-QRPA matrix takes con-
tributions from (Ea − Eb) in addition to (Ea + Eb) two-q.p.
energies [see Eq. (6)]. While the IVGDR region mainly takes
contributions from (Ea + Eb) two-q.p. energies and is less
sensitive to the temperature effects due to its collective nature,
contributions of the (Ea − Eb) two-q.p. energies mainly
impact the low-energy region of the dipole spectrum and lead
to an increase of the low-energy dipole strength due to the
transitions from thermally unblocked states to the discretized
continuum.

2. 120Sn nucleus

The tin isotopes have also been the subject of many
theoretical and experimental studies over the years. The
formation of low-energy dipole strength in the 120Sn nucleus
has been predicted in several theoretical works [49,52] and
experimental data is also available [8,9]. The occurrence of
the low-energy dipole states has been observed in 120Sn using
a (γ,γ ′) experiment below the neutron emission threshold [9].
In this experiment, low-energy dipole states were obtained
between 4–9 MeV and exhaust 0.22% of the EWSR. In a
more comprehensive experiment, the electric dipole strength in
120Sn nucleus was investigated with proton inelastic scattering
below and above the threshold [8]. While the centroid of
the GDR is found at 15.0 MeV, several low-energy dipole
excitations have been measured between 4 and 9 MeV. This
low-energy area is peaked at 8.3 MeV and exhausts 2.3(2)%
of the EWSR.

The effect of temperature on the evolution of the isovector
dipole strength in 120Sn is displayed in Fig. 2. At zero temper-
ature, the IVGDR centroid energy between 0 and 30 MeV is
obtained at 15.0 MeV. In addition, the first low-energy strength
is found at 8.9 MeV and exhausts 0.88% of the EWSR. Our
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FIG. 2. Same as Fig. 1 but for the 120Sn nucleus.

results are comparable with the recent experimental result of
Ref. [8] and the theoretical studies of Refs. [2,49,52]. The
low-energy dipole state is mainly associated with neutron
quasiparticle excitations. We find that the major configurations
at E = 8.9 MeV are proton 1g9/2 → 1h11/2 (12.5%) and
neutron 1g7/2 → 2f7/2 (33.6%), 1g9/2 → 1h11/2 (11.0%), and
3s1/2 → 3p3/2 (8.4%). Therefore, this state displays some
collectivity.

With increasing temperature, neutrons are mainly promoted
from 2d5/2, 1g7/2, 3s1/2, and 2d3/2 states below the Fermi
level into 1h11/2, 2f7/2, and 3p3/2 states above the Fermi
level. While 120Sn nucleus is fully occupied up to proton
1g9/2 state and has a shell closure at Z = 50, protons are
also promoted from 2p3/2, 2p1/2, and 1g9/2 states to 2d5/2,
1g7/2, 2d3/2, and 3s1/2 states with increasing temperature.
In the 120Sn nucleus, the evolution of the isovector dipole
spectrum as a function of the temperature is quite similar to
the one of the 68Ni nucleus. In the GDR region, the strength and
centroid energy slightly decrease with increasing temperature.
For instance, the centroid energy for the IVGDR is obtained at
14.95 MeV at T = 2 MeV. We obtain an enhancement in the
dipole strength at around E ≈ 17 MeV with the contribution
of new quasiparticle excitations at finite temperatures. While
the transitions from thermally unblocked and loosely bound

neutron 2f7/2 and 3p3/2 states to the discretized continuum
lead to the formation of the new noncollective excited states in
the very low-energy region, the pygmy dipole resonance region
seems to be fragmented into several states with comparable
strengths at finite temperatures. Below 10 MeV, we obtain
two important peaks at E = 8.4 MeV and E = 9.8 MeV
which exhaust 0.29% and 0.38% of the EWSR at T = 2 MeV.
Similarly to the T = 0 MeV case, these states have some
collectivity, albeit reduced with respect to T = 0 MeV. While
the excitations are mainly neutron dominated at E = 8.4 MeV,
proton excitations gain importance at E = 9.8 MeV with the
contribution of thermally populated proton states above Z =
50 shell. We find two major configurations at E = 9.8 MeV:
proton 2d5/2 → 2f7/2 (50.2%) and neutron 2d3/2 → 2f5/2

(34.8%). Therefore, the low-energy dipole strength also takes
important contributions from thermally occupied proton states
at finite temperatures.

B. The low-energy enhancement of the radiative dipole
strength: 122Sn nucleus

Recently, an enhancement of the dipole strength at very
low energies (E � 3–4 MeV) has been obtained in several
experimental studies of the radiative dipole strength [53–
56]. In Ref. [36], the authors performed finite temperature
continuum-QRPA and showed that transitions from thermally
occupied states to the continuum can explain the observed
low-energy enhancement of the radiative dipole strength. In
order to check for a possible enhancement of the dipole
strength at very low-energies, we compare our predictions with
the results of Refs. [36,56], where the temperature range for
122Sn nucleus is taken as 1.02 � T � 1.17 MeV. Exploration
of the radiative dipole strength at T = 1.55 MeV is also
shown in order to qualitatively investigate the effect of high
temperature in the low-energy region. On this purpose, we
performed FT-QRPA calculations in 122Sn at T = 0, 1.02,
1.17, and 1.55 MeV, displaying the γ -ray strength function
(fE1) in Fig. 3. The γ -ray strength function and the dipole
strength function [see Eq. (22)] are related to each other via
[13]

fE1(Eγ ) = 16πe2

27(h̄c)3
S(E1,Eγ ). (25)

In Fig. 3(a), the discrete dipole spectrum is broadened
by using a Lorentzian function having 0.1 MeV width and
the γ -ray strength function is displayed between 0 and 10
MeV, below the neutron separation energy. The main physical
prediction is the increase of the low-energy strength with
temperature, due to the opening of the new excitation channels
and allowing for a better description of data. The QRPA results
at zero temperature do not predict an enhancement of the
dipole strength at very low energies. At T = 1.02 MeV, we
start to obtain an increase in the γ -ray strength function above
E > 3 MeV with the contribution of new excitation chan-
nels. By further increasing the temperature, the quasiparticle
energies do not change drastically and the location of some
excitations remains almost same. However, new excitation
channels emerge and the dipole strength also increases due
to the increasing diffuseness of the Fermi surface at higher
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FIG. 3. The γ -ray strength function in 122Sn at T = 0, 1.02, 1.17,
and 1.55 MeV using the Skyrme-type SLy5 interaction. The discrete
spectrum is broadened by using Lorentzian functions with 0.1 MeV
(a) and 0.3 MeV (b) width. The experimental data are taken from
Ref. [56].

temperatures. Above E > 3 MeV, our results are compatible
with the available experimental data by assuming temperatures
at T = 1.02 and 1.17 MeV. Although we obtain new excited
states below E < 3 MeV, the FT-QRPA overestimates the
γ -ray strength function in this region for T � 1.17 MeV.
Since the continuum is not taken into account exactly in our
model, it is also possible to obtain a broad strength function in
the low-energy region by changing the smoothing parameter
in the Lorentzian function. In order to check the impact of
the smoothing parameter in the low-energy region, the γ -ray
strength function with a 0.3 MeV width is also displayed in
Fig. 3(b). Although the effect of the smoothing parameter is
non-negligible, it does not influence the qualitative discussion
about the low-lying strength that we carry out in this Section.

In order to analyze this increase in the low-energy strength,
the configurations for the selected low-energy excited states
are also displayed in Table III. As mentioned before, the
continuum plays an essential role in the formation of the
very low-energy strength at finite temperatures. The transitions
from thermally unblocked neutron 2f7/2 and 3p3/2 states to the

TABLE III. Same as in Table I but for 122Sn at T = 1.55 MeV.

Energy Configurations %

E = 1.24 MeV ν3p3/2 → ν4s1/2 99.6
E = 1.94 MeV ν3p3/2 → ν3d5/2 99.9
E = 3.42 MeV ν2f7/2 → ν3d5/2 99.9
E = 4.30 MeV ν3p3/2 → ν5s1/2 99.9
E = 4.91 MeV ν3p3/2 → ν4d5/2 99.9
E = 5.03 MeV ν2f7/2 → ν2g9/2 99.9
E = 6.40 MeV ν2f7/2 → ν4d5/2 99.9
E = 7.57 MeV ν2f7/2 → ν3g9/2 99.7

discretized continuum create the low-energy γ -ray strength.
This kind of transition does not exist in the low-energy
region of the dipole response at zero temperature but appears
with increasing temperature. This increased dipole strength
at finite temperature is important for the astrophysical events
[12,13]. For instance, the very low-energy dipole strength may
have an impact on the neutron capture rates for r-process
nucleosynthesis. The FT-QRPA provides a description of the
underlying mechanism of these very low-energy transitions.
Our results also confirm the theoretical interpretations given in
Ref. [36]. It should be noted that a proper treatment of the low-
energy excitations necessitates more complete microscopic
models. For instance, treatment of nuclei in a canonical
ensemble may reduce the very low-energy γ -ray strength and
give a better agreement with the experimental data. While
the traditional Q(RPA) does not predict any strength at low
energies, inclusion of more complex configurations like 2p-2h
also predicts new excited states in the low-energy region
[57,58]. However, these kinds of microscopic models do not
exist at finite temperatures. The present FT-QRPA can be
used as a second starting point to develop more complete
microscopic models at finite temperatures.

C. Quadrupole strength at finite temperatures

1. 68Ni nucleus

In this subsection, we analyze the effect of temperature
on the isoscalar quadrupole response of nuclei. Recently, the
isoscalar giant quadrupole resonance (ISGQR) centroid energy
of 68Ni was determined at 15.9 ± 1.3 MeV using inelastic
alpha and deuteron scattering [59], and the first 2+ state was
found at 2.034 MeV [60]. In Fig. 4, the isoscalar quadrupole
strength function is displayed for 68Ni at finite temperatures. In
our calculations at zero temperature, the ISGQR and the first
2+ state are rather collective and located at 16.8 and 2.5 MeV,
respectively. The major configurations for the first 2+ state
are proton 1f7/2 → 2p3/2 (15.9%) and neutron 1f5/2 → 1f5/2

(31.5%), 2p1/2 → 1f5/2 (20.6%), and 1g9/2 → 1g9/2 (17.2%).
The effect of temperature is more striking on the ISGQR

than on the IVGDR. The temperature impacts both the ISGQR
and low-energy regions. First, the ISGQR strength increases
and the centroid energy decreases with increasing temperature.
For instance, the ISGQR centroid energies between 10 and
22 MeV are found at 16.8, 16.4, and 16.3 MeV at T = 0, 1,
and 2 MeV, respectively. Second, the first 2+ state strength
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FIG. 4. The isoscalar quadrupole strength function in 68Ni cal-
culated with the FT-QRPA and the Skyrme-type SLy5 interaction at
T = 0, 1, and 2 MeV.

is quenched already at T = 1 MeV. It has been known
that pairing correlations play a crucial role in the isoscalar
quadrupole response in nuclei. Especially, the low-energy
region is rather sensitive to the pairing effects [61]. The
main reason for these changes in the isoscalar quadrupole
response is the disappearance of the pairing correlations after
the critical temperature. Furthermore, the isoscalar quadrupole
strength starts to increase at around E ≈ 4 MeV due to the
smearing of the Fermi surface and the contribution of the new
excitation channels at T = 1 MeV. By further increasing the
temperature, the isoscalar quadrupole strength also increases
below E < 4 MeV. This is due to the increasing diffuseness
of the Fermi surface at higher temperatures. In order to
clarify this enhancement in the low-energy strength, the
major transitions contributing to this region are listed in
Table IV for 68Ni at T = 2 MeV. By increasing temperature,
the low-energy quadrupole strength is impacted due to the
changing occupation probabilities of states and mainly takes
contributions from the excitations below and above the Fermi
level. For instance, the smearing of the Fermi surface opens

TABLE IV. Same as in Table I but for the low-energy quadrupole
excitations in 68Ni at T = 2 MeV. The transitions from thermally
unblocked proton states are also shown in bold.

Energy Configurations %

E = 1.54 MeV π2p3/2 → π1f5/2 98.0
E = 1.92 MeV π2p3/2 → π2p1/2 72.5

ν2p3/2 → ν2p1/2 19.1
ν2d5/2 → ν2d3/2 4.1

E = 2.12 MeV ν3s1/2 → ν3d5/2 99.8
E = 2.18 MeV π2p3/2 → π2p1/2 20.8

ν2p3/2 → ν2p1/2 77.7
E = 2.45 MeV ν2p3/2 → ν1f5/2 96.9
E = 3.66 MeV π1f7/2 → π2p3/2 10.0

ν1f7/2 → ν2p3/2 2.6
ν1g9/2 → ν2d5/2 81.2

FIG. 5. Same as in Fig. 4 but for the 120Sn nucleus.

new excitation channels for the 2+ states within the proton p-f
shell with increasing temperature, which eventually contribute
to the low-energy region (shown in bold in Table IV). The
excitations from thermally occupied states to the discretized
continuum are also obtained, whereas their contribution to the
low-energy strength is low compared to excitations around
Fermi level.

2. 120Sn nucleus

In Figure 5, the isoscalar quadrupole strength function is
displayed for the 120Sn nucleus at T = 0, 1, and 2 MeV.
Experimentally, the ISGQR and the first 2+ state energies
in the 120Sn nucleus were measured at 12.9 ± 0.1 MeV [62]
and 1.17 MeV [60], respectively. At zero temperature, the
centroid energy of the ISGQR between 10 and 22 MeV is
obtained at 14.6 MeV. When compared with the experimental
results of Ref. [62], the ISGQR energy is overestimated
around 1.7 MeV within our model calculations. The first 2+
state energy is found at 1.3 MeV, in good agreement with
the experimental data [60]. We find that both the first 2+
state and the ISGQR exhibit strong collectivity with large
strengths, as expected. For instance, the first 2+ state is neutron
dominated and takes contributions from neutron 3s1/2 → 2d3/2

(23.9%), 1g7/2 → 2d3/2 (18.4%), 1h11/2 → 1h11/2 (15.2%),
2d3/2 → 2d3/2 (15.0%), 1g7/2 → 1g7/2 (6.3%) and proton
1g9/2 → 2d5/2 (3.8%) excitations. These results are also
in agreement with previous theoretical studies [49,61]. By
increasing temperature, the ISGQR centroid energy decreases
while the strength increases. The ISGQR centroid energies
are obtained at 14.6, 14.2, and 14.1 MeV at T = 0, 1, and
2 MeV, respectively. The low-energy part of the quadrupole
spectrum is also impacted by the temperature. Similar to the
68Ni nucleus, the strength of the first 2+ state is quenched
due to the phase transition of nuclei from superfluid to normal
state. Already at T = 1 MeV, a new excited state is obtained
at E = 4.75 MeV with appreciable strength. Apart from
thermally unblocked proton states, thermal population of the
neutron 1h11/2 state has an important impact on this low-energy
strength. The most important contributions at E = 4.75 MeV
are coming from neutron 1h11/2 → 2f7/2 (55.3%), 1g9/2 →
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FIG. 6. The isoscalar quadrupole strength function in 120Sn
calculated with QRPA (T = 0 MeV), FT-RPA, and FT-QRPA at
T = 0.5 (a), 0.75 (b), and 1 (c) MeV.

2d5/2 (7.1%) and proton 1g9/2 → 2d5/2 (19.5%) transitions.
The low-energy region below 4 MeV also starts to take
contributions from thermally unblocked states at T = 1 MeV.
While the contribution of the excitations from thermally
occupied states to the discretized continuum is rather small,
the low-energy region is mainly impacted due to the changing
occupation probabilities of states and contribution of new
excitations around the Fermi level. By further increasing tem-
perature, we obtain a small increase in the strength at around
E ≈ 2 MeV due to the increasing diffuseness of the Fermi
surface. These results are also in agreement with the FT-QRPA
results of Ref. [35]. The present study therefore provides a deep
understanding of the underlying mechanism at the origin of the
increase of the low-energy strength with temperature.

Let us now investigate the importance of using an appro-
priate microscopic model in the calculation of the multipole
response of the open-shell nuclei at finite temperatures. Since
the isoscalar quadrupole response is rather sensitive to the
temperature effects, it would be interesting to see the effect
of the various microscopic models on the results. On this pur-
pose, calculations are performed for the isoscalar quadrupole
response in 120Sn using QRPA (T = 0 MeV), FT-RPA, and FT-
QRPA. In panels (a), (b), and (c) of Fig. 6 we display the results
for the isoscalar quadrupole response of 120Sn at T = 0.5, 0.75,
and 1 MeV, respectively. For 120Sn, the critical temperature is
found at Tc = 0.83 MeV. At T = 0.5 MeV, it is clear that the
FT-RPA and FT-QRPA results are quite different both in the
high-energy and low-energy parts of the isoscalar quadrupole
strength. Although we obtain a small increase in the isoscalar
quadrupole strength below 4 MeV due to the opening of
the new excitation channels, the FT-RPA predicts a small
low-energy strength and underestimates the ISGQR energy
when compared to the FT-QRPA results. This difference is
already indicating the important role of pairing correlations
in open-shell nuclei. At T = 0.75 MeV, which is below the
critical temperature, the FT-RPA and FT-QRPA results start to
become compatible in the low-energy and high-energy parts
of the strength due to the decrease of the pairing effects.

Above the critical temperature, the pairing properties vanish
and the phase change of nuclei from superfluid to the normal
state occurs. Eventually, the FT-RPA and FT-QRPA give
similar results at T = 1 MeV, as expected. The results of the
present study show that the self-consistent finite temperature
QRPA is quite important in order to study and understand
the temperature induced effects on the multipole response of
open-shell nuclei below the critical temperatures.

IV. SUMMARY AND CONCLUSIONS

In this work, the fully self-consistent finite temperature
QRPA has been used for the first time in order to study the ef-
fect of temperature on the evolution of the isovector dipole and
isoscalar quadrupole responses in 68Ni and 120Sn nuclei. The
Skyrme-type SLy5 interaction is used in the calculations. The
calculations were performed in two steps. First, the finite tem-
perature HFBCS calculation was performed to determine the
ground state properties of nuclei at finite temperatures. Then,
the finite temperature QRPA was applied on top of it in order
to study nuclear excited states (Jπ = 1−,2+) in hot nuclei.

At finite temperature, it is found that both isovector giant
dipole resonance energy and strength undergo minor changes.
In addition, the contribution of additional configurations
mainly impact the low-energy region of the dipole response in
nuclei at finite temperatures. In general, temperature leads
to the fragmentation and distribution of the pygmy dipole
resonance strength towards lower energies due to the opening
of the new excitation channels. We also find that the continuum
plays an important role and the transitions from thermally
unblocked states to the discretized continuum give rise to
increase in the very low-energy region of the dipole strength
at finite temperatures. The effect of temperature on the
low-energy region of the radiative dipole strength is also
investigated in the 122Sn nucleus and compared with the
experimental data. The results show that the very low-energy
enhancement of the radiative dipole strength can be described
by the effect of temperature on the dipole response.

The evolution of the isoscalar quadrupole response of
nuclei has also been analyzed at finite temperatures. While the
ISGQR strength increases, the centroid energies decrease with
increasing temperature. In the low-energy part of the isoscalar
quadrupole spectrum, the strength is considerably quenched in
each nucleus above the critical temperature due to the disap-
pearance of the pairing correlations. Furthermore, thermally
occupied proton and neutron states give rise to the formation
of the new excitation channels and increase the strength in
the low-energy quadrupole spectrum due to the diffuse Fermi
surface at finite temperatures.

By performing QRPA, FT-RPA, and FT-QRPA calculations,
we have shown the importance of the use of the appropriate mi-
croscopic models in the description of the nuclear excitations
in open-shell nuclei. The results of the present study show
that the self-consistent finite temperature QRPA is relevant
in order to study and understand the temperature induced
effects on the multipole response of open-shell nuclei below
the critical temperature. As an extension of this work, it would
be interesting to improve the FT-HFBCS formalism in order
to remove the sharp phase transitions at critical temperatures.
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In addition, investigation of the spin-isospin resonances in
open-shell nuclei within the FT-QRPA framework is also
planned. It is also possible to extend the present FT-QRPA
method in order to study the Wigner-Seitz cells in neutron star
crust at finite temperatures with the exact continuum treatment.
These issues may be the subject of forthcoming works.
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APPENDIX: THE FINITE TEMPERATURE
QRPA MATRICES

In this Appendix, we provide explicit forms of the finite
temperature QRPA matrices in angular momentum coupled
representation. The excitation operator in Eq. (4) can be written
in the coupled representation as

�†
ν =

∑
a�b

{
Xν

abA
†
ab(JM) − Y ν

abAab(J̃M)

+ P ν
abB

†
ab(JM) − Qν

abBab(J̃M)
}
, (A1)

where A
†
ab(JM) [Aab(J̃M)] and B

†
ab(JM) [Bab(J̃M)] are

the coupled two-quasiparticle creation-annihilation opera-
tors and one-quasiparticle creation plus one-quasiparticle
destruction operators, respectively. The coupled operators are
given by

A
†
ab(JM) = Nab(J )

∑
mamb

〈jamajbmb|JM〉a†
aa

†
b, (A2)

Aab(JM) = (A†
ab(JM))†, (A3)

Aab(J̃M) = (−1)J+MAab(J − M), (A4)

B
†
ab(JM) = Nab(J )

∑
mamb

(−1)jb−mb

×〈jamajb − mb|JM〉a†
aab, (A5)

Bab(JM) = (B†
ab(JM))†, (A6)

Bab(J̃M) = (−1)J+MBab(J − M), (A7)

where Nab is the normalization factor and given as

Nab(J ) =
√

1 + (−)J δab

1 + δab

. (A8)

The finite temperature QRPA equations are obtained by the
direct use of the equation of motion method [see Eq. (5)]. In
the quasiparticle representation, the nuclear Hamiltonian can
be written as

H = H0 +
∑
ij

H 11
ij a

†
i aj +

∑
ijkl

H 22
ijkla

†
i a

†
j alak

+
∑
ijkl

(
H 40

ijkla
†
i a

†
j a

†
l a

†
k + H.c.

)

+
∑
ijkl

(
H 31

ijkla
†
i a

†
j a

†
l ak + H.c.

)
, (A9)

where H0 is the mean-field Hamiltonian while H11 represents
the one-body creation-annihilation part. In addition, the H 40,
H 22, and H 31 parts contain two-body particle-hole (ph)
and particle-particle (pp) matrix elements as well as u and
v factors of the BCS equations. The explicit form of the
quasiparticle representation of the Hamiltonian can be found
in Refs. [34,41,42]. The finite temperature QRPA matrix
equations are obtained from Eq. (5) and given by

Ãabcd = 〈[Aab(JM),[H,A
†
cd (JM)]]〉, (A10)

B̃abcd = −〈[Aab(JM),[H,Acd (J̃M)]]〉, (A11)

C̃abcd = 〈[Bab(JM),[H,B
†
cd (JM)]]〉, (A12)

D̃abcd = −〈[Bab(JM),[H,Bcd (J̃M)]]〉, (A13)

ãabcd = 〈[Bab(JM),[H,A
†
cd (JM)]]〉, (A14)

b̃abcd = −〈[Bab(JM),[H,Acd (J̃M)]]〉, (A15)

ã+
abcd = 〈[Aab(JM),[H,B

†
cd (JM)]]〉, (A16)

b̃T
abcd = −〈[Aab(JM),[H,Bcd (J̃M)]]〉. (A17)

The expectation values of the double commutators with
respect to the |BCS〉 thermal vacuum give access to the
finite temperature QRPA equations. At finite temperatures,
the operators read 〈a†

j ai〉 = δijfi and 〈aja
†
i 〉 = δij (1 − fj ).

Consequently, the expectation values of the commutators of
the coupled operators give

〈BCS|[Aab(JM),A†
cd (J ′M ′)]|BCS〉 = Nab(J )2δJJ ′δMM ′ [δacδbd − (−1)ja+jb+J δadδbc](1 − fa − fb), (A18)

〈BCS|[Bab(JM),B†
cd (J ′M ′)]|BCS〉 = Nab(J )2δJJ ′δMM ′δacδbd (fb − fa). (A19)

The explicit forms of the FT-QRPA matrices are obtained as

A′
abcd = (uaubucud + vavbvcvd )V pp

abcd + Nab(J )Ncd (J )[(uavbucvd + vaubvcud )V ph
ad̄b̄c

− (−1)jc+jd+J (uavbvcud + vaubucvd )V ph
ac̄b̄d

], (A20)

Babcd = −(uaubvcvd + vavbucud )V pp
abc̄d̄

+ Nab(J )Ncd (J )[(uavbvcud + vaubucvd )V ph
adb̄c̄

− (−1)jc+jd+J (uavbucvd + vaubvcud )V ph
acb̄d̄

], (A21)
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C ′
abcd = (uavbucvd + vaubvcud )V pp

ab̄cd̄
+ Nab(J )Ncd (J )[(uaubucud + vavbvcvd )V ph

adbc

+ (−1)jc+jd+J (uaubvcvd + vavbucud )V ph
ac̄bd̄

], (A22)

Dabcd = (uavbvcud + vaubucvd )V pp
ab̄c̄d

− Nab(J )Ncd (J )[(uaubvcvd + vavbucud )V ph
ad̄bc̄

+ (−1)jc+jd+J (uaubucud + vavbvcvd )V ph
acbd ] (A23)

aabcd = (vaubvcvd − uavbucud )V pp
ab̄cd

− Nab(J )Ncd (J )
[
(vavbvcud − uaubucvd )V ph

ad̄bc

− (−1)jc+jd+J (vavbucvd − uaubvcud )V ph
ac̄bd

]
, (A24)

babcd = −(vaubucud − uavbvcvd )V pp
ābcd − Nab(J )Ncd (J )

[
(vavbucvd − uaubvcud )V ph

adbc̄

− (−1)jc+jd+J (vavbvcud − uaubucvd )V ph
acbd̄

]
, (A25)

a+
abcd = (vavbvcud − uaubucvd )V pp

abcd̄
− Nab(J )Ncd (J )

[
(vaubvcvd − uavbucud )V ph

adb̄c

+ (−1)jc+jd+J (vaubucud − uavbvcvd )V ph
ācbd

]
, (A26)

bT
abcd = (vavbucvd − uaubvcud )V pp

abc̄d + Nab(J )Ncd (J )
[
(vaubucud − uavbvcvd )V ph

ādbc

+ (−1)jc+jd+J (vaubvcvd − uavbucud )V ph
acb̄d

]
, (A27)

where V ph and V pp represent the particle-hole and particle-particle effective interactions, respectively. The effective interactions
are defined as V

ph
acbd = δ2E(ρ,κ,κ∗)/δρbaδρdc, V

pp
abcd = δ2E(ρ,κ,κ∗)/δκ∗

abδκcd , where the residual interaction contains both the
spin-orbit and Coulomb interaction parts in order to achieve self-consistency.
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