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Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables
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Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion,
which induces an error that must be quantified for robust statistical comparisons to experiment. In previous work, a
Bayesian model for truncation errors of perturbative expansions was adapted to EFTs. The model yields posterior
probability distribution functions (pdfs) for these errors based on expectations of naturalness encoded in Bayesian
priors and the observed order-by-order convergence pattern of the EFT. A first application was made to chiral
EFT for neutron-proton scattering using the semilocal potentials of Epelbaum, Krebs, and Meißner (EKM). Here
we extend this application to consider a larger set of regulator parameters, energies, and observables as a general
example of a statistical approach to truncation errors. The Bayesian approach allows for statistical validations of
the assumptions and enables the calculation of posterior pdfs for the EFT breakdown scale. The statistical model
is validated for EKM potentials whose convergence behavior is not distorted by regulator artifacts. For these
cases, the posterior for the breakdown scale is consistent with EKM assumptions.
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I. INTRODUCTION

The scope of ab initio nuclear structure and reactions has
increased dramatically due to recent advances in many-body
methods [1–6], continued growth in computational power, and
new developments in chiral effective field theory (EFT) [7–12].
To properly judge the successes and predictive power of ab
initio nuclear theory, however, it is necessary that theory errors
be understood. Thus, quantifying the theoretical uncertainties
of nuclear calculations has now become a critical task for
confronting experiment and theory and for extrapolating to
unmeasured phenomena [13–15].

Uncertainties in chiral EFT predictions arise from three
sources [16]: uncertainty in the input data to which the EFT
parameters are fit, errors in the Hamiltonian, and numerical ap-
proximations. Here we focus on quantifying the Hamiltonian
truncation error as part of the larger BUQEYE program [16]
of quantifying all uncertainties for EFT predictions. Despite
the promise of systematic expansions, uncertainties from
truncation have been difficult to estimate and, when provided,
generally lack a well-defined statistical interpretation.

In Ref. [17], a Bayesian model for truncation errors
originally applied to perturbative expansions in quantum
chromodynamics [18,19] was adapted to EFTs. The generic
assumption is that the EFT provides us with a dimensionless
expansion parameter Q, which is a ratio of scales, and an
associated expansion for quantities X (usually observables):

X = Xref

∞∑
n=0

cnQ
n. (1)

Here, Xref is the natural size of X, which could be the
leading-order estimate X0, and the cns are dimensionless
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coefficients. For chiral EFT c1 is zero by symmetry, and we
have a double expansion in Q = {p,mπ }/�b, where p is the
relative momentum of two scattering nucleons, mπ is the pion
mass, and �b is the EFT breakdown scale. The goal is to
estimate the error incurred in the observable by truncating
the expansion at order k. Note that this does not exclude an
asymptotic expansion, but assumes that we truncate while the
result is still improving.

In some cases the expansion in Eq. (1) may follow directly
from a perturbative EFT expansion of a Lagrangian, i.e.,
through a sum of Feynman diagrams with powers of Q coming
from a simple power-law dependence on momentum or a
mass (such as the pion mass in a chiral perturbation theory
expansion). There will also be implicit Q dependence, often
in the form of logarithms, which vary much more slowly.
But in other cases, such as EFT for more than one nucleon,
the calculations are nonperturbative, and the dependence on
momentum or energy will be complicated and nonlinear in
general. Nevertheless, if the EFT is working we expect the
calculation of X to improve systematically as we go to higher
orders.

Equation (1) can be interpreted as a summary of that
expected systematic improvement, namely that the correction
term with each successive order is on average a factor Q
smaller than the previous order. For this to be the case, we
need the cn coefficients to be roughly the same size. Because
the coefficients are unknown a priori, we treat them as drawn
from a random distribution with a characteristic size. This is
a realization of the underlying assumption that the naturalness
of the low-energy constants (LECs) in the EFT Lagrangian
propagates to the expansion for any observable. We have no
general proof of this assumption, so we aim to validate it in
each application.

In Ref. [17] we made a first pass at formalizing and testing
the assumptions behind the expansion in Eq. (1), building
on an analogous Bayesian analysis applied to perturbative
QCD calculations [18,19]. We considered various priors for
the cns, made an application to a small subset of results
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from Epelbaum, Krebs, and Meißner (here EKM) for neutron-
proton (np) scattering cross sections using their new semilocal
potentials [10,20], and tested the consistency of assumed
expansion parameters, which are associated with the expected
breakdown scales of the EFT implementation. Here we revisit
the EKM application to further test and generalize those
investigations, which will set the stage for extending our model
of EFT truncation errors.

We seek to address the following questions:

(1) Coefficients c0–c5 of the total cross section σ given
at four energies in Refs. [10,20] were examined in
Ref. [17]. Can we validate a posteriori our assumption
that the observable coefficients follow some bounded
random distribution about zero for all energies?

(2) The truncation error model of Ref. [17] has not yet been
applied to other nucleon-nucleon (NN) observables
calculated in chiral EFT, such as the differential cross
section and various spin observables. How do the
coefficient patterns compare for different NN scattering
observables, considered both as functions of energy
and scattering angle? Are the naturalness assumptions
validated for these observables and for all values of the
EKM regulator parameter R?

(3) An appropriately assigned (100 ∗ p)% error band
should capture the true value of an observable (100 ∗
p)% of the time. How can we utilize known order-by-
order results to verify that the error band prescriptions
work as advertised? Can information from different
observables be treated as independent, and if not, how
can we account for their relationships in our analysis?
Is there a well-defined “correlation length” in energy or
scattering angle beyond which expansion coefficients
may be treated as independent of one another?

(4) The identification of the expansion parameter Q, which
in turn is based on identifying the scale �b, is a
key element in determining the convergence pattern.
Is it consistent to take �b to be the same scale for
every observable? To what extent can we extract �b,
given order-by-order expansions and our naturalness
assumptions encoded in a Bayesian model?

In the present work we make progress on all these questions.
In Sec. II, we summarize and extend the relevant formulas

from Ref. [17]. We refer the reader to that article for
background on the use of Bayesian statistics in this context,
derivations of the formulas we summarize here, and more
general references. New results and analysis for the total
cross section are given in Sec. III, and other observables
are considered in Sec. IV. In Sec. V we perform Bayesian
model checking [21] by applying a consistency check used in
Ref. [17] and by calculating posterior probability distribution
functions (pdfs) for �b. Section VI has our summary and
outlook. For completeness and convenience, we show explicit
formulas regarding the Bayesian model for truncation errors in
Appendix A and summarize the notation and formulas used for
NN observables in Appendix B. The Supplemental Material
[22] displays extra figures and data that helped inform our
conclusions.

II. FORMULAS

If the EFT expansion in Eq. (1) is truncated at order k, then
the error induced is Xref�k , where the scaled, dimensionless
parameter that determines the truncation error is

�k ≡
∞∑

n=k+1

cnQ
n. (2)

Generally it is only practical to approximate �
(h)
k , the error

due to the first h omitted higher-order terms. For sufficiently
small values of Q, the first omitted term �

(1)
k = ck+1Q

k+1 is a
good estimate for �k , but we do not assume this in general.

We use the notation pr(x|I ) to denote the probability density
of x given information I . Our pdf of interest is prh(�|ck):
the probability distribution for �k given the vector of relevant
lower-order coefficients ck that have been calculated, assuming
that only h higher-order terms contribute to the error and that
�b is to be given from other considerations. The pdf prh(�|ck)
is normalized in terms of the dummy variable �, which is
implied to be an estimate of �k contingent on lower-order
coefficients ck .

In contrast to Ref. [17], here c0 /∈ ck because it does not
provide insight into the convergence pattern of the observables;
rather, the leading order (LO) calculation provides scaling
information. Again, c1 /∈ ck because c1 = 0 in chiral EFT. Thus
the relevant lower-order coefficients in the determination of �k

in chiral EFT are

ck = (c2,c3, . . . ,ck). (3)

In the Bayesian framework, the posterior prh(�|ck) con-
tains the complete information we claim to have about the
dimensionless residual �k . In general, a posterior pdf can have
complex structures such as multiple modes, heavy tails, large
skewness, etc. Here we can capture most of the information
with a small number of degree-of-belief (DoB) intervals.1 We
use the highest posterior density (HPD) definition of DoB,
which is the shortest interval that contains (100 ∗ p)% of
the area [21,23,24]. This ensures that the probability density
within the DoB is never lower than the density outside.
The HPD definition is particularly well suited for skewed
posteriors, as we will encounter in Sec. V. Because the
prh(�|ck) that we consider here are unimodal and symmetric
about � = 0, finding the DoB interval reduces to the inversion
problem for d

(p)
k , where

p =
∫ d

(p)
k

−d
(p)
k

d� prh(�|ck). (4)

Hence, one believes with (100 ∗ p)% certainty the true value
of the observable X lies within ±Xref d

(p)
k of the (k + 1)th

order (NkLO) prediction. In general, Eq. (4) must be inverted
numerically, but simplified results for certain priors and
approximations (e.g., that the first omitted term dominates)
are possible [17].

1These are also called “credibility” or “credible” intervals, or
“Bayesian confidence intervals.”
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c̄

ck· · ·c3c2 ck+1 ck+2 · · · ck+h · · ·

Extracted Δk

FIG. 1. A Bayesian network [25,26] for the �k truncation error
model outlined in [17].

In Ref. [17], a statistical model for �k in terms of the order-
by-order coefficients of the EFT expansion was developed.
It was assumed that naturalness could be implemented by
treating the cns as random variables drawn from a shared
distribution centered at zero with a characteristic size or
upper bound c̄. The coefficients at each order are treated as
independent of one another—the value of c̄ is the only way that
information propagates between orders. These relationships
can be encapsulated in a Bayesian network [25,26], as shown
in Fig. 1. The nodes of the graph are random variables and the
arrows denote causal relationships between them.

While the topology of Fig. 1 outlines the logic of our model,
prescriptions in the form of priors pr(cn|c̄) and pr(c̄) must be
given to make quantitative statistical inferences of �k . When
all we know is that there is an upper bound to the coefficients,
an application of maximum entropy [27,28] dictates that the
least-informative distribution pr(cn|c̄) is uniform for |cn| < c̄
and zero otherwise. Such uniformity is additionally appealing
because it can lead to simple, analytic results. This uniform
prior was the initial choice of Ref. [18]. We employ it in
priors we denote as “set A” and “set B” (see Table I). The
analogous prior of “set C” in Table I corresponds to the
ensemble naturalness assumption of Ref. [29]. This Gaussian
prior follows from the maximum-entropy principle assuming
knowledge of testable information on the mean and standard
deviation of the cns [29]:〈

c2
k

〉 = (k − 1)c̄2, 〈cn〉 = 0. (5)

In addition we require a prior for c̄: pr(c̄). Sets A and C
of Table I use a log-uniform prior for c̄ to reflect unbiased
expectations regarding the scale of c̄ [30] (this was the choice
in Refs. [18] and [29]). Such a prior cannot be normalized
for c̄ in (0,∞) and is therefore termed an “improper prior.”
Limiting the range of c̄ through the use of θ functions permits
an examination of the otherwise ill-defined limiting behavior.
When marginalizing (i.e., integrating) over c̄, we can express

TABLE I. Candidates for prior pdfs [17].

Set pr(cn|c̄) pr(c̄)

A 1
2c̄

θ (c̄ − |cn|) 1
ln c̄>/c̄<

1
c̄
θ (c̄ − c̄<)θ (c̄> − c̄)

B 1
2c̄

θ (c̄ − |cn|) 1√
2πc̄σ

e−(ln c̄)2/2σ 2

C 1√
2πc̄

e−c2
n/2c̄2 1

ln c̄>/c̄<

1
c̄
θ (c̄ − c̄<)θ (c̄> − c̄)

complete ignorance of the scale of c̄ by considering the limit
of infinite range (Aε or Cε , see [17]), or render the prior
more informative through the use of a finite range [a,b]
(Aa-b or Ca-b). Alternatively, set B employs a log-normal
distribution about zero [19,31], which sets the scale of c̄ with
the hyperparameter σ .

The general result for prh(�|ck) implied by Fig. 1 was
derived as2

prh(�|ck) =
∫ ∞

0 dc̄ prh(�|c̄) pr(c̄)
∏k

n=2 pr(cn|c̄)∫ ∞
0 dc̄ pr(c̄)

∏k
n=2 pr(cn|c̄)

, (6)

where

prh(�|c̄) ≡
[

k+h∏
i=k+1

∫ ∞

−∞
dci pr(ci |c̄)

]
δ
(
� − �

(h)
k

)
. (7)

If we assume that the first omitted term dominates the
truncation error, then Eq. (7) is easily evaluated by the δ
function for any prior, and Eq. (6) reduces to

pr1(�|ck) =
∫ ∞

0 dc̄ pr(ck+1|c̄) pr(c̄)
∏k

n=2 pr(cn|c̄)

Qk+1
∫ ∞

0 dc̄ pr(c̄)
∏k

n=2 pr(cn|c̄)
, (8)

where ck+1 = �/Qk+1 as enforced by the δ function. Error
bands made under this assumption are denoted by the prior
with a superscript (1), e.g., A(1). Further progress, with
or without the first-omitted-term approximation, requires an
explicit choice of priors. The relevant equations for this
work, such as posteriors and DoB intervals, are contained
Appendix A.

III. TOTAL NN CROSS SECTION

Truncation error DoBs were estimated in Ref. [17] for the
np total cross section at laboratory energies of 50, 96, 143,
and 200 MeV from results given explicitly in Refs. [10,20]
using the new R = 0.9 fm EKM potential. In this work we
extend these calculations to all of the new potentials and for
all energies up to 350 MeV. The first step is to extract the
cn coefficients, defined by Eq. (1), from the order-by-order
calculations of the np total cross section X = σ (Elab). Here we
choose our reference scale to be the leading-order calculation
Xref = σ0, so c0 ≡ 1 by construction. Other reasonable choices
of Xref, such as a higher-order result or the experimental value,
do not substantially change the convergence pattern for this
observable.

We also need to specify the high-momentum scale �b. Here
we assume that �b is a given quantity, and adopt the values
assumed by EKM. Their choice of �b ≈ 400–600 MeV (the
particular value depending on a regulator parameter R) was
based on a rough analysis of residual error plots (“Lepage
plots”), validated by the observation that their choices resulted
in natural coefficients in the EFT series for np scattering cross
sections [10,20]. In Sec. V, we make a statistical analysis of
whether the EKM choices of �b (or nearby values) lead to

2We have corrected and simplified here the corresponding equation
from Ref. [17].
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FIG. 2. (a) Dimensionless coefficients as in Eq. (1) at each EFT order for the np total cross section as a function of laboratory energy for
EKM potentials with R = 0.9 fm, and �b = 600 MeV. Plot (b) uses the p/�b expansion only.

self-consistent convergence patterns for observables, and ex-
plore directly determining a posterior probability distribution
for �b.

Because we have a double expansion in p/�b and mπ/�b,
we must develop a prescription to define Q. In Ref. [17] we
took Q to be

Q = max{p,mπ }
�b

. (9)

We expect that at low momenta the expansion will be
dominated by powers of mπ/�b and at momenta much higher
than mπ it will be dominated by powers of p/�, so the
appropriate choice of Q in each region follows correctly from
Eq. (9). However, it is not clear how we should parametrize
the crossover region. To avoid cusps at p = mπ , we choose to
replace Eq. (9) by a smooth interpolation function for Q:

Qinterp(p) = mn
π + pn

mn−1
π + pn−1

1

�b

, (10)

where n is a sufficiently high integer (we take n = 8 here). But
we need to examine the behavior at low energies to assess
whether the implicit equal weighting of the expansions is
justified.

Coefficients c2–c5 for the total cross section, calculated with
the R = 0.9 fm potential and �b = 600 MeV, are shown as
functions of energy in the left panel of Fig. 2. These include
the results for four individual energies from [17], but now we
can see the global pattern. Except for the N4LO coefficient
around Elab ≈ 50 MeV, the coefficients at any fixed energy
follow a distribution with a characteristic size of about 1. If
Q = p/�b were used for all energies instead of Eq. (10), then
the coefficients would grow very large as Elab gets small (i.e.,
as p → 0), as shown in the right panel of Fig. 2. The onset of
this behavior in Elab increases with chiral order and, for N4LO,
is the source of the large coefficient near Elab ≈ 50 MeV. This
reflects the increasing sensitivity at large order to the relative
contribution of the two expansions in the crossover region. We

do not yet have a model to address this behavior. If we exclude
the crossover region, the underlying assumption of the priors
pr(cn|c̄) in Table I that the coefficients at a given energy are
distributed with a characteristic size c̄ is validated.

The observable coefficients for the other EKM potentials
are shown in Figs. 3 and 4. For each potential we have adopted
the value of �b advocated by EKM: �b equal to 600 MeV
for R = 0.8, 0.9, and 1.0 fm, 500 MeV for R = 1.1 fm, and
400 MeV for R = 1.2 fm. We return in Sec. V to consider
different choices of �b.

The general assumption made in constructing a posterior
for the truncation error in Ref. [17], that the coefficients have
a characteristic magnitude or upper bound c̄, is based on the
expectation that a well-formulated EFT will have a certain
uniformity in the convergence pattern of observables. That
is, with each successive order there is a steady convergence
implied by the value of the expansion parameter (as shown
below, this corresponds with a steady improvement of the
prediction for the cross section). For an integrated observable
such as the total cross section, we expect this to be particularly
manifested. This justifies the use of lower-order results to
inform our expectations for higher-order contributions.

The pattern of coefficients for R = 0.9 fm shows this
uniformity, which is mostly still present for R = 0.8 fm and
R = 1.0 fm. In particular, we see evidence for a characteristic
size for the cns of order unity (in practice about 3). However,
the uniformity deteriorates significantly as one progresses to
R = 1.1, and 1.2 fm. This is a consequence of the growing cut-
off artifacts at larger values of R. As the artifacts become more
prevalent, there is a decreased contribution from midrange
pion physics at N2LO and N4LO, which is counteracted by an
increase in the contact terms at NLO and particularly N3LO.
This reflects a partial integrating-out of pion physics, which
takes us closer to a pionless EFT convergence pattern with the
dominant contributions at even orders in the expansion.

In Ref. [17], we analyzed results only for R = 0.9 fm and
R = 1.2 fm (as reported by EKM) and only at four energies.
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FIG. 3. Dimensionless coefficients as in Eq. (1) at each EFT order for the np total cross section as a function of laboratory energy for (a)
R = 0.8-fm and (b) R = 1.0-fm EKM potentials, both with �b = 600 MeV.

From this limited sample we concluded that the distribution
of cns at these energies was consistent with a common c̄
for R = 0.9 fm, but this was not the case for R = 1.2 fm.
In particular, the latter case had uniformly small coefficients
for N2LO and N4LO, consistent with there being no new
short-range contributions at those orders and the regulator
greatly reducing the pion tensor-range contribution. Now
looking globally at the R = 1.2 fm coefficients, we see that
N2LO and N4LO stay small for the full range of Elab. If
we focus on N2LO in each graph, we see that the trend of
the coefficients with energy is quite similar as R increases
(softening the interaction), but the overall scale decreases
monotonically. The situation with N4LO is similar.

Turning to the N3LO coefficients for successive values of
R, we find a transition from negative and fairly large (order
−3) at R = 0.8 fm to positive and fairly large (order +3)
at R = 1.0 fm and above. R = 0.9 fm is the middle of this

transition. This is not unnatural, but may reflect a tendency
toward overfitting at N3LO (see Ref. [32]). Taking all the
orders together, the coefficients imply that the convergence
pattern for R = 1.1 and 1.2 fm, for which regulator artifacts
are significant, is not consistent with our statistical model.

Next we estimate DoB intervals for EFT truncation errors
using the extracted coefficients. We apply at each energy the
formulas from Sec. II to the coefficients from that energy
only. The order-by-order results for the total cross section with
R = 0.9 fm and prior set Cε [using Eq. (A11) or (A12)] are
shown in Fig. 5. To amplify the patterns, in Fig. 6 and below we
plot the residuals with respect to the Nijmegen partial-wave
analysis (NPWA) [33], where the residual for a calculated
observable X is defined as

Xres ≡ X − XNPWA. (11)

0 100 200 300
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2
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FIG. 4. Same as Fig. 3 but for EKM potentials with (a) R = 1.1 fm and �b = 500 MeV, and (b) R = 1.2 fm and �b = 400 MeV.
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FIG. 5. DoB intervals for the np total cross section for R =
0.9 fm at each of the orders, using prior set Cε .

All plots of observables and residuals are shown with solid
lines for the calculation at each order, with dark and light
shaded bands denoting the 68% and 95% DoB interval for the
truncation error at each kinematic point. Note that the errors
are not Gaussian, as the 95% bands are not twice the size of
the corresponding 68% bands.

The order-by-order convergence of the calculations in Fig. 6
to the NPWA result is clear, but not surprising—the potential
was fit to reproduce the NPWA in each partial wave. The
pattern of DoB intervals shown in both Figs. 5 and 6 is
mostly systematic: the widths tend to increase with Q, decrease
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FIG. 6. Residuals defined in Eq. (11) at each order for the np

total cross section for R = 0.9 fm, with DoB intervals calculated
using prior set Cε .
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FIG. 7. Residuals defined in Eq. (11) at each order for the np

total cross section for R = 0.9 fm, with DoB intervals calculated
using prior set C0.25-10.

with order, and overlap with preceding order DoBs. Although
we used set C for these truncation error estimates on the
cross section, the results using set A are similar. See the
Supplemental Material [22] for plots displaying various error
band prescriptions. We return to quantify the effects of prior
choice on the success rate of the error bands in Sec. V.

An exception to the systematic and intuitive DoB intervals
is for the NLO calculation near 200 MeV, where the intervals
vanish. This is because the prior set Cε makes no assumption on
the minimum (or maximum) size of c̄, so the only information
for the DoB at NLO is the NLO coefficient, which vanishes
in that energy range. In Ref. [17] we included c0 = 1 at NLO,
which effectively set a lower limit of c̄ = 1. Considering the
NLO coefficients over the full energy range, as well as the
other coefficients, it is clear that we should use a prior with
a nonzero c̄<. A more informative, but not too restrictive,
choice of c̄< = 0.25 (and c̄> = 10) is used in Fig. 7. The DoB
intervals at low order are now more plausible while there is no
significant difference at the two highest orders.

Of course, it is not enough that the DoB bands are plausible;
they should be statistically valid. If our DoB intervals are
consistent, we might expect the NPWA line in Fig. 5 or the
zero line in Figs. 6 or 7 to lie outside the 68% region roughly
1/3 of the time and outside the 95% region roughly 1/20 of
the time. With this in mind, a rough examination of Fig. 7
shows the bands are not ideal: the 95% DoBs appear too large
for NLO and N2LO, while they are too small for N3LO; the
68% DoBs underestimate the error on the NLO plot; and the
N3LO DoBs do not perform well at low energies. In Sec. V, we
perform a systematic analysis using Bayesian model checking,
where we evaluate how well the DoBs predict the subsequent
order correction. Section VI concludes with a reassuring proof
of concept (Fig. 27), which shows that, on average, our DoBs
accurately assess the error of the order-by-order results when
compared to NPWA data.
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FIG. 8. Residuals defined in Eq. (11) at each order for [dσ/d	]res

vs c.m. angle θ with R = 0.9 fm, Elab = 96 MeV, and error bands
generated using C0.25-10.

IV. OTHER NN SCATTERING OBSERVABLES

In this section we extend our analysis to other NN
scattering observables. For convenience we have collected in
the Appendixes the relevant notation and formulas we have
used, as well as a brief comparison to other notations in the
literature. We focus on the differential cross section and a set
of the most commonly considered spin observables, namely
the analyzing power Ay , polarization transfer coefficients A
and D, and the spin correlation parameters Axx and Ayy .
Each observable has been generated from LO through N4LO,
primarily using the R = 0.9 fm potential, which we have seen
demonstrates the best convergence pattern. We consider the
observables both at fixed energy as a function of angle and at
fixed angle as a function of energy.

In Fig. 8, residuals for the differential cross section as a
function of scattering angle at fixed Elab = 96 MeV for the
R = 0.9 fm potential are shown as a characteristic example of
this observable; other energies display similar characteristics.
The detailed order-by-order convergence pattern does not seem
to depend on angle, suggesting that it is plausible to describe
the convergence statistically.

These observations are supported by the plot of coefficients
as a function of angle, shown in Fig. 9, for which each
order takes a turn at being the largest in magnitude. For this
extraction, the leading-order result X0 was taken for Xref; the
results are not sensitive to this choice. The scale of the dimen-
sionless coefficients is roughly uniform at angles less than 150◦
(about 4), which is several times larger than the scale for the
integrated cross section at this energy. The scale is significantly
larger at back angles, where the momentum transfer becomes
twice the relative nucleon momentum, which may require a
reexamination of the expansion in this region. However, our
overall conclusion is that the naturalness assumption, in the
form of a characteristic size for the coefficient variations, still
holds without integrating over all angles.

0 60 120 180
θ (deg)

−6

−3

0

3

6

9

c n

dσ/dΩ

NLO

N2LO

N3LO

N4LO

FIG. 9. Dimensionless coefficients as in Eq. (1) extracted at each
θ from the differential cross section at Elab = 96 MeV. Xref is chosen
to be X0, the leading order result, which is consistent with natural
coefficients.

For any given spin observable Xpqik , we assume a natural
expansion for the full quantity

dσ

d	
Xpqik = Xref

∞∑
n=0

cnQ
n, (12)

which is the probability for a particle to scatter into a
solid angle d	, given that the beam and target particles
are polarized in the i and k directions and the scattered
and recoil particle spins are in the p and q directions,
respectively. The dimensionful scale in Eq. (12) is set by the
size of the differential cross section, so the natural choice is
Xref = dσ/d	. That means that the expansion for the spin
observable itself is

Xpqik =
∞∑

n=0

cnQ
n, (13)

with no additional prefactor. Below and in the Supplemental
Material [22] we see that this scaling is consistent with natural
ranges for the cns.

In Fig. 10(a) we show the extracted coefficients as a function
of scattering angle for six np scattering observables at Elab =
250 MeV, calculated using the potential with R = 0.9 fm. The
corresponding DoB bands for the residuals at this energy,
following the same prescription as applied to the cross sections,
are shown in Fig. 10(b). As already noted, the LO coefficient
does not inform our model for truncation errors and so is not
shown and is not used for the truncation error posteriors. These
figures serve as a representative example; figures showing
coefficients and DoB bands for many additional energies are
given in the Supplemental Material [22].

Except for constraints on some observables at special angles
(e.g., Ay at θ = 0◦, 180◦ and A at θ = 0◦), the coefficients
truly look like independent bounded random functions of
the angle, which supports our proposition that a statistical
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FIG. 10. (a) Dimensionless coefficients as in Eqs. (1) and (13), and (b) residuals defined in Eq. (11) as a function of θ at Elab = 250 MeV.
(c) Dimensionless coefficients as a function of Elab at θ = 120◦. All use the R = 0.9 fm EKM potentials. Xref = X0 for the differential cross
section and Xref = 1 for the spin observables.

treatment of their behavior is warranted. As with the cross
sections, the DoB bands decrease in size systematically and
the lower-order bands overlap the higher-order bands. It
also appears that, in general, it is not necessary to look at
observables integrated over all angles to see a natural EFT

convergence pattern. We may therefore apply our statistical
model to estimate truncation uncertainties for NN angular
observables.

Figure 10(c) shows coefficients at a fixed angle of θ = 120◦
as a function of energy. The corresponding DoB intervals are
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shown in the Supplemental Material [22]. Enhanced N4LO
coefficients in the double-expansion crossover region, noted
earlier for the total cross section, are visible in most of the
observables. If this region is omitted, the behavior of the
coefficients with energies varies with a c̄ scale of about 2,
with no other systematic patterns apparent.

Thus the observed convergence patterns of NN scattering
observables for the EKM interaction with R = 0.9 fm, con-
sidered as functions of energy or angle, satisfy the statistical
model naturalness assumptions implied by Fig. 1. The DoB
intervals above 50 MeV derived using prior set C exhibit
reasonable patterns (as do those using set A; see Supplemental
Material [22]), but do not by themselves validate the statistical
model. For that purpose we turn to Bayesian model checking
to assess the statistical consistency of all the EKM potentials
as well as the sensitivity to the choice of prior sets from Table I.

V. MODEL CHECKING

The predictiveness of our statistical model for EFT trun-
cation errors relies on how well our implementation of
naturalness aligns with the true convergence pattern exhibited
by the EFT. An EFT could fail to exhibit a natural convergence
pattern because of regulator artifacts or a poorly chosen
�b. Our prior sets for pr(c̄) and pr(cn|c̄), which encode our
assumptions about the size of the higher-order coefficients,
may also be called into question.

The efficacy of our approach for any given EFT or
particular observables predicted by that EFT can be examined
using Bayesian model checking [21]. Here we make use of
consistency checks to determine if the DoB intervals behave as
advertised. We also investigate the possibility of determining
�b solely from the convergence pattern and the assumption of
naturalness.

A. Consistency checks

Once a posterior pdf for �k is determined via Eq. (6), the
probability that the truncation error is in a DoB interval follows
directly from Eq. (4). If our statistical model for the error is
valid, a (100 ∗ p)% DoB interval should on average contain
the actual next order value of the observable (100 ∗ p)% of
the time (we use the first-omitted-term approximation in this
section). By applying this test for a range of p values to a
sufficiently large set of observables, we can test for inaccurate
models or EFTs with irregular convergence patterns. Such
a consistency check provides us with the statistical toolset
to analyze the sensitivity to our choice of priors and the
consistency of the breakdown scale �b taken from Ref. [20].

The procedure for creating consistency plots3 to implement
model checking is as follows [17]:

(1) Choose a set of independent observables for which the
next-order calculation is available (not including LO).4

3Calibration plots or curves are other common names for such tools.
4In Ref. [17] the LO to NLO success rates were included as part

of the consistency checks. Because we want to test the convergence

(2) Select a grid of (100 ∗ p)% DoB intervals with p
ranging from 0 to 1.

(3) Compute the (100 ∗ p)% DoB interval for each observ-
able in the set, using the same priors throughout.

(4) For each next-order calculation that is within the DoB
interval of the previous order, count one success.

(5) Take the number of successes n and divide by the total
number of observables N to get the actual success rate.

(6) Plot the success rates versus DoB interval percentage
and compare to the ideal result given by a 45◦ line.

Because we will have a finite number N of observables,
we expect fluctuations away from the ideal result for a true
(100 ∗ p)% success rate, as given by the binomial posterior

pr(n|p,N ) = N !

n!(N − n)!
pn(1 − p)N−n. (14)

We apply Bayes theorem with a uniform prior on p to convert
to a posterior for p:

pr(p|n,N ) ∝ pr(n|p,N ) pr(p) ∝ pr(n|p,N ), (15)

and generalize Eq. (14) to continuous n to calculate horizontal
68% and 95% confidence intervals for the DoB percentage,
using the HPD prescription (see Sec. II). These become shaded
bands in the consistency plots.5

We can easily evaluate DoB intervals for choices of �b

different from those identified by EKM, which we have
adopted so far. We follow Refs. [17,19,31] in doing this by
introducing a scaling factor λ to generalize Eq. (1) as

X = Xref

∞∑
n=0

(cnλ
n) ×

(
Q

λ

)n

. (16)

Varying λ about unity shifts �b; in the consistency plots here
we consider 20% variations, namely λ = 0.8 and 1.2, with
respect to the EKM choice with λ = 1.0.

The logic of the remainder of this section is as follows.
We begin with a reexamination of the consistency plots for
the total cross section, as begun in Figs. 10 and 11 from
Ref. [17], exploring more energies and stability under prior
choice (Figs. 11–13). Next we extend the previous analysis
with results from the differential cross section and our selected
spin observables (Figs. 14 and 15). Finally, consistency plots
of EKM potentials with different regulators are examined
(Figs. 16–18), including examples of potentials that fail our
analysis (Figs. 19 and 20). For a more extensive survey of our
results, see the Supplemental Material [22].

In Fig. 11 we show consistency plots for the total cross
section calculated with the R = 0.9 fm EKM potential for
prior set C(1)

0.25-10 (recall that the superscript indicates that the

pattern only, the LO to NLO success rate is not relevant here, as in
the previous sections where we omit c0.

5In Ref. [17] a different procedure yielded bands for given N, n, and
p that are reflected about the 45◦ line from the ones here. Additionally,
the bands in [17] were calculated using equal-tailed credible intervals
for DoBs rather than the HPD prescription. Both procedures approach
symmetric bands for large N .
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FIG. 11. Consistency plot for the total cross section using the
R = 0.9 fm EKM potential evaluated at E = 20,40, . . . ,340 MeV.
Results were obtained using prior set C(1)

0.25-10 and are averaged over
NLO, N2LO, and N3LO. The shaded bands represent 68% and 95%
confidence intervals for the success rates (see text).

truncated error is assumed to be given by the first omitted
term). Here, each line averages over the success rate of
the NLO, N2LO, and N3LO error bands in predicting the
corresponding next-order contributions at energies Elab =
20,40, . . . ,340 MeV. The trends show that for λ = 1, i.e.,
�b = 600 MeV, the predicted (100 ∗ p)% DoB aligns with
the measured success rate to within the uncertainty predicted
by Eq. (15). While using data at many Elab values improves the
statistics, the independence of the results may be questionable
if calculated for too closely spaced kinematic variables.
Dependent measurements would cause the gray error bands
in Fig. 11 to be too restrictive, so the λ = 0.8 and λ = 1.2
lines may be consistent even though they are generally outside
the 68% bands (cf. the leftmost plot in Fig. 16). In future work
we will model the correlation length in energy using Gaussian
processes [34–36] (GPs) to draw more robust conclusions
about independence.

In Fig. 12 we decompose the λ = 1 line of Fig. 11 into the
contribution from each individual order, while Fig. 13 shows
the same decomposition but using prior set A(1)

ε . Given the
slight changes between Figs. 12 and 13, as well as similar
examples not shown, we conclude that prior choice has little
effect on the predictions of EFTs with good convergence
patterns. For such an EFT, we expect the predictions to improve
with the order of the prediction, because the higher orders
contain more information about the pattern of the observable
coefficients. This is what we see, with the N3LO predictions
being fully consistent within the gray bands.

Next we consider angle-dependent observables, which were
not analyzed in Ref. [17]. Each observable is generated
using the R = 0.9 fm EKM potential with �b = 600 MeV
(λ = 1). Each is evaluated at N = 102 kinematic points:
17 energies (20,40, . . . ,340 MeV, as for σ ) with six angles
(40◦,60◦, . . . ,140◦) for each energy. The prior set used in the

0 20 40 60 80 100
DoB (%)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

),
N

=
17

σ, λ = 1.0

NLO

N2LO

N3LO

FIG. 12. Consistency plot for the total cross section using the
R = 0.9 fm EKM potential at the recommended �b = 600 MeV
(λ = 1) and separated order by order. The DoBs were generated
using C(1)

0.25-10 applied at energies Elab = 20,40, . . . ,340 MeV.

analysis is C(1)
0.25-10 and the plots are decomposed order by

order. Figure 14 shows a consistency plot for the differential
cross section, while Fig. 15 shows, as an example, the indi-
vidual spin observables Ay, Axx , and Ayy . The N2LO DoBs
consistently underestimate the size of the N3LO correction for
the differential cross section, but the NLO and N3LO DoBs
do fairly well. Some of the DoBs for spin observables, such as
Ay and Axx , overestimate the higher-order corrections, while
the Ayy DoB performs well. The NLO and N2LO coefficients
of Ay and Axx are generally larger than N3LO and particularly
the N4LO coefficients at Elab � 100 MeV, while Ayy tends to
have coefficients that each take turns being the largest.

The spacing in angle and energy may be close enough
that the calculations used for the consistency plots are signifi-
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FIG. 13. Consistency plot as in Fig. 12 but generated using A(1)
ε .
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FIG. 14. Consistency plot as in Fig. 12 but using dσ/d	. The
observable is evaluated at Elab = 20,40, . . . ,340 MeV and θ =
40◦,60◦, . . . ,140◦.

cantly correlated, which will constrain the gray error bands
unnecessarily due to the large number of nonindependent
points. The true impact of this correlation has not yet been
quantified and is a topic for future investigation. From
the aforementioned plots, we can conclude that although
integrating over angles is not necessarily required to ensure a
natural convergence pattern of coefficients, some observables
do show notable patterns that adversely affect the predictive
power of their respective DoBs.

Finally, we return to the topic of EKM potentials with
varying regulators, first raised in Sec. III. Thus far we have
mainly focused on the R = 0.9 fm EKM potential due to its
natural convergence pattern compared to the other potentials,
as evidenced by Figs. 2–4. Now we relax this focus to
gain insight into the effects that regulator choices and their
consequent convergence patterns have on the reliability of
the error bands generated by this analysis. We also test the

proposed breakdown scale �b for each regulator by varying λ
defined in Eq. (16) about unity. In an attempt to ensure inde-
pendent results for the chosen kinematic points, in Figs. 16–18
we use Elab = 96,143,200,300 MeV and θ = 60◦,120◦ (if
applicable). The choices of separation length in Elab and θ
are based on a rough analysis of the coefficient curves, which
suggests that energies spaced by about 70–80 MeV and θ
spaced by 30◦–40◦ can be taken as independent for evaluating
DoB successes.

We find in Figs. 16–18, which show results averaged over
orders for R = 0.9, 0.8, and 1.0 fm, respectively, that our
statistical model for truncation errors is generally successful
for these parameters. For R = 0.9 fm, both σ and dσ/d	
show strong consistency with λ = 1, meaning �b ≈ 600 MeV,
but a wider range of �b is not ruled out. In contrast, the
spin observables are more consistent with somewhat larger
�b, particularly if we accept the limits of the gray bands.
The three sets of observables for R = 0.8 fm remain fairly
consistent with a single choice for �b and overall this potential
passes the test of a natural convergence pattern based on the
expected level of consistency. Although the order-averaged
consistency plots for the R = 1.0 fm potential are reasonable,
the order-by-order convergence pattern and plausibility of a
single �b become suspect; see the Supplemental Material [22]
for more information.

The failure of our statistical model for truncation errors
when applied to R = 1.1 fm and R = 1.2 fm, which was
anticipated by the pattern of coefficients in Fig. 4, is best
observed in the order-by-order consistency plots, where the
impact of fluctuations in coefficient size becomes clear.
For better statistics (larger N ), we use θ = 60◦,120◦ and
Elab = 20,40, . . . ,340 MeV; since the chosen angles are fairly
representative, using more angles does not greatly affect the
conclusions. Figures 19 and 20 explicitly show the unequal
nature of the coefficient magnitude for these regulator values.
Because much of the physics content at N2LO and N4LO
is moved to NLO and N3LO, the N2LO DoBs tend to
underestimate the contribution due to N3LO, while the NLO
and N3LO DoBs overshoot the error estimates due to N2LO
and N4LO, respectively. Because the trade-off of large and
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FIG. 15. Consistency plots using C(1)
0.25-10 for the individual spin observables (a) Ay , (b) Axx , and (c) Ayy with R = 0.9 fm and separated

order by order. The observables are evaluated at Elab = 20,40, . . . ,340 MeV and θ = 40◦,60◦, . . . ,140◦.
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FIG. 16. Consistency plots using C(1)
0.25-10 averaged over NLO–N3LO results for (a) σ , (b) dσ/d	, and (c) the five selected spin observables

with R = 0.9 fm. The observables are evaluated at Elab = 96,143,200,300 MeV and θ = 60◦,120◦ if applicable.

small coefficients causes the error bands to be overestimated
and then underestimated at alternating orders in the expansion,
this effect could on average cancel out when comparing to the
actual data, as that comparison highlights the size of all left-out
higher-order terms.

B. Posterior for �b

So far we have assumed that the EFT breakdown scale
�b was a given quantity, and then calculated posteriors for
EFT truncation errors contingent on the known coefficients
cn. We have also checked whether this posterior is statistically
consistent with particular fixed choices for �b. Here we
explore whether we can extract a plausible range for �b

by calculating a posterior pdf for �b, contingent only on
the order-by-order results. We combine results from different
momenta and angles that are far enough apart that it is
reasonable to assume the EFT calculations are uncorrelated,
but also compare to much more closely spaced kinematics
to improve the statistics. The eventual goal is to be able
to use modeled correlations between observable calculations
to calculate �b based on the calculations at many different
momenta p and angles.

We first rewrite Eq. (1) in terms of powers of p instead of
Q (recall that this should not be interpreted as the explicit p
dependence of the observable):

X ≡ Xref

∞∑
n=0

bn pn, (17)

which defines the dimensionful coefficients bn. The bn are
trivially related to the cn from Eq. (1) by

cn = �n
bbn. (18)

We proceed based on two independent assumptions: (1) the
details of the chiral EFT description of low-energy QCD
(e.g., renormalization scale and scheme) dictates a well-
defined breakdown scale �b, and (2) a well-formulated EFT
implementation will lead to natural expansion coefficients
for observables. Although any given bn can be extracted
from order-by-order calculations without any reference to a
breakdown scale or naturalness, our assumptions imply that
the value of bn manifests the interplay between the underlying
�b and the natural cn required by Eq. (18). This relationship
is represented graphically as a Bayesian network in Fig. 21.

We note that b0 will not give any information on the ex-
pansion parameter, because it will not modify the convergence
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FIG. 17. Consistency plots as in Fig. 16, but with R = 0.8 fm.
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FIG. 18. Consistency plots as in Fig. 16, but with R = 1.0 fm.

pattern. Because it is known that b1 = 0 in chiral EFT, it too
is omitted from our analysis.

In general, we want to use order-by-order calculations of
several observables at several kinematic points to inform our
estimate of �b. The full quantity of interest is therefore

pr (�b|bk(α1), . . . ,bk(αm)), (19)

where the given information is m sets of coefficients bk(αi) ≡
(b2(αi), . . . ,bk(αi)) labeled by αi = (Elab i ,θi,Xi): the set of
kinematic parameters and observable Xi from which the bk

were calculated. Using Bayes theorem, we can express the
posterior for �b as

pr (�b|bk(α1), . . . ,bk(αm))

= pr (bk(α1), . . . ,bk(αm)|�b) pr(�b)

pr (bk(α1), . . . ,bk(αm))
. (20)

We have assumed statistical independence of coefficients at
different orders, but it is possible for bn(αi) to be correlated
with bn(αj ). The coefficients can be correlated for multiple
reasons: for a given observable, the kinematic parameters
may be close to one another; two distinct observables could
themselves be correlated; or a combination of both. Assuming

statistical independence in αi , we can factor the likelihood in
Eq. (20) into

pr (bk(α1), . . . ,bk(αm)|�b) =
m∏

i=1

pr (bk(αi)|�b). (21)

Therefore, the posterior is given by

pr (�b|bk(α1), . . . ,bk(αm))

= pr(�b)
∏m

i=1 pr (bk(αi)|�b)
pr (bk(α1), . . . ,bk(αm))

. (22)

The denominator of Eq. (22) is simply a normalization constant
and the prior pr(�b) can be chosen later on, leaving only
pr (bk(αi)|�b) to evaluate. For simplicity, we will refer to this
as pr(bk|�b), noting that the likelihoods for all bk(αi) simply
need to be multiplied together to get the final posterior pdf in
Eq. (22).

To express pr(bk|�b) in terms of the prior assumptions
of naturalness, we first use marginalization [28] to introduce
as auxiliary parameters the dimensionless coefficients ck [see
Eq. (3)]:

pr(bk|�b) =
∫

dck pr(bk|ck,�b) pr(ck|�b). (23)
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FIG. 19. Consistency plots with C(1)
0.25-10 and the R = 1.1 fm EKM potential showing order-by-order results for (a) σ , (b) dσ/d	, and (c)

the five considered spin observables evaluated at Elab = 20,40, . . . ,340 MeV and θ = 60◦,120◦ if applicable.
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FIG. 20. Consistency plots as in Fig. 19, but with R = 1.2 fm.

Next, to express the prior pdf for the coefficients cn, we
integrate in the naturalness parameter c̄:

pr(bk|�b) =
∫

dc̄dck pr(bk|ck,�b) pr(ck|c̄,�b) pr(c̄|�b).

(24)

To simplify Eq. (24) we use independence as reflected in
the causal relationship outlined in Fig. 21. Neither the cns nor
c̄ depend on �b if they are not mediated by bn. We adopt a
prior of independence between the cns as before. Thus

pr(ck|c̄,�b) =
k∏

n=2

pr(cn|c̄). (25)

The bns also only depend on their corresponding cn and �b,
and are independent of one another. This means that

pr(bk|ck,�b) =
k∏

n=2

pr(bn|cn,�b). (26)

Therefore, Eq. (24) can be written as

pr(bk|�b) =
∫

dc̄ pr(c̄)
k∏

n=2

∫
dcn pr(bn|cn,�b) pr(cn|c̄).

(27)

c̄ c3

c2

c4

...

b3

b2

b4

...

Λb

FIG. 21. A Bayesian network that outlines the causal relation-
ships between random variables when determining �b. For simplicity,
only nodes for one αi are shown.

The pdf for bn contingent on cn and �b is simply

pr(bn|cn,�b) = δ

(
bn − cn

�n
b

)
, (28)

which enables us to perform the cn integrations directly. Thus,

pr(bk|�b) = �
k(k+1)/2−1
b

∫
dc̄ pr(c̄)

k∏
n=2

pr(cn|c̄), (29)

where we have used
∏k

n=2 �n
b = �

k(k+1)/2−1
b and have set cn =

bn�
n
b from now on.

To evaluate Eq. (29), we must make choices for the priors,
such as those from Table I. Analytic expressions of Eq. (29)
can be found for sets Aε and Cε , which we will consider here.
It is reasonable to assume no prior knowledge of the scale of
c̄, i.e., allow c̄< → 0 and c̄> → ∞, because the scale can vary
wildly with a changing �b. For set Cε ,

pr(bk|�b) ∝
(

�k+2
b

c2
k

)(k−1)/2

. (30)

The result for set Aε is similar to Eq. (30), with the replacement
c2
k → c̄2

(k), where c̄(k) = max{|ci | : ci ∈ ck}. These likelihoods
are maximized for values of �b where the individual cns are
about the same size.

The final step in specifying the posterior is to make a choice
of pr(�b). Here we employ a noninformative log-uniform prior
as we did for c̄:

pr(�b) = 1

ln(�>/�<)

1

�b

θ (�b − �<) θ (�> − �b), (31)

which assumes we know only limits on the scale of �b. Then
for set Cε ,

pr (�b|bk(α1), . . . ,bk(αm)) ∝ 1

�b

m∏
i=1

(
�k+2

b

c2
k(αi)

)(k−1)/2

,

(32)

where the θ functions on �b are implicit. A more probable
region in �b is singled out in Eq. (32) by the interplay of the
pr (bk(αi)|�b) factors, which individually favor �bs that make
the order-by-order cns for each αi about the same size.
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FIG. 22. Posterior pdfs pr(�b|bk) for NN observables us-
ing the R = 0.9 fm potential, at the kinematic points Elab =
96,143,200,300 MeV and θ = 60◦,120◦. We use prior set Cε , and
assume that �< = 300 MeV and �> = 1500 MeV. Thick and thin
horizontal lines represent 68% and 95% DoBs, respectively, while the
white dot signifies the median. Xpqik stands for the combination of the
five considered spin observables Ay, A, D, Axx , and Ayy treated as
independent from one another. For σ and dσ/d	, Xref = X0, while
Xref = 1 otherwise. For aesthetic purposes, each plot is scaled to the
same height.

The lower limit �< in the prior of Eq. (31) requires
comment: if �< is set less than the momentum scale pi corre-
sponding to the laboratory energy where bk(αi) is calculated,
the expansion parameter Q = pi/�b may be greater than 1. If
we have an EFT that converges according to our statistical
model, Q > 1 for the relevant kinematic points should be
excluded by Eq. (22). If it instead favors values of �b for
which Q > 1, this would signal an inconsistency between the
truncation error model and the EFT as implemented.

As already noted, we assume that because of their sep-
arations in energy or angle, the chosen sets of kinematic
parameters can be treated as independent from one another
and their probability densities multiplied. We make a similar
assumption for the observables themselves, i.e., the set labeled
Xpqik includes bk sets for each of the spin observables
Ay, A, D, Axx , and Ayy . The assumption of independence,
particularly for observables at the same energy or angle, may
be questioned. The exploration of methods to combine data
from all kinematic parameters, such as through GPs [34–36],
and assessments of observable independence, are currently in
progress.

Given the above assumptions, we have applied Eq. (32) to
various potentials, observable sets, and kinematic parameters;
the resulting pdfs and DoB intervals, using the HPD prescrip-
tion (see Sec. II), are presented in Figs. 22–26. In contrast
to central credibility intervals, the HPD intervals ensure that
massive extremes, such as the N3LO posterior for σ near
its lower boundary in Fig. 22, are not necessarily excluded
from our DoB intervals [23]. The posteriors of Fig. 22 mirror
the conclusions drawn from Fig. 16—both σ and dσ/d	

0 300 600 900 1200
Λb (MeV)

Ay

Axx

Ayy

O
bs

er
va

bl
e

Order

N3LO

N4LO

FIG. 23. Posterior pdfs for �b as in Fig. 22, except the ob-
servables Ay, Axx , and Ayy are considered individually at Elab =
20,40, . . . ,340 MeV and θ = 40◦,60◦, . . . ,140◦.

predict �b ≈ 600 MeV, while the set of spin observables,
taken together, prefers �b > 600 MeV. The relatively small
amount of data used from σ and dσ/d	 do not allow for a
very precise determination of �b.

Figure 23 explores this result for spin observables by
splitting out the posteriors for Ay, Axx , and Ayy separately.
These posteriors can be qualitatively predicted from the
order-by-order consistency plots for these observables given
in Fig. 15. In general, the strength of the �b posterior at
N4LO should be highly correlated with the pattern in the
consistency plot at N3LO (e.g., do the points lie above or below
the 45◦ line, which implies that λ < 1 and λ > 1 are more
probable than λ = 1, respectively). Similarly, the �b posterior
at N3LO correlates with the pattern in the consistency plot
at N2LO. For Ay , this rule predicts that the N4LO posterior
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FIG. 24. Posterior pdfs for �b as in Fig. 22, except with Elab =
50,96,143,200 MeV.
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FIG. 25. Posterior pdfs for �b as in Fig. 22, except with Elab =
20,40, . . . ,340 MeV and θ = 40◦,60◦, . . . ,140◦.

should have its strength concentrated well above 600 MeV,
and that the N3LO posterior should be located to its left.
For Axx , the N4LO posterior should also be well above 600
MeV, but the N3LO posterior should be to its right. Finally,
for Ayy , the consistency plots predict the N4LO posterior
will be concentrated near 600 MeV (i.e., λ = 1), with the
N3LO posterior shifted somewhat to the right. All of these
expectations are realized in Fig. 23.

One may wonder to what extent the �b posteriors are
stable under different choices of kinematic parameter sets.
Figure 24 shows the posteriors as in Fig. 22, but with a
different (lower) range of energies. Note that Elab = 50 MeV
is near the crossover region p ∼ mπ , where the interpretation
of the expansion parameter is unclear. However, while there
are systematic shifts, both sets of posteriors for σ and dσ/d	
are consistent with the EKM value of �b = 600 MeV, with
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FIG. 26. Posterior pdfs for �b as in Fig. 22, except for R = 1.2 fm
using �< = 100 MeV and �> = 900 MeV.

the ensemble spin observable posteriors favoring significantly
higher values. In all cases there are wide posteriors at N3LO
and more stability at N4LO. The only major shift in the median
between these energy sets is for the N3LO cross section result.
If we use larger sets of observables more closely spaced in both
energy and angle (see Fig. 25), neglecting the possible danger
from correlations, the �b posteriors become more narrow and
more Gaussian, but are systematically in accord with Fig. 22.

Figure 26 applies Eq. (32) to the R = 1.2 fm EKM
potential, for which EKM assumed that �b = 400 MeV. Most
of the posteriors imply even smaller values of �b, except for the
N4LO posterior for the spin observables, which is completely
inconsistent. Following the earlier discussion of the lower limit
on �b in the prior of Eq. (31), we see that the posteriors are not
only indicating much lower values of �b, but they also weight
areas where the expansion parameter Q > 1. The cross section
and differential cross section posteriors exhibit this behavior
most, while the spin observable posteriors are maximized in
regions where Q < 1. The weighting of Q > 1 regions of the
posterior is another indication that the EFT convergence for
this regulator is not well-described by the statistical model.

VI. SUMMARY AND OUTLOOK

In this work, we extend the analysis from Ref. [17] that
applies Bayesian statistics to the quantification of theoretical
uncertainties in chiral EFT. Our approach makes testable
predictions of DoB error bands based upon assumptions
about the convergence pattern of EFT observables and an
implementation of naturalness. In particular, we assume that
the scaled observable coefficients cn defined in Eq. (1) are
effectively random functions of natural size whose magnitude
provides an estimate of the error incurred by truncating the
EFT expansion.

We apply this model to a set of np scattering observables
predicted by the semilocal chiral EFT potentials of EKM
[10,20], who also proposed a nonstatistical protocol for
uncertainty quantification. The EKM error estimates in [20]
correspond most closely to the leading approximation of set
Aε (see Table I). In particular their error bands at NkLO
are k/(k + 1) ∗ 100% DoB intervals [17]; i.e., they do not
correspond to the same DoB at each order. Additionally, if the
known next-order result does not lie in that k/(k + 1) ∗ 100%
DoB interval, EKM extends the interval to the next-order
result. Therefore, at some orders it is possible to interpret
the EKM intervals according to our truncation error model
using set Aε , but not always. To calculate consistent statistical
DoBs at each order, we follow the statistical model outlined
in Fig. 1, which assumes a natural convergence pattern for
the EFT.

We begin by arguing that appropriate physical choices
of scale in Eq. (1) are Xref ≈ X0 for σ and dσ/d	, while
Xref ≈ 1 for any spin observable Xpqik . We then validate a
posteriori for these choices of Xref the natural distribution of
observable coefficients for the total cross section, differential
cross section, and a selection of spin observables for the R =
0.9 fm potential. The R = 0.8 fm potential is also consistent
with our statistical model. In contrast, the convergence patterns
of the R = 1.0, 1.1, and 1.2 fm potentials become increasingly
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unsystematic, and hence they become less well described
by this model. The expansion parameter for these softer
potentials is dominated by regulator artifacts, which EKM
account for by adopting a smaller value for �b. This reflects
the effective cutoff in momentum space instead of the intrinsic
breakdown scale of chiral EFT [16]. But the order-by-order
convergence pattern is also modified as the long-range pion
contributions at odd orders in Q are significantly shifted to
short-range contributions at even orders. This is manifested in
the coefficients extracted in Fig. 4 and the failed validation of
DoBs in Figs. 19 and 20.

Our higher-order results are generally insensitive to the
specific prior choice; we compare sets A and C in Figs. 12
and 13, and provide more examples in the Supplemental
Material [22]. The results for potentials with good convergence
patterns (we focus on R = 0.9 fm) can be summarized in terms
of our progress on the questions raised in Sec. I:

(1) The observable coefficients of the total cross section
vary smoothly with energy, typically changing sign
once over the energy range from 0 to 350 MeV. There is
no apparent order-by-order pattern at any given energy,
which supports our model of a random distribution
characterized by a size c̄. The unnatural size of the
N4LO σ coefficient at Elab = 50 MeV was noted in
Ref. [17]. At low energies, higher-ordered coefficients
become more sensitive to the value assigned to the
expansion parameter Q around the crossover region
p ∼ mπ , for which we do not have a model. Hence we
cannot make strong statements about the coefficient
spectrum and its implication for naturalness in that
energy region. We plan to test alternative schemes for
Q in the crossover region and to validate the presence
of the crossover in the cns using a change-point analysis
of the correlations modeled using a GP model [34–37].

(2) The observable coefficients for both the differential
cross section and the chosen spin observables vary
smoothly in both Elab and θ with characteristic sizes
between about 1 and 5 for R = 0.9 fm, which validates
the assumption that naturalness propagates to these ob-

servables for this potential. The functional dependences
show no obvious patterns, supporting the model of
effectively random functions. As with the cross section,
the interpretation of the coefficients is ambiguous for
low energies.

(3) Because each cn is a smooth function when plotted
against both Elab and θ , the values of the observable
coefficients at one value of the kinematic parameters
are correlated within some neighborhood (a correlation
length) of Elab and θ . Through a rough estimation,
we find that the correlation length in energy is
about 80 MeV, while the correlation length in θ
is approximately 40◦. These values were estimated
visually here, but in the future we will determine them
directly using a GP model for the cns [34–36]. This
additional information will then be incorporated into
our statistical model for truncation uncertainties.

(4) The checks in Sec. V A show that taking �b to be
the same scale for both σ and dσ/d	 is statistically
consistent for the R = 0.9 fm EKM potential. While
the spin observable Ayy is also consistent with that
same scale, the ensemble of spin observables is more
consistent with a somewhat larger value. The R = 0.8-
fm EKM potential also shows promise, but extracting
�b becomes questionable for R = 1.0 fm and worse
for larger R. The posteriors for �b, shown in Sec.
V B and the Supplemental Material [22] lead to the
same conclusions—probable ranges of �b consistent
with the values proposed by EKM can be extracted for
R = 0.8 and 0.9 fm, identifying probable ranges for
R = 1.0 fm is questionable at best, and the other EKM
potentials (R = 1.1 and 1.2 fm) are not well described
by our statistical model. Conclusions about �b are not
warranted for the poorly behaving potentials.

An overall validation of our truncation error model as
applied to the EKM potential with R = 0.9 fm is provided
in Fig. 27, which shows order-by-order consistency plots for
observables compared with the NPWA data. These plots are
made by modifying step 4 of the procedure laid out in Sec. V A
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FIG. 27. Consistency plots comparing the error band success rate when compared to NPWA data for R = 0.9 fm and prior set C0.25-10.
(a) The total cross section is evaluated using Elab = 20,40, . . . ,340 MeV, (b) the differential cross section, and (c) set of selected spin observables
use Elab = 96,143,200,300 MeV and θ = 40◦,60◦, . . . ,140◦.
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to count a success when the actual NPWA result is within the
DoB interval at that order (as opposed to comparison to the
next-order calculation). In general, the (100 ∗ p)% error bands
work as advertised, predicting the discrepancy with the NPWA
data at the (100 ∗ p)% level to within expected fluctuations.

The general success of the model for chiral EFT truncation
errors motivates additional applications, further development
of the model (e.g., GP models), and its full integration into
parameter estimation of LECs. We plan to apply our truncation
error model to other chiral interactions that are available order
by order, such as the recent potential of Entem, Machleidt, and
Nosyk in [12]. Our error model and Bayesian model checking
diagnostics can be applied not only for other chiral interactions
but also for other EFTs in general. They also apply generically
to any observable calculation that fulfills the expansion model
in Eq. (1), including calculations in perturbation theory. A
Bayesian-type Lepage plot analysis [16,38,39] of the power-
law behavior of residuals as a function of energy/momentum
will complement the statistically motivated model checks of
Sec. V. Now that we have a framework of testable assumptions
for treating �b as a random variable in the posterior pdf
calculations of Sec. V, that information can be used to
marginalize over �b as an auxiliary parameter in truncation
error estimates rather than using a fixed �b value. Work in
these areas is in progress.
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APPENDIX A: DERIVATIONS OF �k POSTERIORS

Here we continue the analysis started in Sec. II by giving
explicit forms of posteriors prh(�|ck) for various prior sets.
The most noninformative case of set A follows if we take
c̄< = ε, c̄> = 1/ε and then take the limit ε → 0 at the end.
We designate this as set Aε , and the results for this set were first
worked out in [18]. If we further adopt the first-omitted-term
approximation, designated A(1)

ε , we have analytic expressions
for Eq. (6),

pr1(�|ck) =
(

nc

nc + 1

)
1

2c̄(k)Qk+1

×
{

1 if |�| � c̄(k)Q
k+1,( c̄(k)Q

k+1

|�|
)nc+1

if |�| > c̄(k)Q
k+1,

(A1)

and for d
(p)
k from Eq. (4),

d
(p)
k = c̄(k)Q

k+1×
{

nc+1
nc

p if p � nc

nc+1 ,[
1

(nc+1)(1−p)

] 1
nc if p > nc

nc+1 ,
(A2)

where

c̄(j ) ≡ max(|c2|, . . . ,|cj |), (A3)

and nc is the number of relevant known coefficients—here,
nc = k − 1 since c0 and c1 do not contribute to our analysis,
but equations are given in a general form for the reader.

Relaxing the first-omitted-term approximation can pose
a numerical challenge, since the integration volume grows
quickly with increasing h. Luckily, by following Ref. [40],
whose results we reproduce in Eqs. (A4)–(A6), Eq. (7) can be
reduced to one integral for the hard-wall (hw) prior pr(cn|c̄) in
sets A and B, and exactly evaluated for the Gaussian (G) prior
in set C. For sets A and B,

pr(hw)
h (�|c̄) = 1

2π

∫ ∞

−∞
dt cos(�t)

k+h∏
i=k+1

sin(c̄Qit)

c̄Qit
, (A4)

which, for h → ∞, becomes the atomic function ha [41]. For
set C,

pr(G)
h (�|c̄) = 1√

2πqc̄
e−�2/2q2 c̄2

, (A5)

where

q2 ≡
k+h∑

n=k+1

Q2n = Q2k+2 1 − Q2h

1 − Q2
. (A6)

Equation (A5) is easily evaluated for all h; we use h = 10
unless otherwise specified, at which point the posteriors have
converged numerically (see Ref. [17]).

With Eq. (A5), we can exactly evaluate Eq. (6) for set C in
terms of special functions. By inserting the priors and making
the variable substitution x = 1/c̄,

pr(C)
h (�|ck) =

∫ 1/c̄<

1/c̄>
dxxnce−(c2

k+�2/q2)x2/2

√
2πq

∫ 1/c̄<

1/c̄>
dxxnc−1e−c2

kx
2/2

, (A7)

where, of course,

c2
k =

k∑
n=2

c2
n. (A8)

Equation (A7) can be evaluated in terms of the incomplete �
functions via

pr(C)
h (�|ck)

= 1√
πq2c2

k

(
c2
k

c2
k + �2/q2

)(1+nc)/2

×
�

[ 1+nc

2 , 1
2c̄2

>

(
c2
k + �2

q2

)] − �
[ 1+nc

2 , 1
2c̄2

<

(
c2
k + �2

q2

)]
�

[
1
2nc,c2

k/2c̄2
>

] − �
[

1
2nc,c2

k/2c̄2
<

] ,

(A9)

using the definition

�(s,x) =
∫ ∞

x

dtt s−1e−t . (A10)

Of all sets in Table I, the posterior as given by set C, via
Eq. (A9), is the only one for which we have found a closed-
form expression for all h and ranges of c̄.
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For the noninformative set Cε , where c̄< → 0
and c̄> → ∞, Eq. (A9) simplifies to a t-distribution:

pr(C)
h (�|ck) = 1√

πq2c2
k

�
( 1+nc

2

)
�

(
1
2nc

) (
c2
k

c2
k + �2/q2

)(1+nc)/2

.

(A11)

Rather than integrating Eq. (A11), d
(p)
k can be found by

numerically solving the transcendental equation

p = 2d
(p)
k√

πq2c2
k

�
(

nc+1
2

)
�

(
nc

2

) 2F1

[
1

2
,
nc + 1

2
;

3

2
; −

(
d

(p)
k

)2

q2c2
k

]
,

(A12)

where 2F1 is the hypergeometric function.

APPENDIX B: DETAILS ON NN OBSERVABLES

For convenience of the reader and because of the multitude
of different conventions in the literature, we have gathered in
this Appendix the formulas used here in the calculation of NN
observables [15,33,42–46].

1. Kinematics

In the context of NN scattering, one particle (the beam),
with kinetic energy Elab, is incident on a stationary particle
(the target). For np scattering, the laboratory system (l.s.) is
often taken to be the rest frame of the initial proton. In the
center-of-momentum (c.m.) system, each particle has a relative
momentum of prel. It is convenient to relate these quantities
for each NN experiment:

proton-proton: p2
rel = 1

2
MpElab, (B1)

neutron-neutron: p2
rel = 1

2
MnElab, (B2)

neutron-proton: p2
rel = ElabM

2
p(Elab + 2Mn)

(Mp + Mn)2 + 2MpElab
, (B3)

where relativistic kinematics is used [20]. Unless otherwise
stated, θ is the c.m. polar scattering angle while φ denotes
the azimuthal scattering angle. For our purposes, φ can be set
to zero because all observables can be defined relative to the
scattering plane.

The spin states of the initial and final states can be expressed
in the uncoupled basis |i〉spin = |m′

1m
′
2〉 and |f 〉spin = |m1m2〉,

respectively, where we have suppressed s1 = s2 = 1/2. We can
also use the coupled singlet-triplet basis, where |i〉spin = |s ′m′〉
and |f 〉spin = |sm〉.

2. Observables

Because nucleons have nonzero intrinsic spin, observables
in general are dependent not only on kinematic variables
(Elab,θ,φ), but also on the relative orientation of the particles’
spin. A generic spin observable can be written as

dσ

d	
Xpqik = 1

4
Tr σ (1)

p σ (2)
q Mσ

(1)
i σ

(2)
k M†, (B4)

k

s kf

�

m

k′

s′

k′′

s′′
k′

R1

s′R1

k′′
R2

s′′R2

θ
θ
2

α

θ1

θ2

α
Ω1

α
α

Ω2

FIG. 28. The kinematics for nucleon-nucleon scattering [43].

where dσ/d	 is the (unpolarized) differential cross section,
M(kf ,ki) is the spin-scattering matrix and σv = σ · v. The
subscripts p, q, i, and k refer to the polarization directions of
the scattered, recoil, beam, and target particles, respectively. If
a final-state subscript is zero, its polarization is not analyzed.
If a initial-state subscript is zero, the corresponding particle
was unpolarized.

When an observable is considered in the c.m. system, the
polarization of each particle is often decomposed in a common
basis using the unit vectors �, m, n defined as

� = (
sin θ

2 cos φ, sin θ
2 sin φ, cos θ

2

)
, (B5)

m = (
cos θ

2 cos φ, cos θ
2 sin φ, − sin θ

2

)
, (B6)

n = (− sin φ, cos φ, 0), (B7)

and shown in Fig. 28. Here we consider pure experiments,
where the spin projections are solely along the basis vectors.
Hence, for a c.m. observable, the subscripts p, q, i, and k are
some combination of 
, m, n, and 0.

It is often convenient to express spin observables in the
l.s., where the scattered and recoil particles deflect at angles
θ1 and θ2, respectively. Lab system observables often use
three sets of bases to define spin observables, defined by
the beam, scattered, and recoil particle directions. The beam
(scattered, recoil) frame aligns k (k′, k′′) with the laboratory
particle momentum and defines n (= n′ = n′′) to be normal
to the scattering plane, which leaves s (s′, s′′) in the scattering
plane such that s = n × k (s′ = n × k′, s′′ = n × k′′). The
initial-state subscripts i and k are then chosen to be k, s, n,
or 0. Similarly, the scattered-state subscript p is k′, s ′, n or 0,
and the recoil-state subscript q is k′′, s ′′, n or 0.

024003-19



J. A. MELENDEZ, S. WESOLOWSKI, AND R. J. FURNSTAHL PHYSICAL REVIEW C 96, 024003 (2017)

TABLE II. Comparison of notations for selected NN scattering
observables.

Name Xpqik Others

Differential cross section I0000 σ, dσ/d	

Vector analyzing power A00n0 Ay, Pb

Polarization transfer Ds′0k0 A

Dn0n0 D

Spin correlation parameters A00ss Axx

A00nn Ayy

One added complication of calculating l.s. observables
involves accounting for the relativistic spin rotation angles

	1 = θ − 2θ1 = 2α, (B8)

	2 = −π + θ + 2θ2 = −π + 2β, (B9)

which rotate the primed and double primed vectors about n,
respectively. It is the rotated vectors, denoted with subscripts
R1 and R2, that correspond to the l.s. subscripts for the scattered
and recoil particles. In the nonrelativistic case, α = 0 and β =
π/2, which implies that

� ∼ k′ ∼ k′
R1

∼ s′′ ∼ s′′
R2

, (B10)

m ∼ s′ ∼ s′
R1

∼ −k′′ ∼ −k′′
R2

. (B11)

This too is illustrated in Fig. 28. Whether an observable is
defined in the c.m. system or the l.s. should be clear from the
chosen subscripts. All of the observables considered here use
the l.s. notation.

Notational inconsistencies abound in the literature. While
the subscripts of Eq. (B4) completely determine a given spin
observable, often the X is changed to match historical usage.
Other times, the subscript notation is abandoned completely
for a nondescript letter. Table II attempts to reconcile some
differences by matching a common name with Eq. (B4) and
other popular notations found in literature.

The spin-scattering matrix is the part of the scattering S
matrix that is due to interactions. In our convention, they are
related via M = (2π/ip)(S − 1). To evaluate M , it is useful to
write it in singlet-triplet space, and then make a partial-wave
expansion

Ms ′s
m′m(θ,φ) =

√
4π

2ip

∞∑
j,
,
′

(−1)s−s ′
i
−
′

Ĵ 2L̂Y 
′
m−m′ (θ,φ)

×
(


′ s ′ j
m − m′ m′ −m

)(

 s j
0 m −m

)

× 〈
′s ′|Sj − 1|
s〉, (B12)

where Ĵ ≡ √
2j + 1 and L̂ ≡ √

2
 + 1, the second line
contains two Wigner 3j symbols, and J = L + S is the total
angular momentum decomposed into orbital and intrinsic
angular momentum. The nuclear potential conserves the total
angular momentum j , but generally mixes the states of 
 and
s. Equation (B12) becomes useful only if a small number of j
waves are needed to accurately determine Ms ′s

m′m.
When a partial wave state is uncoupled, such as when j = 0,

then Sj can be parametrized by a real phase δ̄
sj

 such that Sj ≡

e2iδ̄
sj

 . For j > 0, Sj is four dimensional in angular momentum

space and can be written compactly using the triplet submatrix
S

j
T and the singlet-triplet submatrix S

j
ST via

Sj �=0 =
(

S
j
T 0
0 S

j
ST

)
. (B13)

The triplet submatrix S
j
T can be parametrized by introducing

another real parameter, the mixing angle ε̄j . Using the common
notation that subscripts + and − refer to 
 = j + 1 and j − 1,
respectively, then

S
j
T =

(
cos 2ε̄j e

2iδ̄
1j
− i sin 2ε̄j e

i(δ̄1j
− +δ̄

1j
+ )

i sin 2ε̄j e
i(δ̄1j

− +δ̄
1j
+ ) cos 2ε̄j e

2iδ̄
1j
+

)
(B14)

and similarly

S
j
ST =

(
cos 2γ̄j e

2iδ̄
0j
j i sin 2γ̄j e

i(δ̄0j
j +δ̄

1j
j )

i sin 2γ̄j e
i(δ̄0j

j +δ̄
1j
j ) cos 2γ̄j e

2iδ̄
1j
j

)
. (B15)

In the present work, γ̄j = 0 for all j , leaving the singlet-triplet
submatrix uncoupled and thus s ′ = s.

Equations (B14) and (B15) employ the “Stapp”- or “bar”-
phase shift parametrization. Another parametrization, with
phases and mixing angle denoted here by δ

sj

 and εj , was

made by Blatt and Biedenharn [47]:

S
j
T = U−1

(
e2iδ

1j
− 0

0 e2iδ
1j
+

)
U, (B16)

where

U =
(

cos εj sin εj

− sin εj cos εj

)
. (B17)

The Blatt eigenphases are related to the Stapp phases via

δ̄
sj
− + δ̄

sj
+ = δ

sj
− + δ

sj
+ , (B18)

sin(δ̄sj
− − δ̄

sj
+ ) = tan 2ε̄j

tan 2εj

, (B19)

sin(δsj
− − δ

sj
+ ) = sin 2ε̄j

sin 2εj

. (B20)

Given the partial-wave-projected potential V
sj

′
(p′,p), it is

convenient and numerically accurate to solve the Lippmann-
Schwinger (LS) equation with standing wave boundary con-
ditions,

R
sj

′


(
p′,p; p2

rel

)
= V

sj

′
(p′,p)

+
∑

′′

2

π
P

∫ ∞

0
dq

q2V
sj

′
′′(p′,q)Rsj


′′

(
q,p; p2

rel

)
p2

rel − q2
,

(B21)

for the partial-wave-projected R matrix (known as the
K matrix in other contexts). In the present work
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we use Gaussian quadrature to reduce the LS equa-
tion to a system of linear equations, from which R

sj

′


is extracted [48]. Having solved Eq. (B21), the on-
shell matrix R

sj

′
 = R

sj

′
(prel,prel; p2

rel) then leads directly
to the phases and mixing angle. For the uncoupled
channels,

tan δ̄
sj

 = −prelR

sj


. (B22)

For coupled channels, R
1j

′
 is two dimensional. The

Blatt-Biedenharn phases δ
sj

 and εj are extractable

via

tan 2εj = 2R
1j
−+

R
1j
−− − R

1j
++

, (B23)

tan δ
1j
− = −prel

(
R

1j
−− + R

1j
++ + R

1j
−− − R

1j
++

cos 2εj

)
, (B24)

tan δ
1j
+ = −prel

(
R

1j
−− + R

1j
++ − R

1j
−− − R

1j
++

cos 2εj

)
, (B25)

which can then be converted to the Stapp convention using
Eqs. (B18)–(B20).
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