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High-quality two-nucleon potentials up to fifth order of the chiral expansion
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We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO)
to next-to-next-to-next-to-next-to-leading order (N4LO). The construction may be perceived as consistent in
the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders.
Moreover, the long-range parts of these potentials are fixed by the very accurate πN low-energy constants (LECs)
as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira, and coworkers. In fact, the
uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially
negligible, reducing the error budget of predictions considerably. The NN potentials are fit to the world NN data
below the pion-production threshold of the year 2016. The potential of the highest order (N4LO) reproduces
the world NN data with the outstanding χ 2/datum of 1.15, which is the highest precision ever accomplished
for any chiral NN potential to date. The NN potentials presented may serve as a solid basis for systematic ab
initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular,
the consistent order by order development of the potentials will make possible a reliable determination of the
truncation error at each order. Our family of potentials is nonlocal and, generally, of soft character. This feature
is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to
about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.
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I. INTRODUCTION

The quest for a practically feasible, and yet fundamental,
theory of hadronic interactions at low energy (where QCD is
nonperturbative) has spanned several decades. At the present
time, there exists a general consensus that chiral effective field
theory (chiral EFT) may provide the best answer to the quest.
By its nature, chiral EFT is a model-independent approach with
firm roots in QCD, due to the fact that interactions are subjected
to the constraints of the broken chiral symmetry of low-energy
QCD. Moreover, the approach is systematic in the sense that
the various contributions to a particular dynamical process can
be arranged as an expansion in terms of a suitable parameter.
The latter is chosen to be the ratio of a typical external
momentum (soft scale) to the chiral symmetry-breaking scale
(≈1 GeV, hard scale). Recent comprehensive reviews on the
subject can be found in Refs. [1,2].

In its early stages, chiral perturbation theory (ChPT) was
applied mostly to ππ [3] and πN [4] dynamics, because,
due to the Goldstone-boson nature of the pion, these are the
most natural scenarios for a perturbative expansion to exist.
In the meantime, though, chiral EFT has been applied in nu-
cleonic systems by numerous groups [1,2,5–30]. Derivations
of the nucleon-nucleon (NN) interaction up to fourth order
(next-to-next-to-next-to-leading order, N3LO) can be found
in Refs. [7,9,10,12,13,15], with quantitative NN potentials
making their appearance in the early 2000s [16,17].

Since then, a wealth of applications of N3LO NN potentials
together with chiral three-nucleon forces (3NFs) have been
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reported. These investigations include few-nucleon reactions
[31–34], structure of light- and medium-mass nuclei [35–38],
and infinite matter [39–44]. Although satisfactory predictions
have been obtained in many cases, persistent problems
continue to pose serious challenges, such as the well-known
Ay puzzle of nucleon-deuteron scattering [45]. Naturally, one
would invoke 3NFs as the most likely mechanism to solve this
problem. Unfortunately, the chiral 3NF at NNLO does very
little to improve the situation with nucleon-deuteron scattering
[31,33], while inclusion of the N3LO 3NF produces an effect
in the wrong direction [34]. The next step is then to proceed
systematically in the expansion, namely to look at N4LO (or
fifth order). This order is interesting for diverse reasons. From
studies of some of the 3NF topologies at N4LO [46,47], we
know that a complete set of isospin-spin-momentum 3NF
structures (a total of 20) are present at this order [48] and that
contributions can be of substantial size. Even more promising,
at this order a new set of 3NF contact interactions appears,
which has recently been derived by the Pisa group [49]. Contact
terms are relatively easy to work with and, most importantly,
come with free coefficients and thus provide larger flexibility
and a great likelihood to solve persistent problems such as the
Ay puzzle as well as other issues (like the radius problem [50]
and the overbinding of intermediate-mass nuclei [51]).

A principle of all EFTs is that, for meaningful predictions, it
is necessary to include all contributions that appear at the order
at which the calculation is conducted. Thus, when nuclear
structure problems require for their solution the inclusion of
3NFs at N4LO, then also the two-nucleon force involved in
the calculation has to be of order N4LO. This is one reason
why in Ref. [52] we derived the N4LO two-pion exchange
(2PE) and three-pion exchange (3PE) contributions to the NN
interaction and tested them in peripheral partial waves. In this
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paper, we will present complete N4LO NN potentials that also
include the lower partial waves which receive contributions
from contact interactions.

In Ref. [52], we also demonstrated that the next-to-
next-to-leading order (NNLO), the N3LO, and the N4LO
contributions to the NN interaction are all of about the same
size, thus not showing much of a trend toward convergence.
Therefore, in Ref. [53] we calculated the N5LO (sixth-order)
contribution which, indeed, turned out to be small. The latter
result may be perceived as an indication of convergence
showing up at N5LO. This adds to the significance of
order N4LO.

Besides the above, we are faced with another set of
convergence issues: The convergence of the predictions for the
properties of nuclear few- and many-body systems, in which
also chiral many-body forces are involved. To investigate
these issues, one needs (besides those many-body forces)
NN potentials at all orders of chiral EFT, ranging from
leading order (LO) to N4LO, and constructed consistently,
i.e., using the same power-counting scheme, consistent LECs,
etc.

For that reason, we present in this paper NN potentials
through five orders from LO to N4LO, constructed with the
above-stated consistencies and with a reproduction of the NN
data of the maximum quality possible at the respective orders.
These potentials will allow for systematic investigations of
nuclear few- and many-body systems with clear implications
for convergence and uncertainty quantifications (truncation
errors) [23,27,54,55].

This paper is organized as follows: In Sec. II, we present
the expansion of the NN potential through all orders from
LO to N4LO. The reproduction of the NN scattering data and
the deuteron properties are given in Sec. III. Some aspects
regarding 3NFs are discussed in Sec. IV, and uncertainty
quantification is considered in Sec. V. Section VI concludes
the paper.

II. EXPANSION OF THE NN POTENTIAL

A. Effective Langrangians

In the � less version of chiral EFT, which is the one we
are pursuing here, the relevant degrees of freedom are pions
(Goldstone bosons) and nucleons. Since the interactions of
Goldstone bosons must vanish at zero momentum transfer and
in the chiral limit (mπ → 0), the low-energy expansion of the
effective Lagrangian is arranged in powers of derivatives and
pion masses. This effective Lagrangian is subdivided into the
following pieces,

Leff = Lππ + LπN + LNN + · · · , (2.1)

where Lππ deals with the dynamics among pions, LπN

describes the interaction between pions and a nucleon, and
LNN contains two-nucleon contact interactions which consist
of four nucleon-fields (four nucleon legs) and no meson
fields. The ellipsis stands for terms that involve two nucleons
plus pions and three or more nucleons with or without
pions, relevant for nuclear many-body forces. The individual

Lagrangians are organized in terms of increasing orders:

Lππ = L(2)
ππ + L(4)

ππ + · · · , (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + · · · , (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + · · · , (2.4)

where the superscript refers to the number of derivatives or
pion mass insertions (chiral dimension) and the ellipses stand
for terms of higher dimensions. We use the heavy-baryon
formulation of the Lagrangians, the explicit expressions of
which can be found in Refs. [1,46].

B. Power counting

Based upon the above Langrangians, an infinite number of
diagrams contributing to the interactions among nucleons can
be drawn. Nuclear potentials are defined by the irreducible
types of these graphs. By definition, an irreducible graph
is a diagram that cannot be separated into two by cutting
only nucleon lines. These graphs are then analyzed in terms
of powers of small external momenta over the large scale:
(Q/�χ )ν , where Q is generic for a momentum (nucleon
three-momentum or pion four-momentum) or a pion mass and
�χ ∼ 1 GeV is the chiral symmetry-breaking scale (hardronic
scale, hard scale). Determining the power ν has become know
as power counting.

Following the Feynman rules of covariant perturbation
theory, a nucleon propagator is Q−1, a pion propagator
is Q−2, each derivative in any interaction is Q, and each
four-momentum integration is Q4. This is also known as naive
dimensional analysis or Weinberg counting.

Since we use the heavy-baryon formalism, we encounter
terms which include factors of Q/MN , where MN de-
notes the nucleon mass. We count the order of such terms
by the rule Q/MN ∼ (Q/�χ )2, for reasons explained in
Ref. [5].

Applying some topological identities, one obtains for
the power of a connected irreducible diagram involving A
nucleons [1,5]

ν = −2 + 2A − 2C + 2L +
∑

i

�i , (2.5)

with

�i ≡ di + ni

2
− 2 , (2.6)

where L denotes the number of loops in the diagram,
di is the number of derivatives or pion-mass insertions,
and ni the number of nucleon fields (nucleon legs) in-
volved in vertex i; the sum runs over all vertexes i
contained in the connected diagram under consideration.
Note that �i � 0 for all interactions allowed by chiral
symmetry.

An important observation from power counting is that the
powers are bounded from below and, specifically, ν � 0. This
fact is crucial for the convergence of the low-momentum
expansion.

Furthermore, the power formula Eq. (2.5) allows us to
predict the leading orders of connected multinucleon forces.
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index �i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m � A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i �i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

�i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/�χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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TABLE I. Basic constants used throughout this work [56].

Quantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV

above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + V
(5)

1π + · · · , (2.9)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + V
(5)

2π + · · · , (2.10)

V3π = V
(4)

3π + V
(5)

3π + · · · , (2.11)

where the superscript denotes the order ν of the expansion.
Order by order, the long-range NN potential builds up as

follows:

VLO ≡ V (0) = V
(0)

1π , (2.12)

VNLO ≡ V (2) = VLO + V
(2)

1π + V
(2)

2π , (2.13)

VNNLO ≡ V (3) = VNLO + V
(3)

1π + V
(3)

2π , (2.14)

VN3LO ≡ V (4) = VNNLO + V
(4)

1π + V
(4)

2π + V
(4)

3π , (2.15)

VN4LO ≡ V (5) = VN3LO + V
(5)

1π + V
(5)

2π + V
(5)

3π , (2.16)

where LO stands for leading order, NLO stands for next-to-
leading order, etc.

1. Leading order

At leading order, only one-pion exchange (1PE) contributes
to the long range; cf. Fig. 1. The charge-independent 1PE is
given by

V
(CI)

1π ( �p′, �p) = − g2
A

4f 2
π

τ 1 · τ 2
�σ1 · �q �σ2 · �q
q2 + m2

π

, (2.17)

where �p ′ and �p denote the final and initial nucleon momenta in
the center-of-mass system, respectively. Moreover, �q = �p ′ −
�p is the momentum transfer, and �σ1,2 and τ 1,2 are the spin and
isospin operators of nucleons 1 and 2, respectively. Parameters
gA, fπ , and mπ denote the axial-vector coupling constant,
pion-decay constant, and the pion mass, respectively. See
Table I for their values. Higher order corrections to the 1PE are
taken care of by mass and coupling constant renormalizations.
Note also that, on shell, there are no relativistic corrections.
Thus, we apply 1PE in the form Eq. (2.17) through all orders.

For the NN potentials constructed in this paper, we take
the charge dependence of the 1PE due to pion-mass splitting
into account. Thus, in proton-proton (pp) and neutron-neutron
(nn) scattering, we actually use

V
(pp)

1π ( �p′, �p) = V
(nn)

1π ( �p′, �p) = V1π (mπ0 ) , (2.18)

and in neutron-proton (np) scattering, we apply

V
(np)

1π ( �p′, �p) = −V1π (mπ0 ) + (−1)I+1 2 V1π (mπ±) , (2.19)

where I = 0,1 denotes the total isospin of the two-nucleon
system and

V1π (mπ ) ≡ − g2
A

4f 2
π

�σ1 · �q �σ2 · �q
q2 + m2

π

. (2.20)

Formally speaking, the charge dependence of the 1PE ex-
change is of order NLO [1], but we include it also at leading
order to make the comparison with the (charge-dependent)
phase-shift analyses meaningful.

2. Subleading pion exchanges

Two-pion exchange starts at NLO and continues through
all higher orders. In Fig. 1, the corresponding diagrams show
completely up to NNLO. Beyond that order, the number of
diagrams increases so dramatically that we show only a few
symbolic graphs. The situation is similar for the 3PE contri-
butions, which start at N3LO. Also the mathematical formulas
are getting increasingly involved. A complete collection of all
formulas concerning the 2PE and 3PE contributions through
all orders from NLO to N4LO is given in Ref. [52]. Therefore,
we will not reprint the complicated math here and refer the
interested reader to the comprehensive compendium [52].
In all 2PE and 3PE contributions, we use the average pion
mass, m̄π = 138.039 MeV. The charge dependence caused by
pion-mass splitting in 2PE has been found to be negligible
in all partial waves with L > 0 [57]. The small effect in 1S0

is absorbed into the charge dependence of the zeroth-order
contact parameter C̃1S0 ; see below.

The contributions have the following general decomposi-
tion:

V ( �p′, �p) = VC + τ 1 · τ 2 WC

+ [VS + τ 1 · τ 2 WS] �σ1 · �σ2

+ [VLS + τ 1 · τ 2 WLS] [−i �S · (�q × �k)]

+ [VT + τ 1 · τ 2 WT ] �σ1 · �q �σ2 · �q, (2.21)

where �k = ( �p ′ + �p)/2 denotes the average momentum and
�S = (�σ1 + �σ2)/2 is the total spin. For on-shell scattering, Vα

and Wα (α = C,S,LS,T ) can be expressed as functions of
q = |�q |.

We consider loop contributions in terms of their spectral
functions, from which the momentum-space amplitudes Vα(q)
and Wα(q) are obtained via the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ �̃

nmπ

dμ
Im VC,S(iμ)

μ5(μ2 + q2)
,

VT,LS(q) = 2q4

π

∫ �̃

nmπ

dμ
Im VT,LS(iμ)

μ3(μ2 + q2)
, (2.22)

and similarly for WC,S,T ,LS . The thresholds are given by n = 2
for two-pion exchange and n = 3 for three-pion exchange.
For �̃ → ∞ the above dispersion integrals yield the results
of dimensional regularization, while for finite �̃ � nmπ we
employ the method known as spectral-function regularization
(SFR) [58]. The purpose of the finite scale �̃ is to constrain
the imaginary parts to the low-momentum region where chiral
effective field theory is applicable. Thus, a reasonable choice
for �̃ is to keep it below the masses of the vector mesons
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TABLE II. The πN low-energy constants (LECs) as determined
in the Roy-Steiner equation analysis of πN scattering conducted in
Ref. [60]. The given orders of the chiral expansion refer to the NN
system. Note that the orders, at which the LECs are extracted from
the πN system, are always lower by one order as compared of the NN
system in which the LECs are applied. The ci , d̄i , and ēi are the LECs
of the second-, third-, and fourth-order πN Lagrangian [46] and are
in units of GeV−1, GeV−2, and GeV−3, respectively. The uncertainties
in the last digits are given in parentheses after the values.

NNLO N3LO N4LO

c1 –0.74(2) –1.07(2) –1.10(3)
c2 3.20(3) 3.57(4)
c3 –3.61(5) –5.32(5) –5.54(6)
c4 2.44(3) 3.56(3) 4.17(4)
d̄1 + d̄2 1.04(6) 6.18(8)
d̄3 –0.48(2) –8.91(9)
d̄5 0.14(5) 0.86(5)
d̄14 − d̄15 –1.90(6) –12.18(12)
ē14 1.18(4)
ē17 –0.18(6)

ρ(770) and ω(782), but above the f0(500) [also know as
σ (500)] [56]. This suggests that the region 600–700 MeV
is appropriate for �̃. Consequently, we use �̃ = 650 MeV
in all orders, except for N4LO, where we apply 700 MeV.
We use this slightly larger value for N4LO, because it is
suggestive that higher orders may permit an extension to higher
momenta.

3. The pion-nucleon low-energy constants

Chiral symmetry establishes a link between the dynamics
in the πN system and the NN system through common
low-energy constants. Therefore, consistency requires that we
use the LECs for subleading πN couplings as determined
in analysis of low-energy πN scattering. Over the years,
there have been many such determinations of questionable
reliability. Fortunately, that has changed recently with the
analysis by Hoferichter and Ruiz de Elvira [59] and their
coworkers [60], in which the Roy-Steiner (RS) equations are
applied. The RS equations are a set of coupled partial-wave
dispersion relations constrained by analyticity, unitarity, and
crossing symmetry. In the work of Ref. [60], they are used to
extract the LECs from the subthreshold point in πN scattering
instead of the physical region. This is the preferred method
for LECs to be applied in chiral potentials where, e.g., a
one-loop πN amplitude leads to a two-loop contribution in
NN. Such diagrams are best evaluated by means of Cutkosky
rules [12,52,53]. The πN amplitude that enters the dispersion
integrals is weighted much closer to subthreshold kinematics
than to the threshold point. The LECs determined in Ref. [60]
carry very small uncertainties (cf. Table II) for, essentially,
two reasons: first, because of the constraints built into the RS
equations, and second, because of the use of the high-accuracy
πN scattering lengths extracted from pionic atoms. In fact,
the uncertainties are so small that they are negligible for
our purposes. This makes the variation of the πN LECs

in NN potential construction obsolete and reduces the error
budget in applications of these potentials. For the potentials
constructed in this paper, the central values of Table II are
applied.

D. The short-range NN potential

The short-range NN potential is described by contributions
of the contact type, which are constrained by parity, time
reversal, and the usual invariances, but not by chiral sym-
metry. Terms that include a factor τ 1 · τ 2 (owing to isospin
invariance) can be left out due to Fierz ambiguity. Because
of parity and time reversal, only even powers of momentum
are allowed. Thus, the expansion of the contact potential is
formally written as

Vct = V
(0)

ct + V
(2)

ct + V
(4)

ct + V
(6)

ct + · · · , (2.23)

where the superscript denotes the power or order.
The zeroth-order (leading order, LO) contact potential is

given by

V
(0)

ct ( �p′, �p) = CS + CT �σ1 · �σ2 (2.24)

and, in terms of partial waves,

V
(0)

ct (1S0) = C̃1S0 = 4π (CS − 3 CT ), (2.25)

V
(0)

ct (3S1) = C̃3S1 = 4π (CS + CT ) . (2.26)

To deal with the isospin breaking in the 1S0 state, we treat C̃1S0

in a charge-dependent way. Thus, we will distinguish among
C̃

pp
1S0

, C̃
np
1S0

, and C̃nn
1S0

.
At second order (NLO), we have

V
(2)

ct ( �p′, �p) = C1 q2 + C2 k2 + (C3 q2 + C4 k2)�σ1 · �σ2

+C5[−i �S · (�q × �k)] + C6 (�σ1 · �q) (�σ2 · �q)

+C7 (�σ1 · �k) (�σ2 · �k) , (2.27)

and partial-wave decomposition yields

V
(2)

ct (1S0) = C1S0 (p2 + p′2),

V
(2)

ct (3P0) = C3P0 pp′,

V
(2)

ct (1P1) = C1P1 pp′,

V
(2)

ct (3P1) = C3P1 pp′,

V
(2)

ct (3S1) = C3S1 (p2 + p′2),

V
(2)

ct (3S1 − 3D1) = C3S1−3D1p
2,

V
(2)

ct (3D1 − 3S1) = C3S1−3D1p
′2,

V
(2)

ct (3P2) = C3P2 pp′ . (2.28)

The relationship between C(2S+1)LJ
and Ci can be found in

Ref. [1].
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The fourth-order (N3LO) contacts are

V
(4)

ct ( �p′, �p)

= D1 q4 + D2 k4 + D3 q2k2 + D4 (�q × �k)2

+ [D5 q4 + D6 k4 + D7 q2k2 + D8 (�q × �k)2]�σ1 · �σ2

+ (D9 q2 + D10 k2)[−i �S · (�q × �k)]

+ (D11 q2 + D12 k2)(�σ1 · �q) (�σ2 · �q)

+ (D13 q2 + D14 k2)(�σ1 · �k) (�σ2 · �k)

+D15[�σ1 · (�q × �k) �σ2 · (�q × �k)] , (2.29)

with contributions by partial waves,

V
(4)

ct (1S0) = D̂1S0 (p′4 + p4) + D1S0p
′2p2,

V
(4)

ct (3P0) = D3P0 (p′3p + p′p3),

V
(4)

ct (1P1) = D1P1 (p′3p + p′p3),

V
(4)

ct (3P1) = D3P1 (p′3p + p′p3),

V
(4)

ct (3S1) = D̂3S1 (p′4 + p4) + D3S1p
′2p2,

V
(4)

ct (3D1) = D3D1p
′2p2,

V
(4)

ct (3S1 − 3D1) = D̂3S1−3D1p
4 + D3S1−3D1p

′2p2,

V
(4)

ct (3D1 − 3S1) = D̂3S1−3D1p
′4 + D3S1−3D1p

′2p2,

V
(4)

ct (1D2) = D1D2p
′2p2,

V
(4)

ct (3D2) = D3D2p
′2p2,

V
(4)

ct (3P2) = D3P2 (p′3p + p′p3),

V
(4)

ct (3P2 − 3F2) = D3P2−3F2p
′p3,

V
(4)

ct (3F2 − 3P2) = D3P2−3F2p
′3p,

V
(4)

ct (3D3) = D3D3p
′2p2 . (2.30)

Reference [1] provides formulas that relate D(2S+1)LJ
to Di .

The next higher order is sixth order (N5LO) at which,
finally, F waves are also affected in the following way:

V
(6)

ct (3F2) = E3F2p
′3p3,

V
(6)

ct (1F3) = E1F3p
′3p3,

V
(6)

ct (3F3) = E3F3p
′3p3,

V
(6)

ct (3F4) = E3F4p
′3p3 . (2.31)

To obtain an optimal fit of the NN data at the highest order we
consider in this paper, we include the above F -wave contacts
in our N4LO potentials.

E. Charge dependence

This is to summarize what charge dependence we include.
Through all orders, we take the charge dependence of the 1PE
due to pion-mass splitting into account, Eqs. (2.18) and (2.19).
Charge dependence is seen most prominently in the 1S0 state
at low energies, particularly in the 1S0 scattering lengths. The
charge-dependent 1PE cannot explain it all. The remainder
is accounted for by treating the 1S0 LO contact parameter,

C̃1S0 , Eq. (2.25), in a charge-dependent way. Thus, we will
distinguish among C̃

pp
1S0

, C̃np
1S0

, and C̃nn
1S0

. For pp scattering at any
order, we include the relativistic Coulomb potential [61,62].
Finally, at N3LO and N4LO, we take into account irreducible
π -γ exchange [63], which affects only the np potential. We
also take nucleon-mass splitting into account, or in other
words, we always apply the correct values for the masses
of the nucleons involved in the various charge-dependent NN
potentials.

For a comprehensive discussion of all possible sources for
the charge dependence of the NN interaction, see Ref. [1].

F. The full potential

The sum of long-range [Eqs. (2.12)–(2.16)] plus short-
range potentials [Eq. (2.23)] results in

VLO ≡ V (0) = V1π + V
(0)

ct , (2.32)

VNLO ≡ V (2) = VLO + V
(2)

2π + V
(2)

ct , (2.33)

VNNLO ≡ V (3) = VNLO + V
(3)

2π , (2.34)

VN3LO ≡ V (4) = VNNLO + V
(4)

2π + V
(4)

3π + V
(4)

ct , (2.35)

VN4LO ≡ V (5) = VN3LO + V
(5)

2π + V
(5)

3π , (2.36)

where we left out the higher order corrections to the 1PE
because, as discussed, they are absorbed by mass and coupling
constant renormalizations. It is also understood that the charge
dependence discussed in the previous subsection is included.

In our systematic potential construction, we follow the
above scheme, except for two physically motivated modifica-
tions. We add to VN3LO the 1/MN correction of the NNLO 2PE
proportional to ci . This correction is proportional to ci/MN and
appears nominally at fifth order, because we count Q/MN ∼
(Q/�χ )2. This contribution is given in Eqs. (2.19)–(2.23) of
Ref. [52] and we denote it by V

(5)
2π,ci/MN

. In short, in Eq. (2.35),
we replace

VN3LO 	−→ VN3LO + V
(5)

2π,ci/MN
. (2.37)

As demonstrated in Ref. [15], the 2PE bubble diagram
proportional to c2

i that appears at N3LO is unrealistically
attractive, while the ci/MN correction is large and repulsive.
Therefore, it makes sense to group these diagrams together to
arrive at a more realistic intermediate attraction at N3LO.

The second modification consists of adding to VN4LO the
four F -wave contacts listed in Eq. (2.31) to ensure an optimal
fit of the NN data for the potential of the highest order
constructed in this work.

The potential V is, in principal, an invariant amplitude (with
relativity taken into account perturbatively) and thus satisfies
a relativistic scattering equation, like, e.g., the Blankenbeclar-
Sugar (BbS) equation [64], which reads explicitly

T ( �p′, �p) = V ( �p′, �p) +
∫

d3p′′

(2π )3
V ( �p′, �p′′)

M2
N

Ep′′

× 1

p2 − p′′2 + iε
T ( �p′′, �p) (2.38)
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with Ep′′ ≡
√

M2
N + p′′2 and MN being the nucleon mass.

The advantage of using a relativistic scattering equation is that
it automatically includes relativistic kinematical corrections
to all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( �p′, �p) ≡ 1

(2π )3

√
MN

Ep′
V ( �p′, �p)

√
MN

Ep

(2.39)

and

T̂ ( �p′, �p) ≡ 1

(2π )3

√
MN

Ep′
T ( �p′, �p)

√
MN

Ep

, (2.40)

where the factor 1/(2π )3 is added for convenience, the BbS
equation collapses into the usual, nonrelativistic Lippmann-
Schwinger (LS) equation,

T̂ ( �p′, �p) = V̂ ( �p′, �p) +
∫

d3p′′ V̂ ( �p′, �p′′)

× MN

p2 − p′′2 + iε
T̂ ( �p′′, �p) . (2.41)

Since V̂ satisfies Eq. (2.41), it may be regarded as a nonrela-
tivistic potential. By the same token, T̂ may be considered as
the nonrelativistic T matrix. All technical aspects associated
with the solution of the LS equation can be found in
Appendix A of Ref. [65], including specific formulas for the
calculation of the np and pp phase shifts (with Coulomb).
Additional details concerning the relevant operators and their
decompositions are given in Sec. 4 of Ref. [66]. Finally,
computational methods to solve the LS equation are found
in Ref. [67].

G. Regularization and nonperturbative renormalization

Iteration of V̂ in the LS equation, Eq. (2.41), requires cutting
V̂ off for high momenta to avoid infinities. This is consistent
with the fact that ChPT is a low-momentum expansion which
is valid only for momenta Q < �χ ≈ 1 GeV. Therefore, the
potential V̂ is multiplied with the regulator function f (p′,p),

V̂ ( �p′, �p) 	−→ V̂ ( �p′, �p) f (p′,p) (2.42)

with

f (p′,p) = exp[−(p′/�)2n − (p/�)2n] , (2.43)

such that

V̂ ( �p′, �p) f (p′,p)

≈ V̂ ( �p′, �p)

{
1 −

[(
p′

�

)2n

+
(

p

�

)2n]
+ · · ·

}
. (2.44)

For the cutoff parameter �, we apply three different values,
namely, 450, 500, and 550 MeV.

Equation (2.44) provides an indication of the fact that the
exponential cutoff does not necessarily affect the given order
at which the calculation is conducted. For sufficiently large
n, the regulator introduces contributions that are beyond the
given order. Assuming a good rate of convergence of the chiral

expansion, such orders are small as compared to the given order
and thus do not affect the accuracy at the given order. Thus,
we use n = 2 for 3PE and 2PE and n = 4 for 1PE (except in
LO and NLO, where we use n = 2 for 1PE). For contacts of
order ν, n is chosen such that 2n > ν.

In our calculations, we apply, of course, the exponential
form, Eq. (2.43), and not the expansion, Eq. (2.44). On a
similar note, we also do not expand the square-root factors
in Eqs. (2.39) and (2.40) because they are kinematical factors
which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T matrix may
depend sensitively on the regulator and its cutoff parameter.
The removal of such regulator dependence is known as
renormalization.

The renormalization of the perturbatively calculated NN
potential is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear
EFT because nuclear physics is characterized by bound states
and large scattering lengths, which are nonperturbative in
nature. Or in other words, to obtain the nuclear amplitude,
the potential has to be resummed (to infinite orders) in the LS
equation, Eq. (2.41). EFT power counting may be different for
nonperturbative processes as compared to perturbative ones.
Such difference may be caused by the infrared enhancement
of the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [5] was that the countert-
erms introduced to renormalize the perturbatively calculated
potential, based upon naive dimensional analysis (“Weinberg
counting,” cf. Sec. II B), are also sufficient to renormalize
the nonperturbative resummation of the potential in the LS
equation.

Weinberg’s assumption may not be correct as first pointed
out by Kaplan et al. [68], and we refer the interested reader to
Sec. 4.5 of Ref. [1] for a comprehensive discussion of the issue.
Even today, no generally accepted solution to this problem
has emerged and some more recent proposals can be found in
Refs. [69–76]. Concerning the construction of quantitative NN
potential (by which we mean NN potentials suitable for use
in contemporary many-body nuclear methods), only Weinberg
counting has been used with success during the past 25 years
[1,6,17,21,23,26], which is why also in the present work we
will apply Weinberg counting.

In spite of the criticism, Weinberg counting may be
perceived as not unreasonable by the following argument. For
a successful EFT (in its domain of validity), one must be able to
claim independence of the predictions on the regulator within
the theoretical error. Also, truncation errors must decrease as
we go to higher and higher orders. These are precisely the
goals of renormalization.

Lepage [77] has stressed that the cutoff independence
should be examined for cutoffs below the hard scale and not
beyond. Ranges of cutoff independence within the theoretical
error are to be identified using Lepage plots [77]. A systematic
investigation of this kind has been conducted in Ref. [78].
In that work, the error of the predictions was quantified by
calculating the χ2/datum for the reproduction of the np elastic
scattering data as a function of the cutoff parameter � of
the regulator function Eq. (2.43). Predictions by chiral np
potentials at order NLO and NNLO were investigated applying
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TABLE III. Publication history of the NN data below 350 MeV laboratory energy and references for their listings. Only data that pass the
Nijmegen acceptance criteria [62] are counted. “Total” defines the 2016 database.

Publication date No. of pp data No. of np data References

Jan. 1955–Dec. 1992 1787 2514 [79,80]
Jan. 1993–Dec. 1999 1145 544 Tables XV and XVI of Ref. [65]
Jan. 2000–Dec. 2016 140 511 Ref. [81] and Table IV of present paper
Total 3072 3569

Weinberg counting for the counter terms (NN contact terms).
It is found that the reproduction of the np data at laboratory
energies below 200 MeV is generally poor at NLO, while
at NNLO the χ2/datum assumes acceptable values (a clear
demonstration of order-by-order improvement). Moreover, at
NNLO, a plateau of constant low χ2 for cutoff parameters
ranging from about 450 to 850 MeV can be identified. This
may be perceived as cutoff independence (and, thus, successful
renormalization) for the relevant range of cutoff parameters.

III. NN SCATTERING AND THE DEUTERON

Based upon the formalism presented in the previous section,
we have constructed NN potentials through five orders of the
chiral expansion, ranging from LO (Q0) to N4LO (Q5). In
each order, we consider three cutoffs, namely, � = 450, 500,
and 550 MeV. Since we take charge dependence into account,
each NN potential comes in three versions: pp, np, and nn.
The results from these potentials for NN scattering and the
deuteron will be presented in this section.

A. NN database

Since an important part of NN potential construction
involves optimizing the reproduction of the NN data by the
potential, we need to state, first, what NN database we are
using.

Our database consists of all NN data below 350 MeV
laboratory energy published in refereed physics journals
between January 1955 and December 2016 that are not
discarded when applying the Nijmegen rejection criteria [62].
We will refer to this as the “2016 database.” This database
was started by the Nijmegen group, who critically checked
and assembled the data published up to December 1992. This
1992 database consists of 1787 pp data (listed in Ref. [79])
and 2514 np data (tabulated in Ref. [80]); cf. Table III. In
Ref. [65], the database was then extended to include the data
published up to December 1999 that survived the Nijmegen
rejection criteria. This added 1145 pp and 544 np data (given
in Tables XV and XVI of Ref. [65], respectively). Thus, the
1999 database includes 2932 pp and 3058 np data.

To get to the 2016 database, we have added to the
1999 database the data published between January 2000 and
December 2016 that are not rejected by the Nijmegen criteria.
We are aware of the fact that modified rejection criteria have
been proposed [82] and applied in recent NN data analysis
work [83], but we continue to apply the classic Nijmegen
criteria [62] to be consistent with the pre-2000 part of the
database.

Concerning after-1999 pp data, there exists only one set of
139 differential cross sections between 239.9 and 336.2 MeV
measured by the EDDA group at COSY (Jűlich, Germany)
with an overall uncertainty of 2.5% [81]. Thus, the total
number of pp data contained in the 2016 database is 3072
(Table III).

In contrast to pp, there have been many new np mea-
surements after 1999. We list the datasets that survived the
Nijmegen rejection criteria in Table IV. According to that list,
the number of valid after-1999 np data is 511, bringing the
total number of np data contained in the 2016 database to
3569 (Table III).

For comparison, we mention that the 2013 Granada NN
database [83] consists of 2996 pp and 3717 np data. The larger
number of pp data in our base is mainly due to the inclusion of
140 pp data from Ref. [81] which are left out in the Granada
base. On the other hand, the Granada base contains 148 more
np data, which is a consequence of the modified rejection
criteria applied by the Granada group, which allows for the
survival of more np data.

Finally, we note that in the potential construction reported
in this paper, we make use of the 2016 database only up
to 290 MeV laboratory energy (pion-production threshold).
Between 0 and 290 MeV, the 2016 database contains 2132 pp
data and 2721 np data (cf. Table V).

B. Data fitting procedure

When we are talking about data fitting, we are referring to
the adjustment of the NN contact parameters available at the
respective order. Note that in our NN potential construction, the
πN LECs are not fit parameters. The πN LECs are held fixed
at their values determined in the πN analysis of Ref. [60]
displayed in Table II (we use the central values shown in
that table). Thus, the NN contacts (Sec. II D) are the only fit
parameters used to optimize the reproduction of the NN data
below 290 MeV laboratory energy. As discussed, those contact
terms describe the short-range part of the NN potentials and
adjust the lower partial waves.

In the construction of any NN potential, we always start
with the pp version since the pp data are the most accurate
ones. The fitting is done in three steps. In the first step, the
pp potential is adjusted to reproduce as closely as possible
the pp phase shifts of the Nijmegen multienergy pp phase
shift analysis [80] up to 300 MeV laboratory energy. This is to
ensure that phase shifts are in the right ballpark. In the second
step, we make use of the Nijmegen pp error matrix [96] to
minimize the χ2 that results from it. The advantage of this
step is that it is computationally very fast and easy. Finally,
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TABLE IV. After-1999 np data below 350 MeV included in
the 2016 np database. “Error” refers to the experimental overall
normalization errors of the individual datasets. “None” signifies that
the respective experimental data set does not carry a normalization
error, i.e., the data are absolute. “Float” indicates that, in the analysis
of the data set, the normalization was allowed to assume a value
for which the χ 2 is a minimum disregarding a comparison with
the experimental normalization error. This is done in cases where
there is doubt about the alleged experimental normalization error. In
the cases of “None” and “Float,” the normalization is not counted
as an observable. This table contains 473 observables plus 38
normalizations resulting in a total of 511 data. For the observables,
we use in general the notation of Hoshizaki [84], except for types
which are undefined in the Hoshizaki formalism, where we use the
Saclay notation [85].

Tlab (MeV) No. type Error (%) Institution Ref.

9.2–349.0 92 σtot None Los Alamos [86]
10.0 6 σ 0.8 Ohio [87]
95.0 10 σ 5.0 Uppsala [88]
95.0 9 σ 4.0 Uppsala [89]
96.0 11 σ 5.0 Uppsala [90]
96.0 9 σ 3.0 Uppsala [91]
96.0 12 σ None Uppsala [92]
260.0 8 P 1.8 PSI [93]
260.0 16 P 1.8 PSI [93]
260.0 8 Ayy 3.9 PSI [93]
260.0 16 Ayy 3.9 PSI [93]
260.0 9 Azz 7.2 PSI [93]
260.0 5 D 2.4 PSI [94]
260.0 8 D Float PSI [94]
260.0 8 D0s′′0k Float PSI [94]
260.0 5 Dt 2.4 PSI [94]
260.0 4 At 2.4 PSI [94]
260.0 8 At 2.4 PSI [94]
260.0 4 Rt 2.4 PSI [94]
260.0 8 Rt 2.4 PSI [94]
260.0 8 N0nkk 2.4 PSI [94]
260.0 4 N0s′′kn 2.4 PSI [94]
260.0 8 N0s′′kn 2.4 PSI [94]
260.0 4 N0s′′sn 2.4 PSI [94]
260.0 8 N0s′′sn 2.4 PSI [94]
284.0 14 P 3.0 PSI [95]
314.0 14 P 3.0 PSI [95]
315.0 16 P 1.2 PSI [93]
315.0 11 Ayy 3.7 PSI [93]
315.0 16 Ayy 3.7 PSI [93]
315.0 11 Azz 7.1 PSI [93]
315.0 6 D Float PSI [94]
315.0 6 D0s′′0k Float PSI [94]
315.0 8 D0s′′0k Float PSI [94]
315.0 6 Dt 1.9 PSI [94]
315.0 6 At 1.9 PSI [94]
315.0 8 At 1.9 PSI [94]
315.0 6 Rt 1.9 PSI [94]
315.0 8 Rt 1.9 PSI [94]
315.0 5 N0s′′kn 1.9 PSI [94]
315.0 8 N0s′′kn 1.9 PSI [94]
315.0 6 N0s′′sn 1.9 PSI [94]
315.0 8 N0s′′sn 1.9 PSI [94]
315.0 8 N0nkk 1.9 PSI [94]
344.0 14 P 3.0 PSI [95]

TABLE V. χ 2/datum for the fit of the 2016 NN data base by
NN potentials at various orders of chiral EFT (� = 500 MeV in all
cases).

Tlab bin (MeV) No. of data LO NLO NNLO N3LO N4LO

Proton-proton
0–100 795 520 18.9 2.28 1.18 1.09
0–190 1206 430 43.6 4.64 1.69 1.12
0–290 2132 360 70.8 7.60 2.09 1.21

Neutron-proton
0–100 1180 114 7.2 1.38 0.93 0.94
0–190 1697 96 23.1 2.29 1.10 1.06
0–290 2721 94 36.7 5.28 1.27 1.10

pp plus np

0–100 1975 283 11.9 1.74 1.03 1.00
0–190 2903 235 31.6 3.27 1.35 1.08
0–290 4853 206 51.5 6.30 1.63 1.15

in the third and final step, the pp potential contact parameters
are fine-tuned by minimizing the χ2 that results from a direct
comparison with the experimental pp data contained in the
2016 database below 290 MeV. For this we use a copy of the
SAID software package, which includes all electromagnetic
contributions necessary for the calculation of NN observables
at low energy. Since it turned out that the Nijmegen error matrix
produces very accurate χ2 for pp energies below 75 MeV, we
use the values from this error matrix for the energies up to
75 MeV and the values from a direct confrontation with the
data above that energy.

The I = 1 np potential is constructed by starting from
the pp version, applying the charge dependence discussed in
Sec. II E, and adjusting the nonderivative 1S0 contact such as
to reproduce the 1S0 np scattering length. This then yields the
preliminary fit of the I = 1 np potential. The preliminary fit of
the I = 0 np potential is obtained by a fit to the I = 0 np phase
shifts of the Nijmegen multienergy np phase shift analysis
[80] below 300 MeV. Starting from this preliminary np fit, the
contact parameters are fine-tuned in a confrontation with the
np data below 290 MeV, for which the χ2 is minimized. We
note that during this last step we have also allowed for minor
changes of the I = 1 parameters (which also modifies the pp
potential) to obtain an even lower χ2 overall.

Finally the nn potential is obtained by starting from the
pp version, replacing the proton masses by neutron masses,
leaving out Coulomb, and adjusting the nonderivative 1S0

contact such as to reproduce the 1S0 nn scattering length for
which we assume the empirical value of −18.95 MeV [97,98].

We note that our procedure for fitting NN potentials to data
is essentially the same that was used to fit the high-precision
NN potentials of the 1990s [65,99,100] (fitted up to 350 MeV)
and the first precision chiral NN potentials [1,16] (fitted up to
290 MeV). This is quite in contrast to the procedure applied in
the recent construction of the NNLOsat potential [26], where
the NN data up to 35 MeV and the ground-state energies
and radii of nuclei up to 40Ca are taken into acount to fix
simulteneously the 2NF and 3NF. In Ref. [26], the NN data
up to 35 MeV are reproduced with a χ2/datum of 4.3. Similar
procedures are applied in Ref. [27].
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff � = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with � = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb
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TABLE VI. Scattering lengths (a) and effective ranges (r) in units of fm as predicted by NN potentials at various orders of chiral EFT
(� = 500 MeV in all cases). (aC

pp and rC
pp refer to the pp parameters in the presence of the Coulomb force. aN and rN denote parameters

determined from the nuclear force only and with all electromagnetic effects omitted.) aN
nn and anp are fitted; all other quantities are predictions.

LO NLO NNLO N3LO N4LO Empirical

1S0

aC
pp –7.8153 –7.8128 –7.8140 –7.8155 –7.8160 –7.8196(26) [62]

–7.8149(29) [104]
rC
pp 1.886 2.678 2.758 2.772 2.774 2.790(14) [62]

2.769(14) [104]
aN

pp –17.476 –17.762 –17.052 –17.123
rN
pp 2.752 2.821 2.851 2.853

aN
nn –18.950 –18.950 –18.950 –18.950 –18.950 –18.95(40) [97,98]

rN
nn 1.857 2.726 2.800 2.812 2.816 2.75(11) [105]

anp –23.738 –23.738 –23.738 –23.738 –23.738 –23.740(20) [65]
rnp 1.764 2.620 2.687 2.700 2.704 [2.77(5)] [65]

3S1

at 5.255 5.415 5.418 5.420 5.420 5.419(7) [65]
rt 1.521 1.755 1.752 1.754 1.753 1.753(8) [65]

wave functions. Note, however, that for the calculation of
observables (e.g., to obtain the χ2 in regard to experimental
data), we use electromagnetic phase shifts, as necessary,
which we obtain by adding to the Coulomb phase shifts the
effects from two-photon exchange, vacuum polarization, and
magnetic moment interactions as calculated by the Nijmegen
group [62,103]. This is important for 1S0 below 30 MeV and
negligible otherwise. For nn and np scattering, our phase
shifts are the ones from the nuclear interaction with respect
to Riccati-Bessel functions. The technical details of our phase
shift calculations can be found in Appendix A3 of Ref. [65].

The low-energy scattering parameters, order by order, are
shown in Table VI. For nn and np, the effective range
expansion without any electromagnetic interaction is used.
In the case of pp scattering, the quantities aC

pp and rC
pp are

obtained by using the effective range expansion appropriate
in the presence of the Coulomb force (cf. Appendix A4 of
Ref. [65]). Note that the empirical values for aC

pp and rC
pp in

Table VI were obtained by subtracting from the corresponding
electromagnetic values the effects due to two-photon exchange

and vacuum polarization. Thus, the comparison between
theory and experiment for these two quantities is conducted
correctly. aN

nn, and anp are fitted; all other quantities are
predictions. Note that the 3S1 effective range parameters at

and rt are not fitted, but the deuteron binding energy is fitted
(cf. next subsection) and that essentially fixes at and rt .

D. Deuteron and triton

The evolution of the deuteron properties from LO to
N4LO of chiral EFT are shown in Table VII. In all cases,
we fit the deuteron binding energy to its empirical value of
2.224575 MeV using the nonderivative 3S1 contact. All other
deuteron properties are predictions. Already at NNLO, the
deuteron has converged to its empirical properties and stays
there through the higher orders.

At the bottom of Table VII, we also show the predictions
for the triton binding as obtained in 34-channel charge-
dependent Faddeev calculations using only 2NFs. The results
show smooth and steady convergence, order by order, toward

TABLE VII. Two- and three-nucleon bound-state properties as predicted by NN potentials at various orders of chiral EFT (� = 500 MeV
in all cases). (Deuteron: Binding energy Bd , asymptotic S state AS , asymptotic D/S state η, structure radius rstr, quadrupole moment Q, D-state
probability PD; the predicted rstr and Q are without meson-exchange current contributions and relativistic corrections. Triton: Binding energy
Bt .) Bd is fitted; all other quantities are predictions.

LO NLO NNLO N3LO N4LO Empiricala

Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575(9)
AS (fm−1/2) 0.8526 0.8828 0.8844 0.8853 0.8852 0.8846(9)
η 0.0302 0.0262 0.0257 0.0257 0.0258 0.0256(4)
rstr (fm) 1.911 1.971 1.968 1.970 1.973 1.97507(78)
Q (fm2) 0.310 0.273 0.273 0.271 0.273 0.2859(3)
PD (%) 7.29 3.40 4.49 4.15 4.10
Triton
Bt (MeV) 11.09 8.31 8.21 8.09 8.08 8.48

aSee Table XVIII of Ref. [65] for references; the empirical value for rstr is from Ref. [106].
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a value around 8.1 MeV that is reached at the highest
orders shown. This contribution from the 2NF will require
only a moderate 3NF. The relatively low-deuteron D-state
probabilities (≈4.1% at N3LO and N4LO) and the concomitant
generous triton binding energy predictions are a reflection of
the fact that our NN potentials are soft (which is, at least in
part, due to their nonlocal character).

E. Cutoff variations

As noted before, besides the case � = 500 MeV, we have
also constructed potentials with � = 450 and 550 MeV at each
order to allow for systematic studies of the cutoff dependence.
In Fig. 3, we display the variations of the np phase shifts for
different cutoffs at NNLO (left half of figure, green curves)
and at N4LO (right half of figure, purple curves). We do not
show the cutoff variations of phase shifts at N3LO, because
they are about the same as at N4LO. Similarly, the variations
at NLO are of about the same size as at NNLO. Figure 3
demonstrates nicely how cutoff dependence diminishes with
increasing order—a reasonable trend. Another point that is
evident from this figure is that � = 450 MeV should be
considered as a lower limit for cutoffs, because obviously
cutoff artifacts start showing up—above 200 MeV, particularly,
in 1D2 and 3D2. Concerning the upper limit for the cutoff: It
has been discussed and demonstrated in length in the literature
(see, e.g., Ref. [23]) that for the NN interaction the breakdown
scale occurs around �b ≈ 600 MeV. The motivation for our
upper value of 550 MeV is to stay below �b.

In Table VIII, we show the cutoff dependence for three
selected aspects that are of great interest: the χ2 for the fit of
the NN data below 190 MeV, the deuteron properties, and the
triton binding energy. The χ2 does not change substantially
as a function of cutoff, and crucial deuteron properties, like
AS and η, stay within the empirical range, for both NNLO
and N4LO. Thus, we can make the interesting observation
that the reproduction of NN observables is not much affected
by the cutoff variations. However, the D-state probability
of the deuteron, PD , which is not an observable, changes
substantially as a function of cutoff at NNLO (namely, by
≈1%) while it changes only by 0.25% at N4LO. Note that PD

is intimately related to the off-shell behavior of a potential and
so are the binding energies of few-body systems. Therefore,
in tune with the PD variations, the binding energy of the
triton varies by 0.25 MeV at NNLO, while it changes only
by 0.08 MeV at N4LO. In this context, it is of interest to
note that changes in the off-shell behavior of the 2NF can
be compensated by corresponding changes in the 3NF, as
demonstrated by Polyzou and Glőcke [107].

Even though cutoff variations are, in general, not the
most reliable way to estimate truncation errors, in the above
case they seem to reflect closely what we expect to be the
truncation error.

IV. CHIRAL THREE-BODY FORCES

As is well established, realistic ab initio nuclear structure
calculations require the inclusion of 3NFs (and potentially also
four-nucleon forces). The first 3NFs occur at NNLO (cf. Fig. 1)

and were derived in Refs. [31,108]. The 3NFs at N3LO can
be found in Refs. [109,110]. Finally, at N4LO, the longest-
range and intermediate-range 3NFs are given in Refs. [46,47].
Moreover, a new set of ten 3NF contact terms occurs at N4LO,
which has been derived by the Pisa group [49]. An efficient
approach for calculating the matrix elements of chiral 3NF
contributions up to N3LO has been published in Ref. [111].
This approach may eventually be extended to N4LO.

In the derivation of all of the above-cited chiral 3NFs, the
same power-counting scheme is applied as in the derivation
of the 2NFs of this paper, namely, Weinberg counting and
considering Q/MN ∼ (Q/�χ )2 (Sec. II B). Thus, those 3NF
expressions are consistent with the present 2NFs, and they can
be used together in ab initio calculations of nuclear structure
and reactions.

In this context it is worth noting that, for convenience, the
3NFs are derived using dimensional regularization (DR), while
we use SFR in the construction of the 2NFs [cf. Eq. (2.22)].
This is, however, not a problem because, as shown in Ref. [58],
DR and SFR expressions differ only by higher order terms
that are beyond the given order. Thus, the accuracy of the
calculation conducted at a given order is not affected. An
equivalent argument applies to the use of nonlocal regulators
[Eq. (2.43)] versus local ones (e.g., Eq. (11) of Ref. [18]), since
also these two types of regulators differ only by higher order
terms beyond the given order.

Because of the complexity of the N4LO 3NF, it may still
take a few years until this force is available in a manageable
form. Thus, for a while, we will have to live with incomplete
calculations. However, there is one important component of
the 3NF where, indeed, complete calculations up to N4LO are
possible: It is the 2PE 3NF. In Ref. [46] it has been shown that
the 2PE 3NF has essentially the same mathematical structure
at NNLO, N3LO, and N4LO. Thus, one can add up the three
orders of 3NF contributions and parametrize the result in terms
of effective LECs. This was done in Ref. [46], and we show the
effective LECs they come up with in Table IX, column N4LO,
where we quote the numbers given in Eq. (5.2) of Ref. [46],
which are based upon the GW πN phase shifts [112]. Note
that the LECs of Ref. [60], which we are using for the 2NF, are
also based upon GW input. Thus, there is consistency between
the effective c̄i for the 3NF (column N4LO of Table IX) and
our ci for the 2NF (column N4LO of Table II).

Concerning, the 2PE 3NF at N3LO, Eq. (2.8) of Ref. [109]
provides the corrections to the ci when the 2PE 3NF at
N3LO is added in. Note, however, that there is a error in the
numerical values given below Eq. (2.8) of Ref. [109]. While
δc1 = −0.13 GeV−1 is correct, the correct values for δc3 and
δc4 are δc3 = −δc4 = 0.89 GeV−1. When these corrections
are applied to the N3LO ci of our Table II, then the values
given in the N3LO column of Table IX emerge. By using the
c̄i of Table IX in the mathematical expression of the NNLO
3NF, one can include at least the 2PE parts of the 3NF up to
N3LO and even up to N4LO in a straightforward way.

The 2PE 3NF is the most obvious among all possible 3NF
contributions. Historically, it is the first 3NF ever calculated
[113]. The above-given prescriptions allow to take care of
this very basic 3NF up to the highest orders considered in this
paper.
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FIG. 3. Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N4LO (right side, purple lines). Dotted, dashed, and
solid lines represent the results obtained with cutoff parameters � = 450, 500, and 550 MeV, respectively, as also indicated by the curve labels.
Note that, at N4LO, the cases 500 and 550 MeV cannot be distinguished on the scale of the figures for most partial waves. Filled and open
circles as in Fig. 2.
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TABLE VIII. χ 2/datum for the fit of the pp plus np data up to 190 MeV and two- and three-nucleon bound-state properties as produced
by NN potentials at NNLO and N4LO applying different values for the cutoff parameter � of the regulator function Eq. (2.43). For some of the
notation, see Table VII, where also empirical information on the deuteron and triton can be found.

�(MeV) NNLO N4LO

450 500 550 450 500 550

χ 2/datum pp and np

0–190 MeV (2903 data) 4.12 3.27 3.32 1.17 1.08 1.25
Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575
AS (fm−1/2) 0.8847 0.8844 0.8843 0.8852 0.8852 0.8851
η 0.0255 0.0257 0.0258 0.0254 0.0258 0.0257
rstr (fm) 1.967 1.968 1.968 1.966 1.973 1.971
Q (fm2) 0.269 0.273 0.275 0.269 0.273 0.271
PD (%) 3.95 4.49 4.87 4.38 4.10 4.13
Triton
Bt (MeV) 8.35 8.21 8.10 8.04 8.08 8.12

V. UNCERTAINTY QUANTIFICATIONS

When applying chiral two- and many-body forces in ab
initio calculations producing predictions for observables of
nuclear structure and reactions, major sources of uncertainties
are [54] as follows:

(1) Experimental errors of the input NN data that the 2NFs
are based upon and the input few-nucleon data to which
the 3NFs are adjusted.

(2) Uncertainties in the Hamiltonian due to
(a) uncertainties in the determination of the NN and

3N contact LECs,
(b) uncertainties in the πN LECs,
(c) regulator dependence,
(d) EFT truncation error.

(3) Uncertainties associated with the few- and many-body
methods applied.

The experimental errors in the NN scattering and deuteron
data propagate into the NN potentials that are adjusted to
reproduce those data. To systematically investigate this error
propagation, the Granada group has constructed smooth local
potentials [114], the parameters of which carry the uncertain-
ties implied by the errors in the NN data. Applying 205 Monte
Carlo samples of these potentials, they find an uncertainty of
15 keV for the triton binding energy [115]. In a more recent
study [116], in which only 33 Monte Carlo samples were
used, the Granada group reproduced the uncertainty of 15 keV
for the triton binding energy and, in addition, determined the
uncertainty for the 4He binding energy to be 55 keV. The

TABLE IX. Effective πN LECs (in units of GeV−1) recom-
mended for the 2PE 3NF at the given orders. See text for explanations.

NNLO N3LO N4LO

c̄1 −0.74 −1.20 −0.73
c̄3 −3.61 −4.43 −3.38
c̄4 2.44 2.67 1.69

conclusion is that the statistical error propagation from the NN
input data to the binding energies of light nuclei is negligible
as compared to uncertainties from other sources (discussed
below). Thus, this source of error can be safely neglected at
this time. Furthermore, we need to consider the propagation of
experimental errors from the experimental few-nucleon data
that the 3NF contact terms are fitted to. Also, this will be
negligible as long as the 3NFs are adjusted to data with very
small experimental errors; for example, the empirical binding
energy of the triton is 8.481795 ± 0.000002 MeV, which will
definitely lead to negligible propagation.

Now turning to the Hamiltoninan, we have to first account
for uncertainties in the NN and 3N LECs due to the way they
are fixed. Based upon our experiences from Ref. [78] and the
fact that chiral EFT is a low-energy expansion, we have fitted
the NN contact LECs to the NN data below 100 MeV at LO
and NLO, below 190 MeV at NNLO, and below 290 MeV
at N3LO and N4LO. One could think of choosing these fit
intervals slightly different and a systematic investigation of the
impact of such variation on the NN LECs is still outstanding.
However, we do not anticipate that large uncertainties would
emerge from this source of error.

The story is different for the 3NF contact LECs, since
several very different procedures are in use for how to fix, e.g.,
the two contact parameters of the NNLO 3NF, known as the
cD and cE parameters (and once the ten 3NF contacts at N4LO
come into play, the situation will be even more diverse). Since
at NNLO two parameters have to be fixed, two data are needed.
In most procedures, one of them is the triton binding energy.
For the second datum, the following choices have been made:
the nd doublet scattering length 2and [31], the binding energy
of 4He [117], the point charge radius radius of 4He [40], and the
Gamow-Teller matrix element of tritium β decay [118–120].
Alternatively, the cD and cE parameters have also been pinned
down by just an optimal overall fit of the properties of light
nuclei [121]. The 3NF contact LECs determined by different
procedures will lead to different predictions for the observables
that were not involved in the fitting procedure. The differences
in those results establish the uncertainty. Specifically, it would
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be of interest to investigate the differences that occur for
the properties of intermediate-mass nuclei and nuclear matter
when 3NF LECs fixed by different protocols are applied.

The uncertainty in the πN LECs used to be a large source of
uncertainty, in particular, for predictions for many-body sys-
tems [122–124]. With the new, high-precision determination
of the πN LECs in the Roy-Steiner equations analysis [60]
(cf. Table II), this large uncertainty is essentially eliminated,
which is great progress, since it substantially reduces the error
budget. We have varied the πN LECs within the errors given in
Table II and find that the changes caused by these variations can
easily be compensated by small readjustments of the NN LECs,
resulting in essentially identical phase shifts and χ2 for the fit
of the data. Thus, this source of error is essentially negligible.
The πN LECs also appear in the 3NFs, which also include
contacts that can be used for readjustment. Future calculations
of finite nuclei and nuclear matter should investigate what
residual changes remain after such readjustment (that would
represent the uncertainty). We expect this to be small.

The choice of the regulator function and its cutoff parameter
create uncertainty. Originally, cutoff variations were perceived
as a demonstration of the uncertainty at a given order
(equivalent to the truncation error). However, in various
investigations [23,44] it has been demonstrated that this is not
correct and that cutoff variations, in general, underestimate this
uncertainty. Therefore, the truncation error is better determined
by sticking literally to what “truncation error” means, namely,
the error due to ignoring contributions from orders beyond the
given order ν. The largest such contribution is the one of order
(ν + 1), which one may therefore consider as representative
for the magnitude of what is left out. This suggests that the
truncation error at order ν can reasonably be defined as

�Xν = |Xν − Xν+1| , (5.1)

where Xν denotes the prediction for observable X at order ν.
If Xν+1 is not available, then one may use

�Xν = |Xν−1 − Xν |Q/� , (5.2)

choosing a typical value for the momentum Q, or Q = mπ .
Alternatively, one may also apply more elaborate definitions,
like the one given in Ref. [23]. Note that one should not add up
(in quadrature) the uncertainties due to regulator dependence
and the truncation error, because they are not independent.
In fact, it is appropriate to leave out the uncertainty due to
regulator dependence entirely and just focus on the truncation
error [23]. The latter should be estimated using the same cutoff
(e.g., � = 500 MeV) in all orders considered.

Finally, the last uncertainty to be taken into account is the
uncertainty in the few- and many-body methods applied in the
ab inition calculation. This source of error has nothing to do
with EFT. Few-body problems are nowadays exactly solvable
such that the error is negligible in those cases. For heavier
nuclei and nuclear matter, there are definitely uncertainties no
matter what method is used. These uncertainties need to be
estimated by the practitioners of those methods. But with the
improvements of algorithms and the increase of computing
power, these errors are decreasing.

The bottom line is that the most substantial uncertainty is the
truncation error. This is the dominant source of (systematic)

error that should be carefully estimated for any calculation
applying chiral 2NFs and 3NFs up to a given order.

VI. SUMMARY AND CONCLUSIONS

We have constructed chiral NN potentials through five
orders of chiral EFT ranging from LO to N4LO [125]. The
construction may be perceived as consistent, because the same
power counting scheme as well as the same cutoff procedures
are applied in all orders. Moreover, the long-range part of
these potentials are fixed by the very accurate πN LECs as
determined in the Roy-Steiner equations analysis of Ref. [60].
In fact, the uncertainties of these LECs are so small that a vari-
ation within the errors leads to effects that are essentially neg-
ligible at the current level of precision. Another aspect that has
to do with precision is that, at least at the highest order (N4LO),
the NN data below pion-production threshold are reproduced
with the outstanding χ2/datum of 1.15. This is the highest pre-
cision ever accomplished with any chiral NN potential to date.

The NN potentials presented in this paper may serve as
a solid basis for systematic ab initio calculations of nuclear
structure and reactions that allow for a comprehensive error
analysis. In particular, the order-by-order development of the
potentials will make possible a reliable determination of the
truncation error at each order.

Our family of potentials is nonlocal and, generally, of
soft character. This feature is reflected in the fact that the
predictions for the triton binding energy (from two-body forces
only) converges to about 8.1 MeV at the highest orders. This
leaves room for moderate three-nucleon forces.

These features of our potentials are in contrast to other
families of chiral NN potentials of local or semilocal character
that have recently entered the market [20–24]. Such potentials
are less soft and consequently require stronger three-body
force contributions.

The availability of families of chiral NN potentials of differ-
ent character offers the opportunity for interesting systematic
studies that may ultimately shed light on issues like the radius
problem [50], the overbinding of intermediate-mass nuclei
[51], and others.

Note that the differences between the above-mentioned
families of potentials are in the off-shell character, which
is not an observable. Thus, any off-shell behavior of a NN
potential is legitimate. There is no wrong off-shell character.
However, some off-shell behaviors may lead in a more efficient
way to realistic results than others. That is of interest to
the many-body practitioner. We are now in a position to
systematically investigate this issue for chiral forces.
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TABLE X. pp phase shifts (in degrees) up to F waves at N4LO (� = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 32.79 0.14 −0.08 0.00 0.01 0.00 0.00 0.00 0.00
5 54.84 1.61 −0.89 0.04 0.23 0.00 −0.05 0.00 0.00
10 55.20 3.79 −2.02 0.17 0.69 0.01 −0.20 −0.03 0.00
25 48.62 8.66 −4.84 0.69 2.57 0.11 −0.81 −0.23 0.02
50 38.84 11.42 −8.26 1.67 5.87 0.35 −1.69 −0.68 0.12
100 24.97 9.15 −13.48 3.61 10.70 0.83 −2.62 −1.46 0.51
150 15.04 4.55 −17.72 5.45 13.57 1.16 −2.83 −1.98 1.07
200 7.10 −0.47 −21.39 7.22 15.54 1.20 −2.71 −2.31 1.67
250 0.11 −5.89 −25.12 8.85 17.01 0.92 −2.42 −2.48 2.20
300 −6.43 −11.40 −29.35 9.91 17.84 0.35 −1.99 −2.46 2.59

TABLE XI. nn phase shifts (in degrees) up to F waves at N4LO (� = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 57.62 0.21 −0.12 0.00 0.02 0.00 0.00 0.00 0.00
5 61.01 1.88 −1.03 0.05 0.28 0.00 −0.06 −0.01 0.00
10 57.82 4.16 −2.21 0.18 0.78 0.01 −0.22 −0.04 0.00
25 49.11 9.01 −5.08 0.73 2.77 0.11 −0.84 −0.24 0.02
50 38.71 11.55 −8.52 1.72 6.15 0.36 −1.72 −0.70 0.13
100 24.65 9.06 −13.76 3.68 11.02 0.84 −2.62 −1.48 0.53
150 14.70 4.40 −17.98 5.52 13.92 1.16 −2.82 −2.00 1.09
200 6.74 −0.63 −21.62 7.28 15.94 1.20 −2.68 −2.32 1.70
250 −0.28 −6.02 −25.32 8.88 17.42 0.91 −2.36 −2.49 2.23
300 −6.87 −11.40 −29.48 9.87 18.24 0.32 −1.93 −2.46 2.61

TABLE XII. I = 1 np phase shifts (in degrees) up to F waves at N4LO (� = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 62.00 0.18 −0.11 0.00 0.02 0.00 0.00 0.00 0.00
5 63.47 1.66 −0.92 0.04 0.27 0.00 −0.05 0.00 0.00
10 59.72 3.72 −2.03 0.16 0.75 0.01 −0.19 −0.03 0.00
25 50.48 8.25 −4.79 0.68 2.66 0.09 −0.76 −0.20 0.02
50 39.83 10.69 −8.20 1.68 5.96 0.31 −1.62 −0.61 0.11
100 25.68 8.25 −13.44 3.68 10.76 0.78 −2.53 −1.35 0.49
150 15.78 3.63 −17.67 5.56 13.63 1.08 −2.76 −1.86 1.04
200 7.90 −1.37 −21.33 7.34 15.63 1.12 −2.64 −2.18 1.64
250 0.96 −6.75 −25.05 8.96 17.12 0.83 −2.35 −2.35 2.17
300 −5.57 −12.14 −29.23 9.96 17.95 0.25 −1.93 −2.34 2.55

TABLE XIII. I = 0 np phase shifts (in degrees) at N4LO (� = 500 MeV).

Tlab (MeV) 1P1
3S1

3D1 ε1
3D2

1F3
3D3

3G3 ε3

1 −0.19 147.75 −0.01 0.11 0.01 0.00 0.00 0.00 0.00
5 −1.50 118.17 −0.19 0.68 0.22 −0.01 0.00 0.00 0.01
10 −3.06 102.61 −0.69 1.17 0.85 −0.07 0.00 0.00 0.08
25 −6.32 80.66 −2.83 1.79 3.71 −0.42 0.02 −0.05 0.56
50 −9.66 62.91 −6.48 2.03 8.82 −1.13 0.20 −0.26 1.62
100 −14.78 43.72 −12.20 2.09 16.51 −2.19 1.10 −0.94 3.54
150 −19.52 31.42 −16.34 2.33 21.08 −2.92 2.29 −1.76 4.95
200 −23.46 21.60 −19.55 2.99 23.89 −3.54 3.40 −2.57 5.90
250 −25.72 12.68 −22.01 4.09 25.21 −4.14 4.23 −3.24 6.40
300 −25.27 4.02 −23.38 5.34 24.41 −4.69 4.78 −3.65 6.39
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APPENDIX: PHASE-SHIFT TABLES

In this Appendix, we show the phase shifts as predicted
by the N4LO potential with � = 500 MeV in Tables X–XIII.
Note that our pp phase shifts are the phase shifts of the nuclear
plus relativistic Coulomb interaction with respect to Coulomb

wave functions. For nn and np scattering, our phase shifts are
the ones from the nuclear interaction with respect to Riccati-
Bessel functions. For more technical details of our phase-shift
calculations, we refer the interested reader to Appendix A3 of
Ref. [65].

[1] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[2] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[3] J. Gasser and H. Leutwyler, Ann. Phys. (NY) 158, 142 (1984).
[4] J. Gasser, M. E. Sainio, and A. Švarc, Nucl. Phys. B 307, 779

(1988).
[5] S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B 363,

3 (1991).
[6] C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72,

1982 (1994); Phys. Rev. C 53, 2086 (1996).
[7] N. Kaiser, R. Brockmann, and W. Weise, Nucl. Phys. A 625,

758 (1997).
[8] N. Kaiser, S. Gerstendörfer, and W. Weise, Nucl. Phys. A 637,

395 (1998).
[9] N. Kaiser, Phys. Rev. C 61, 014003 (2000).

[10] N. Kaiser, Phys. Rev. C 62, 024001 (2000).
[11] N. Kaiser, Phys. Rev. C 63, 044010 (2001).
[12] N. Kaiser, Phys. Rev. C 64, 057001 (2001).
[13] N. Kaiser, Phys. Rev. C 65, 017001 (2002).
[14] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

637, 107 (1998); 671, 295 (2000).
[15] D. R. Entem and R. Machleidt, Phys. Rev. C 66, 014002 (2002).
[16] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
[17] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

747, 362 (2005).
[18] P. Navratil, Few Body Syst. 41, 117 (2007).
[19] A. Ekstrőm, G. Baardsen, C. Forssen, G. Hagen, M. Hjorth-

Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich, and S. M. Wild, Phys. Rev. Lett. 110,
192502 (2013).

[20] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K.
Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323
(2014).

[21] M. Piarulli, L. Girlanda, R. Schiavilla, R. N. Pérez, J. E. Amaro,
and E. R. Arriola, Phys. Rev. C 91, 024003 (2015).

[22] M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato,
L. E. Marcucci, S. C. Pieper, M. Viviani, and R. B. Wiringa,
Phys. Rev. C 94, 054007 (2016).

[23] E. Epelbaum, H. Krebs, and U.-G. Meißner, Eur. Phys. J. A
51, 53 (2015).

[24] E. Epelbaum, H. Krebs, and U.-G. Meißner, Phys. Rev. Lett.
115, 122301 (2015).

[25] R. N. Pérez, J. E. Amaro, and E. R. Arriola, Phys. Rev. C
91, 054002 (2015); and more references to the comprehensive
work by the Granada group therein.
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