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Octupole deformation in the ground states of even-even Z ∼ 96, N ∼ 196
actinides and superheavy nuclei
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A systematic search for axial octupole deformation in the actinides and superheavy nuclei with proton numbers
Z = 88–126 and neutron numbers from the two-proton drip line up to N = 210 was performed in covariant
density functional theory (DFT) using four state-of-the-art covariant energy density functionals representing
different model classes. The nuclei in the Z ∼ 96, N ∼ 196 region of octupole deformation were investigated in
detail and the systematic uncertainties in the description of their observables were quantified. A similar region
of octupole deformation exists also in Skyrme DFT and microscopic+macroscopic approaches but it is centered
at somewhat different particle numbers. Theoretical uncertainties in the predictions of the regions of octupole
deformation increase on going to superheavy nuclei with Z ∼ 120, N ∼ 190. There are no octupole deformed
nuclei for Z = 112–126 in covariant DFT calculations. This agrees with Skyrme DFT calculations, but disagrees
with Gogny DFT and microscopic+macroscopic calculations which predict an extended Z ∼ 120, N ∼ 190
region of octupole deformation.
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I. INTRODUCTION

Reflection asymmetric (or octupole deformed) shapes
represent an interesting example of symmetry breaking of the
nuclear mean field [1]. They are present in the ground and
rotating states of the lanthanides with Z ∼ 58, N ∼ 90 and
light actinides with Z ∼ 90, N ∼ 136 (see Refs. [1–4] and
references quoted therein). These shapes also affect the outer
fission barriers in actinides and superheavy nuclei [5–7] and
cluster radioactivity [8]. The first significant wave of studies
of octupole deformed shapes took place in the 1980s and
the first half of the 1990s (see the review in Ref. [1]). The
interest in studying such shapes has significantly increased
during the present decade (see references on theoretical and
experimental works quoted in Ref. [4]).

Different theoretical frameworks have been used for the
study of octupole deformed shapes (see Refs. [1,4,6] and
references quoted therein). Here we employ the covariant
density functional theory (CDFT) [9]. Its previous applications
to the investigation of such shapes have was overviewed
and compared with the results of nonrelativistic studies in
Ref. [4]. Built on Lorentz covariance and the Dirac equation,
CDFT provides a natural incorporation of spin degrees of
freedom [10,11] and a good parameter-free description of
spin-orbit splittings [11–13], which have an essential influence
on the underlying shell structure. In addition, in CDFT
the time-odd components of the mean fields are given by the
spatial components of the Lorentz vectors. Therefore, because
of Lorentz invariance, these fields are coupled with the same
constants as the timelike components [14], which are fitted
to ground state properties of finite nuclei (which are affected
only by time-even mean fields) and nuclear matter properties.

Starting from the pioneering work of Ref. [15], the CDFT
has been extensively used in the study of reflection asymmetric
shapes, especially during the last decade. Most of these
applications have been focused on reflection symmetric shapes
with axial symmetry; they were reviewed in Ref. [4]. Let us

mention some of these studies performed in the actinides.
At the mean field level, the ground state properties of the
actinides were studied in Refs. [4,15–19]. Some axial octupole
deformed nuclei have been studied also in the beyond-mean-
field approaches based on CDFT. For example, simultaneous
quadrupole and octupole shape phase transitions in the Th
isotopes were studied in Ref. [17] employing microscopic
collective Hamiltonian. Using the interacting boson model
Hamiltonian—with parameters determined by mapping the
microscopic potential energy surfaces, obtained in relativistic
Hartree-Bogoliubov calculations, to the expectation value of
the Hamiltonian in the boson condensate—the microscopic
analysis of the octupole phase transition was performed in
Refs. [18,19]. Generator coordinate method studies taking
into account dynamical correlations and quadrupole-octupole
shape fluctuations were undertaken in 224Ra employing the PC-
PK1 functional in Ref. [20]. They revealed rotation-induced
octupole shape stabilization.

Nonaxial-octupole Y32 correlations in the N = 150 isotones
and tetrahedral shapes in neutron-rich Zr isotopes were studied
in Refs. [21,22] employing multidimensional constrained
CDFT. Although the energy gain due to β32 distortion exceeds
300 keV in 248Cf and 250Fm in model calculations, it is not
likely that static deformation of this type is present in nature in
these two nuclei. This is because their rotational features are
well described in the cranked relativistic Hartree-Bogoliubov
framework with no octupole deformation [23,24]. Despite
theoretical predictions and substantial experimental efforts,
a clear experimental signal of tetrahedral shapes is still absent
(see the discussion in the introduction of Ref. [22]). In addition,
symmetry unrestricted multidimensional constrained CDFT
calculations are extremely time-consuming. For these reasons,
only reflection symmetric shapes with axial symmetry are
considered in the present paper.

The most comprehensive study of octupole deformed
shapes at the mean field level within the CDFT framework
was performed in Ref. [4]. In that paper the global search for
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such shapes was carried out in all Z � 106 even-even nuclei
located between two-proton and two-neutron drip lines with
two covariant energy density functionals (CEDFs) NL3* and
DD-PC1. As a result, a new region of octupole deformation,
centered around Z ∼ 98, N ∼ 196 was found in the CDFT
framework for the first time. Based on the results obtained with
these two functionals it was concluded that in terms of its size
in the (Z,N ) plane and the impact of octupole deformation on
binding energies, this region is similar to the best known region
of octupole deformed nuclei centered at Z ∼ 90, N ∼ 136.
In addition, the systematic uncertainties in the description of
the ground states of octupole deformed nuclei in the Z ∼ 58,
N ∼ 90 lanthanides and Z ∼ 90, N ∼ 136 actinides were
defined for the first time in the CDFT framework using five
state-of-the-art CEDFs representing different classes of the
CDFT models.

However, a number of questions still remain unresolved
in Ref. [4]. The search for the answers to these questions is
the main goal of this paper. First, there are the indications
that octupole deformation can be present in the ground
states of superheavy elements (SHE) with Z � 108, N ∼
190. They come from the results of the calculations within
the microscopic+macroscopic (mic+mac) approach [25] and
nonrelativistic Hartree-Fock-Bogoliubov (HFB) method based
on the finite range Gogny D1S force [26]. To our knowledge
no search of octupole deformation in the ground states of
superheavy Z � 108 nuclei has been performed within the
CDFT framework so far. To fill this gap in our knowledge we
will perform such a search in the region of proton numbers
108 � Z � 126 and in the region of neutron numbers from
the two-proton drip line up to neutron number N = 210.
This region almost coincides with the region used in a
recent reexamination of the properties of SHE in the CDFT
framework in Ref. [27].

Second, we will establish systematic theoretical uncer-
tainties in the predictions of the properties of the octupole
deformed nuclei in the Z ∼ 98, N ∼ 196 mass region and in
superheavy nuclei. This is important since these nuclei will not
be accessible with future facilities such as the Facility for Rare
Isotope Beams (FRIB). However, the accounting of octupole
deformation in the ground states of these nuclei is essential
for the modeling of fission recycling in neutron star mergers
[28,29] since the gain in binding energy of the ground states
due to octupole deformation will increase the fission barrier
heights as compared with the case when octupole deformation
is neglected.

To achieve these goals we use the four most up-to-date
covariant energy density functionals of different types: with
a nonlinear meson coupling (NL3* [30]), with density-
dependent meson couplings (DD-ME2 [31]), and with density-
dependent zero-range interactions (DD-PC1 [32] and PC-PK1
[33]). They represent different classes of CDFT models (see
the discussion in Ref. [34]). The functional DD-MEδ used
in our previous studies of the global performance of CDFT
[4,27,34–37] is not employed here since it fails to reproduce
octupole deformation in light actinides [4] and inner fission
barriers in superheavy nuclei [37].

The paper is organized as follows. Section II describes the
details of the solutions of the relativistic Hartree-Bogoliubov

equations. Section III is devoted to the discussion of the
ground state properties of octupole deformed nuclei and their
dependence on the covariant energy density functional. The
evolution of potential energy surfaces with proton and neutron
numbers is discussed in Sec. IV. The assessment of systematic
theoretical uncertainties in the predictions of ground state
properties of octupole deformed nuclei and the comparison
with other model predictions are performed in Sec. V. Finally,
Sec. VII summarizes the results of our work.

II. THE DETAILS OF THE THEORETICAL
CALCULATIONS

The calculations were performed in the Relativistic-
Hartree-Bogoliubov (RHB) approach using the parallel com-
puter code RHB-OCT developed in Ref. [4]. Note that only axial
reflection asymmetric shapes are considered in this code.

The calculations in the RHB-OCT code perform the variation
of the function

ERHB +
∑
λ=2,3

Cλ0(〈Q̂λ0〉 − qλ0)2 (1)

employing the method of quadratic constraints. Here ERHB is
the total energy (see Ref. [34] for more details of its definition)
and 〈Q̂λ0〉 denote the expectation values of the quadrupole
(Q̂20) and octupole (Q̂30) moments, which are defined as

Q̂20 = 2z2 − x2 − y2, (2)

Q̂30 = z(2z2 − 3x2 − 3y2). (3)

C20 and C30 in Eq. (1) are corresponding stiffness constants
[38] and q20 and q30 are constrained values of the quadrupole
and octupole moments. In order to provide the convergence
to the exact value of the desired multipole moment, we use
the method suggested in Ref. [39]. Here the quantity qλ0 is
replaced by the parameter qeff

λ0 , which is automatically modified
during the iteration in such a way that we obtain 〈Q̂λ0〉 = qλ0

for the converged solution. This method works well in our
constrained calculations. We also fix the (average) center of
mass of the nucleus at the origin with the constraint

〈Q̂10〉 = 0 (4)

on the center-of-mass operator Q̂10 in order to avoid a spurious
motion of the center of mass.

The charge quadrupole and octupole moments are
defined as

Q20 =
∫

d3r ρ(r) (2z2 − r2
⊥), (5)

Q30 =
∫

d3r ρ(r) z(2z2 − 3r2
⊥) (6)

with r2
⊥ = x2 + y2. In principle these values can be directly

compared with experimental data. However, it is more
convenient to transform these quantities into dimensionless
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deformation parameters β2 and β3 using the relations

Q20 =
√

16π

5

3

4π
ZR2

0β2, (7)

Q30 =
√

16π

7

3

4π
ZR3

0β3, (8)

where R0 = 1.2A1/3. These deformation parameters are more
frequently used in experimental works than quadrupole and
octupole moments. In addition, the potential energy surfaces
(PES) are plotted in this paper in the (β2,β3) deformation
plane.

In order to avoid the uncertainties connected with the
definition of the size of the pairing window [40], we use the
separable form of the finite range Gogny pairing interaction
introduced by Tian et al. [41]. Its matrix elements in r-space
have the form

V (r1,r2,r ′
1,r

′
2) = −Gδ(R − R′)P (r)P (r ′) 1

2 (1 − P σ ), (9)

with R = (r1 + r2)/2 and r = r1 − r2 being the center-of-
mass and relative coordinates. The form factor P (r) is of
Gaussian shape,

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (10)

The two parameters G = 728 MeV fm3 and a = 0.644 fm of
this interaction are the same for protons and neutrons and
were derived in Ref. [41] by a mapping of the 1S0 pairing
gap of infinite nuclear matter to that of the Gogny force D1S
[42]. This pairing provides a reasonable description of pairing
properties in the actinides (see Refs. [23,34,43]) and was used
in our previous studies of octupole deformation in Ref. [4].1

The potential energy surfaces are calculated in constrained
calculations in the (β2,β3) plane for the β2 values ranging from
−0.2 up to 0.4 (ranging from −0.6 up to 0.2) if the ground
state has prolate (oblate) deformation in the calculations of
Ref. [27] and for the β3 values ranging from 0.0 up to 0.3 with
a deformation step of 0.02 in each direction. The energies of
the local minima are defined in unconstrained calculations.

The effect of octupole deformation can be quantitatively
characterized by the quantity �Eoct, defined as

�Eoct = Eoct(β2,β3) − Equad(β ′
2,β

′
3 = 0), (11)

where Eoct(β2,β3) and Equad(β ′
2,β

′
3 = 0) are the binding

energies of the nucleus in two local minima of the potential
energy surface; the first minimum corresponds to octupole
deformed shapes and second one to the shapes with no octupole
deformation. The quantity |�Eoct| represents the gain of
binding due to octupole deformation. It is also an indicator of
the stability of the octupole deformed shapes. Large |�Eoct|
values are typical for well pronounced octupole minima in

1By mistake the parameters G = 738 MeV fm3 and a = 0.636 fm,
derived from the D1 Gogny force [41], are quoted in Ref. [4]. In
reality, the same parameters G = 728 MeV fm3 and a = 0.644 fm as
the ones employed in the present paper are used in the calculations
of Ref. [4].
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FIG. 1. The dependence of calculated quadrupole and octupole
deformations, total binding energy and the |�Eoct| quantity on the
number of fermionic shells employed in the RHB calculations for
290Cm with the DD-PC1 functional. The results obtained in octupole
and quadrupole RHB codes in respective local minima with (β2 �=
0,β3 �= 0) and (β2 �= 0,β3 = 0) are shown by solid black and dashed
red curves, respectively.

the PES; for such systems the stabilization of static octupole
deformation is likely. In contrast, small |�Eoct| values are
characteristic for soft (in octupole direction) PES typical
for octupole vibrations. In such systems beyond-mean-field
effects can play an important role (see Ref. [4] and references
quoted therein).

The truncation of the basis is performed in such a way that
all states belonging to the major shells up to NF = 16 (NF =
18 for superheavy Z > 106 nuclei) fermionic shells for the
Dirac spinors and up to NB = 20 bosonic shells for the meson
fields in the case of meson exchange functionals are taken into
account. The dependence of the calculated quantities on NF

is illustrated in Fig. 1. One can see that all physical quantities
of interest saturate with increasing NF . The comparison of the
results shows that the calculations with NF = 16 reproduce the
results of the NF = 20 truncation scheme with an accuracy of
0.007% or better for binding energies, 1.6% for the |�Eoct|
quantity, 1.56% or better for quadrupole deformations, and
2.3% for octupole deformation. Somewhat increased errors
for deformations are the consequences of the softness of the
potential energy surface; for such PES some drift in the calcu-
lated equilibrium deformation is possible with little impact on
total binding energy. Note that a larger basis with NF = 18 is
used for superheavy nuclei with Z > 106. This increase of the
basis fully compensates for the increase of the proton number
in the system. As a result, similar or better accuracy of the
description of physical observables is obtained in superheavy
nuclei. Thus, we conclude that the employed truncation of the
basis provides sufficient numerical accuracy of the calculations
in the vicinity of the normal deformed minimum.

III. THE PROPERTIES OF OCTUPOLE DEFORMED
NUCLEI AND THEIR DEPENDENCE ON THE COVARIANT

ENERGY DENSITY FUNCTIONAL

The global search for octupole deformed nuclei was
performed for all even-even Z = 88–126 nuclei from the
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FIG. 2. Octupole deformed nuclei in the selected part of the nuclear chart. Only nuclei with nonvanishing �Eoct are shown by squares; the
colors of the squares represent the values of |�Eoct| (see colormap). The two-proton and two-neutron drip lines are displayed by solid black
lines; for the CEDFs NL3*, DD-ME2, and DD-PC1 they are taken from Ref. [34]. Two-proton drip line for PC-PK1 is taken from Ref. [27].
The two-neutron drip line of the NL3* functional is used in panel (d) since it is not defined for CEDF PC-PK1 at present.

two-proton drip line up to either neutron number N =
210 or the two-neutron drip line (whichever comes first
in neutron number) employing CEDFs NL3*, DD-ME2,
DD-PC1, and PC-PK1. Note that we use here the results
obtained with CEDFs NL3* and DD-PC1 in Ref. [4] for the
Z = 88–106 nuclei. Contrary to the results obtained within
the microscopic+macroscopic approach in Ref. [25] and
HFB calculations with Gogny D1S force in Ref. [26], our
calculations do not reveal the presence of octupole deformation
in the ground states of superheavy nuclei with Z � 110. This
issue will be discussed later in detail in Sec. V.

Figure 2 shows the summary of the nuclei which possess
octupole deformation in the ground state. The Z ∼ 92, N ∼
136 actinides were studied previously in detail in Ref. [4] and
they are shown here only for comparison with the Z ∼ 96,
N ∼ 196 region of octupole deformation. In both regions, the
number of even-even nuclei with calculated nonzero octupole
deformation depends on the employed functional. There are
47 (44), 57 (38), 47 (31), and 64 (46) of such nuclei in
the Z ∼ 96, N ∼ 196 (Z ∼ 92, N ∼ 136) region of octupole
deformation in the calculations with the NL3*, DD-PC1,
PC-PK1, and DD-ME2 functionals, respectively. Thus, the
calculations with CEDFs DD-ME2 and PC-PK1 confirm
earlier CDFT predictions on the existence of new region
of octupole deformation centered around Z ∼ 96, N ∼ 196
obtained with the CEDFs NL3* and DD-PC1 in Ref. [4].
Most of the functionals predict that this region is substantially
larger than the one around Z ∼ 92, N ∼ 136. Moreover, the
maximum gain in binding due to octupole deformation is
comparable in the Z ∼ 96, N ∼ 196 and Z ∼ 92, N ∼ 136
regions. This strongly suggests the stabilization of octupole
deformation in the nuclei belonging to the central part of the
Z ∼ 96, N ∼ 196 region.

The detailed information on calculated equilibrium
quadrupole (β2) and octupole (β3) deformations as well as
the gains (�Eoct) in binding due to octupole deformation is

summarized in Fig. 3. These results show large similarities
between the NL3* and PC-PK1 functionals on the one hand
and the DD-ME2 and DD-PC1 functionals on the other hand.
The first pair of functionals typically shows somewhat smaller
gain in binding due to octupole deformation as compared with
second one. This is likely due to the fact that the pairing
is stronger in neutron rich nuclei for the first pair of the
functionals as compared with second one (see Ref. [36]);
strong pairing leads to the reduction of |�Eoct| (see Sec. V
of Ref. [4]). The differences or similarities in underlying shell
structure could be another source of observed features.

For all functionals the maximum of the gain in binding en-
ergy due to octupole deformation takes place around Z ∼ 96,
N ∼ 196. For nuclei in the vicinity of these particle numbers
there is very little dependence of calculated equilibrium
deformations on the employed functional. However, on going
away from these particle numbers the differences in calculated
deformations increase because the nuclei become more soft in
octupole deformation and thus more transitional in nature (see
the discussion in Sec. IV). In particular, the particle numbers
at which the transition from quadrupole deformed to octupole
deformed shapes takes place become strongly dependent on
the employed functional.

Two Z = 108 (two Z = 108 and one Z = 110) nuclei have
nonzero octupole deformation in the calculations with CEDF
DD-PC1 (DD-ME2) [see Figs. 2(b) and 2(c)]. They are not
shown in Fig. 3 since all these nuclei are extremely soft in
octupole deformation with very small gain in binding energy
due to octupole deformation (|�Eoct| < 0.1 MeV).

IV. EVOLUTION OF POTENTIAL ENERGY SURFACES
WITH PARTICLE NUMBERS: AN EXAMPLE

OF THE DD-PC1 FUNCTIONAL

In order to better understand the evolution and development
of octupole deformation with particle number, the potential
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FIG. 3. The calculated equilibrium quadrupole β2 (top panel of each figure) and octupole β3 (middle panel of each figure) deformations as
well as the �Eoct quantities (bottom panel of each figure). The employed functionals are indicated.
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FIG. 4. Potential energy surfaces of the Cm (Z = 96) isotopes in the (β2,β3) plane calculated with the CEDF DD-PC1. The white circle
indicates the global minimum. Equipotential lines are shown in steps of 0.5 MeV. The neutron number N is shown in each panel in order to
make the comparison between different isotones easier.

energy surfaces (PES) of the Cm (Z = 96) isotopes and
N = 198 isotones obtained in the RHB calculations with
CEDF DD-PC1 are shown in Figs. 4 and 5. The center of the

crossing in the (Z,N ) plane represented by the 294Cm nucleus
is located in the region of maximum gain of binding due to
octupole deformation (see Fig. 2).

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

288Th
N = 198

DD−PC1 (a)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

290U
N = 198

DD−PC1 (b)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

292Pu
N = 198

DD−PC1 (c)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

294Cm
N = 198

DD−PC1 (e)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

296Cf
N = 198

DD−PC1 (e)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

298Fm
N = 198

DD−PC1 (f)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0

2

4

6

8

10

300No
N = 198

DD−PC1 (g)

β
2
 − deformation

β 3 −
 d

ef
o

rm
at

io
n

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

2

4

6

8

10

302Rf
N = 198

DD−PC1 (h)

FIG. 5. The same as Fig. 4, but for the N = 198 isotones.
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The PES of the 286Cm nucleus are rather soft in the β3

direction, with the gain in binding due to octupole deformation
being |�Eoct| = 0.271 MeV. The addition of the neutrons leads
to the stabilization of octupole deformation in the 288–294Cm
isotopes, with the largest gains in binding due to octupole
deformation being 1.994 and 1.790 MeV in the 290Cm and
292Cm nuclei, respectively. Subsequent increase of the neutron
number leads to the softening of potential energy surfaces so
that |�Eoct| is rather small (0.049 MeV) in the 298Cm nucleus.

The PES for the N = 198 isotones are displayed in Fig. 5.
One can see that the lowest Z nucleus (288Th with Z = 88)
shown in this figure already has a well pronounced minimum
in octupole deformation which is characterized by |�Eoct| =
1.084 MeV. This is because the 286Rn nucleus with lower
Z value (Z = 86), which is expected to be more octupole
soft, is located beyond the two-neutron drip line (see Fig. 2).
The 290U, 292Pu, 294Cm, 296Cf, and 298Fm nuclei have well
pronounced octupole minima in the PES. The largest gain in
binding due to octupole deformation, |�Eoct| = 1.419 MeV,
is reached in the 292Pu nucleus. Subsequent increase of proton
number above Z = 100 gradually decreases |�Eoct| so that
PES surface becomes very soft in 302Rf.

V. ASSESSING SYSTEMATIC UNCERTAINTIES
IN MODEL PREDICTIONS

All theoretical approaches to nuclear many body problem
are based on some approximations. For example, in the DFT
framework, there are two major sources of these approxima-
tions, namely, the range of interaction and the form of the
density dependence of the effective interaction [44,45]. In
the nonrelativistic case one has zero range Skyrme and finite
range Gogny forces and different density dependencies [44].
A similar situation exists also in the relativistic case: point
coupling and meson exchange models have an interaction of
zero and of finite range, respectively [9,30–32]. The density
dependence is introduced either through an explicit depen-
dence of the coupling constants [31,32,46] or via nonlinear
meson couplings [30,45]. This ambiguity in the definition
of the range of the interaction and its density dependence
leads to several major classes of the covariant energy density
functionals, which were discussed in detail in Ref. [34].

These approximations lead to theoretical uncertainties in
the description of physical observables. While in known nuclei
these uncertainties could be minimized by benchmarking the
model description to experimentally known nuclei (for exam-
ple, via the fitting protocol), they grow in magnitude when we
extrapolate beyond known regions [34,47]. In such a situation,
the estimate of theoretical uncertainties is needed. This issue
was discussed in detail in Refs. [47,48] and in the context of
global studies within CDFT in the introduction of Ref. [34] and
in Ref. [37]. In the CDFT framework, systematic theoretical
uncertainties and their sources have been studied globally for
the ground state masses, deformations, charge radii, neutrons
skins, positions of drip lines, etc. in Refs. [4,27,34–36,49] and
for inner fission barriers in superheavy nuclei in Ref. [37].

In the present paper, we focus on the uncertainties related
to the choice of the energy density functional. Similar to
our previous studies ([4,27,34,36,37]), we define systematic

Proton quadrupole deformation spread Δβ2

(a) all CEDFs

 130  140  150  160  170  180  190  200
Neutron number  N

 90

 100

 110

Pr
ot

on
 n

um
be

r 
 Z

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3

Δβ2

Proton octupole deformation spread Δβ3

(b) all CEDFs

 130  140  150  160  170  180  190  200
Neutron number  N

 90

 100

 110

Pr
ot

on
 n

um
be

r 
 Z

 0

 0.05

 0.1

 0.15

 0.2

Spreads Δ(|ΔEoct|) [in MeV] in the energy gain due to octupole deformation

(c) all CEDFs

 130  140  150  160  170  180  190  200
Neutron number  N

 90

 100

 110

Pr
ot

on
 n

um
be

r 
 Z

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

E

FIG. 6. The calculated spreads in quadrupole and octupole
deformations as well as in the |�Eoct| quantities. The nucleus is
shown by a square if it has nonzero octupole deformation in the
calculations with at least one CEDF.

theoretical uncertainty for a given physical observable (which
we call in the following “spreads”) via the spread of theoretical
predictions as [34]

�O(Z,N ) = |Omax(Z,N ) − Omin(Z,N )|, (12)

where Omax(Z,N ) and Omin(Z,N ) are the largest and smallest
values of the physical observable O(Z,N ) obtained within the
set of CEDFs under investigation for the (Z,N ) nucleus.

These spreads for the calculated quadrupole and octupole
deformations as well as for the |�Eoct| quantity are shown in
Fig. 6. One can see that the spreads for the β2 and β3 deforma-
tions in the central parts of the Z ∼ 96, N ∼ 196 and Z ∼ 92,
N ∼ 136 regions are small. They increase at the boundaries
of these regions where the PES of the nuclei are soft in
octupole deformation. As a result, model predictions become
strongly dependent on fine details of underlying single-particle
structure so that the same (Z,N ) nucleus could be octupole
deformed in one functional but only quadrupole deformed
in another functional (see Fig. 2). A similar situation with
low reliability of theoretical predictions in some parts of the
nuclear chart has been seen in the transitional regions between
quadrupole deformed and spherical shapes (see Figs. 18 and
20 in Ref. [34]) in the axial RHB calculations restricted to
reflection symmetric shapes. The Z = 108,110 nuclei with
N = 188 show very large spreads in quadrupole deformation
[Fig. 6(a)]. These two nuclei are octupole deformed with
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FIG. 7. Octupole deformed nuclei obtained in the CDFT calculations with CEDFs DD-ME2 (a) and PC-PK1 (b), in Skyrme DFT calculations
with the SLy6 functional [50] (c), Gogny DFT calculations with EDF D1S [3,26] (d), and in microscopic+macroscopic calculations of Ref. [2,25]
(e). Only nuclei with nonzero calculated octupole deformation are shown by squares. The two-proton and two-neutron drip lines are displayed
by solid black lines in panels (a), (b), and (e). In panels (c) and (d), the regions in which the searches for octupole deformation were performed
are outlined by dashed lines. The results of the SDFT calculations for the Z ∼ 100, N ∼ 190 region of octupole deformation are extracted
from Fig. 11 of Ref. [50]. The Z ∼ 92, N ∼ 134 region of octupole deformation in panel (c) is shown schematically (based on Fig. 4 of
Ref. [50]). Note that the results presented in panel (d) in two regions of octupole deformation were obtained in two independent calculations
of Refs. [3,26]. The nuclei which are octupole deformed in the mic+mac calculations of Ref. [25] are shown by solid blue squares and open
diamonds in panel (e). Open squares indicate additional (as compared with Ref. [25]) octupole deformed nuclei obtained in Ref. [2], while
open diamonds indicate the nuclei which cease to be octupole deformed (as compared with Ref. [25]) in the mic+mac calculations of Ref. [2].

β2 ∼ −0.045, β3 ∼ 0.07 only in the calculations with the
DD-ME2 functional. However, they are spherical in the
calculations with CEDFs NL3* and PC-PK1 but oblate (with
β2 ∼ −0.36) in the calculations with DD-PC1 (see Fig. 6 in
Ref. [27]).

Systematic theoretical uncertainties for the energy gain
due to octupole deformation are shown in Fig. 6(c). These
uncertainties show a different pattern in the (Z,N ) plane as
compared with the uncertainties for the β2 and β3 deformations
[Figs. 6(a) and 6(b)]. The maximum uncertainties for the
|�Eoct| quantity exist in the left bottom corners of the

Z ∼ 96, N ∼ 196 and Z ∼ 92, N ∼ 136 regions of octupole
deformation. Theoretical uncertainties gradually decrease on
going away from these corners and become quite small at
the boundaries of the regions of octupole deformation. This
is not surprising considering the fact that the nuclei at these
boundaries are octupole soft with rather small gain in binding
due to octupole deformation.

It is important to compare the CDFT predictions for the
Z ∼ 96, N ∼ 196 region of octupole deformation with the
ones obtained in nonrelativistic theories. Such a comparison
is presented in Fig. 7 where two extreme CDFT predictions
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for octupole deformed region [the largest (smallest) Z ∼
96, N ∼ 196 region of octupole deformation is obtained
in the calculations with DD-ME2 (PC-PK1) functional] in
the indicated part of nuclear chart are compared with the
predictions obtained in the Skyrme and Gogny DFTs and
macroscopic+microscopic approach. The Skyrme DFT calcu-
lations with the SLy6 functional predict such a region with the
center located around Z = 100, N = 190 [50] [see Fig. 7(c)].
A similar region of octupole deformation (but with smaller
gain in binding energy due to octupole deformation) was also
obtained in the calculations with the SV-min EDF [50]. The
Gogny DFT calculations are limited to the (Z,N ) plane [see
Fig. 7(d)]; even then they do not indicate the presence of
octupole deformation in the nuclei located in the upper parts
of the regions of octupole deformation obtained in the Skyrme
and CDFT calculations. However, the extension of the Gogny
DFT calculations to the Z = 90–108, N = 180–210 region of
nuclear chart is needed to clarify the question of the existence
of the Z ∼ 96, N ∼ 196 region of octupole deformation in
this type of EDF. In contrast, the mic+mac calculations of
Ref. [25] predict the existence of octupole deformation in this
region [Fig. 7(e)]. However, the island of octupole deformation
is smaller than the one obtained in the CDFT or Skyrme DFT
calculations and it is centered around Z = 100, N = 184. It
is necessary to mention that that these results were obtained
more than twenty years ago. Newer mic+mac calculations of
Ref. [2] do not cover this part of the nuclear chart. However,
in the Z ∼ 92, N ∼ 134 region of octupole deformation, the
number of octupole deformed even-even nuclei is increased
from 20 in Ref. [25] to 27 in Ref. [2]. It would be interesting
to see how the number of octupole deformed nuclei in the
Z ∼ 100, N ∼ 184 region would be modified if the newer
formalism of the mic+mac approach of Ref. [2] with improved
model parameters would be applied to this region.

Despite placing the center of the island of octupole
deformed nuclei at different particle numbers (at Z ∼ 96,
N ∼ 196 in CDFT, at Z ∼ 100, N ∼ 190 in Skyrme DFT
and at Z ∼ 100, N ∼ 184 in the mic+mac approach), modern
theories agree on the existence of such islands in neutron-rich

actinides and low-Z superheavy nuclei. However, their pre-
dictions diverge for the Z � 110 superheavy nuclei. The
CDFT calculations of the present paper and the Skyrme
DFT calculations of Ref. [50] do not predict the existence
of octupole deformation in the ground states of the 110 �
Z � 126 and 110 � Z � 120 superheavy nuclei, respectively.
In contrast, the Gogny DFT (Fig. 7(d) and Ref. [26]) and
mic+mac (Fig. 7(e) and Ref. [25]) calculations predict the
existence of such nuclei. The HFB calculations based on the
Gogny D1S force predict octupole deformation in the ground
states of the (Z = 108–126, N = 186–190) even-even nuclei
(see Fig. 3 in Ref. [26]). These nuclei either do not have
quadrupole deformation (the N = 186 and some N = 188
nuclei) or this deformation is rather small (β2 < 0.1) for
N = 190 and some N = 188 nuclei. The octupole deformation
is rather small for most of these nuclei apart of few N = 188
nuclei and the majority of the N = 190 nuclei which have
substantial octupole deformation β3 exceeding 0.1. Note that
these calculations cover only nuclei with N � 190. More
extensive mic+mac calculations of Ref. [25] indicate a larger
region of octupole deformation in the superheavy nuclei [see
Fig. 7(e)].

The existence of octupole deformed shapes is dictated
by the underlying shell structure. Strong octupole coupling
exists for particle numbers associated with a large �N = 1
interaction between intruder orbitals with (l,j ) and normal-
parity orbitals with (l − 3,j − 3) [1]. Thus, the differences
discussed above in the model predictions are traced back to
the differences in the underlying single-particle structure. For
normal deformed nuclei not far away from beta stability the
tendency towards octupole deformation or strong octupole
correlations occurs just above closed shells. For example, in
the CDFT the maximum of octupole correlations takes place in
the A ∼ 230 region of octupole deformation at proton number
Z ∼ 92 (the coupling between the proton 1i13/2 and 2f7/2

orbitals) and N ∼ 136 (the coupling between the neutron
1j15/2 and 2g9/2 orbitals). In the Z ∼ 96, N ∼ 196 region,
the presence of octupole deformation is due to the interaction
of the 2h11/2 and 1k17/2 neutron orbitals and of the 1i13/2 and
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FIG. 8. Potential energy surfaces of 286Cm in the (β2,β3) plane calculated with the CEDF DD-PC1 for different values of scaling factor f

of the pairing strength. The white circle indicates the global minimum. Equipotential lines are shown in steps of 0.5 MeV.
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FIG. 9. The same as Fig. 8, but for 290Cm.

2f7/2 proton orbitals. Note that the maximum of the interaction
of proton orbitals occurs at a higher proton number Z as
compared with the well known A ∼ 230 region of octupole
deformation in actinides. In the Z ∼ 120, N ∼ 190 region,
the interactions of the 2h11/2 and 1k17/2 neutron orbitals
and of the 1j15/2 and 2g9/2 proton orbitals are responsible
for strong octupole correlations in the Gogny DFT and
mic+mac calculations. However, the energies of these states
and their positions with respect of the Fermi level are described
differently in different models (see, for example, Figs. 1, 4, 9,
and 15 in Ref. [12], Fig. 4 in Ref. [51], and Fig. 1 in Ref. [27]).

The predictive power of the above-discussed models in the
description of these energies and, as a consequence, of the
regions of octupole deformation, decreases on going away
from the known region of nuclear chart. Some differences
in the predictions of the region of octupole deformation do
already exist for the known A ∼ 230 region of octupole
deformation (see Fig. 7 and the discussion in Ref. [4]).
However, they become magnified with increasing neutron
number up to N ∼ 196 on going to the Z ∼ 96, N ∼ 196
region of octupole deformation and especially pronounced
with an additional increase of neutron number up to Z ∼
120. In the Z ∼ 120, N ∼ 190 region, there are substantial
discrepancies in model predictions. Note that in this region
of nuclear chart the state-of-the-art theories disagree even in
the prediction of large spherical shell gaps and thus of the
properties of superheavy nuclei [12,27,52].

VI. THE IMPACT OF PAIRING STRENGTH CHANGES

The extrapolations beyond the known region of nuclei
are associated with theoretical uncertainties. The systematic
uncertainties related to the form of the functional were quan-
tified in Sec. V; note that they are related to the particle-hole
channel of the DFTs. In addition, there are the uncertainties
in the particle-particle (pairing) channel; they are expected to
become especially large in the vicinity of the two-neutron drip
line (see Refs. [49,53]). The study of 218–234Th isotopes in Sec.
V of Ref. [4] showed that in general pairing counteracts the
shell effects. As a result, the strongest trend towards octupole

deformation is seen in the systems with no pairing, while
the increase of pairing suppresses it. The modification of the
pairing strength may also lead to the changes in the topology
of potential energy surfaces.

As illustrated in Figs. 8 and 9 these features are also present
in neutron-rich actinides. The 286Cm and 290Cm nuclei are used
here as the examples and the scaling factor f of the pairing
strength is varied in the indicated range. This is a factor by
which the matrix elements of Eq. (9) are multiplied. Based
on previous studies of the pairing in the CDFT framework in
Refs. [23,49], the variations of the scaling factor in the range
of ±3% with respect to f = 1.0 should be considered very
reasonable, but still larger variations could not be excluded.
The 286Cm nucleus, located at the borderline of the octupole
deformed region [see Fig. 2(c)], is characterized by PES which
is extremely soft in the octupole direction [Fig. 8(c)]. 290Cm
is located at the center of the island of octupole deformation
[Fig. 2(c)] and is characterized by a deep octupole minimum
with large |�Eoct| ∼ 2.0 MeV [see Fig. 1(d)]. The impacts
of the scaling factor f changes on the gain in binding due
to octupole deformation and on equilibrium deformations are
summarized in Tables I and II, respectively. Similar to the
results presented in Sec. V of Ref. [4], the reduction of pairing
strength leads to a more pronounced octupole minimum in both
nuclei. In contrast, the increase of pairing strength reduces
the depth of the octupole minimum in 290Cm and makes
the 286Cm nucleus spherical. Thus, one can conclude that
weaker (stronger) pairing would make the island of octupole
deformation broader (narrower) with more (less) pronounced
gains in binding due to octupole deformation in nuclei. The

TABLE I. The gain in binding |�Eoct| (in MeV) due to octupole
deformation calculated for different values of scaling factor f of the
pairing.

Nucleus f = 0.94 f = 0.97 f = 1.00 f = 1.03 f = 1.06

286Cm 1.089 0.696 0.271 0.0 0.0
290Cm 2.680 2.363 1.994 1.735 1.434
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TABLE II. The (β2,β3) deformations of the minimum of PES obtained in the RHB calculations with different values of scaling factor f .

Nucleus f = 0.94 f = 0.97 f = 1.00 f = 1.03 f = 1.06

286Cm 0.100, 0.113 0.099, 0.110 0.095, 0.105 0.00, 0.00 0.00, 0.00
290Cm 0.131, 0.127 0.132, 0.127 0.131, 0.126 0.134, 0.124 0.135, 0.121

impact of the modification of the pairing strength on the
equilibrium deformation is small in 290Cm. A similar situation
exists also in 286Cm for f = 0.94–1.00. However, further
increase of f triggers a transition to spherical shape.

VII. CONCLUSIONS

A systematic search for axial octupole deformation was
performed in the actinides and superheavy nuclei for proton
numbers Z = 88–126 and neutron numbers from the two-
proton drip line up to N = 210 using four state-of-the-art
covariant energy density functionals. Systematic theoretical
uncertainties in the description of physical observables of
octupole deformed nuclei were estimated. The main results
can be summarized as follows:

(1) The present CDFT investigation confirms our earlier
predictions on the existence of the region of octupole
deformation centered around Z ∼ 96, N ∼ 196 ob-
tained with the DD-PC1 and NL3* functionals [4].
Most of the CEDFs predict the size of this region in
the (Z,N ) plane to be larger than the one at Z ∼ 92,
N ∼ 136. On the other hand, the impacts of octupole
deformation on the binding energies of the nuclei in
these two regions are comparable. A similar region
of octupole deformation is predicted also in Skyrme
DFT [50] and mic+mac [25] calculations. However, it
is centered at Z ∼ 100, N ∼ 190 in the Skyrme DFT
calculations and at Z ∼ 100, N ∼ 184 in mic+mac
calculations.

(2) Systematic theoretical uncertainties in the predictions
of quadrupole (β2) and octupole (β3) deformations as
well as the gain in binding due to octupole deformation
|�Eoct| were quantified within the CDFT framework.
They are comparable in the Z ∼ 96, N ∼ 196 and Z ∼
92, N ∼ 136 regions of octupole deformation.

(3) The search for octupole deformation in the ground
states of even-even superheavy Z = 108–126 nuclei
was performed in the CDFT framework for the first
time. With the exception of two Z = 108 (two Z = 108
and one Z = 110) octupole deformed nuclei in the
calculations with CEDF DD-PC1 (DD-ME2), we do
not find octupole deformed shapes in the ground states
of these nuclei. These results are in agreement with the
ones obtained in the Skyrme DFT but disagree with
the ones obtained in Gogny DFT and mic+mac cal-
culations. The latter calculations indicate the presence
of large island of octupole deformed Z > 110 nuclei
centered around N ∼ 190. These differences in the
location of the islands of octupole deformed nuclei are
due to the differences in the underlying single-particle
structure.
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[31] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
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