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We analyze the quark-mass dependence of electromagnetic properties of two- and three-nucleon states.
To that end, we apply the pionless effective field theory (EFT) to experimental data and numerical lattice
calculations which simulate QCD at pion masses of 450 and 806 MeV. At the physical pion mass, we postdict the
magnetic moment of helium-3, μ 3He = −2.13 nNM (natural nuclear magneton), and the magnetic polarizability
of deuterium, βD = 7.3310−2 fm3. Magnetic polarizabilities of helium-3, β 3He = 9.710−4 fm3, and the triton,
β 3H = 8.210−4 fm3, are predictions. Postdictions of the effective theory for the magnetic moments are found
consistent with QCD simulations at 806 MeV pion mass, while our EFT result βD = 2.9210−2 fm3 was not
extracted from the lattice. The deuteron would thus be relatively pliable compared to a three-nucleon state
for which we postdict β 3H = 3.910−5 fm3. At mπ = 450 MeV, the magnetic moment of the triton is predicted,
μ 3He = −2.15(5) nNM, based on a conjecture of its binding energy, B 3H

∼= 30 MeV. For all three pion masses, we
compare the point-charge radii of the two- and three-nucleon bound states. The sensitivity of the electromagnetic
properties to the Coulomb interaction between protons is studied in anticipation of lattice calculations with
dynamical QED.
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I. OVERTURE

Knowledge regarding the orbital angular momenta and
spin orientations of the nucleons, bound in the core of an
atom, led to a quantitative understanding of the (hyper)fine
structure of the electron shell, i.e., atomic spectra, and
the dynamics of nuclei in external electromagnetic fields.
The pioneering experiments on nuclear magnetic moments
were based purely on their electromagnetic interaction, e.g.,
inferring the dependence of resonance frequencies of hydrogen
molecules on an external magnetic field [1]. Such experiments
helped thereby to parametrize nuclear properties in terms of the
fundamental constants of quantum electrodynamics (QED).
The lattice quantum chromodynamics (LQCD) calculations
of the same observables, i.e., responses of nuclei to external
fields, assume analogously the validity of QCD for nuclei
and parametrize them in terms of the constants of the strong
interaction. While both experiment and QCD, in principle,
yield the desired property of every nucleus, clearly not all
experiments nor all LQCD extractions are practical. The
predictions which were initially made to fill in these gaps
were based on pairing models for closed-shell nuclei [2]
and required a determination of only the neutron and proton
magnetic moments. Refinements [3] of this model gave insight
to the structural details of few-nucleon wave functions, e.g.,
D-state admixtures [4]. The fundamental correlation between
nuclear wave functions and electromagnetic responses is part
of the description of nuclei in terms of effective field theories
(EFTs). Matching these EFTs to LQCD data is believed to
yield a predictive theory.

In this article, we apply a candidate for such a theory
EFT(π/), as developed in Refs. [5–9], to analyze the structure
of two and three-nucleon systems through their interaction
with external electromagnetic probes. The availability of
LQCD calculations at unphysically large quark/pion masses

is combined with experimental data to assess the dependence
of charge radii, magnetic moments, and polarizabilities on
nucleon masses, deuteron-triton binding-energy splittings, and
bound states in the two-nucleon singlet channels. Furthermore,
we assess the expected gain in accuracy from dynamical QED,
incorporated into the LQCD extractions of these observables.

II. INTERACTION BETWEEN NUCLEONS AND THE
ELECTROMAGNETIC FIELD

Based on the nonrelativistic character of nucleons as con-
stituents of nuclear bound states, their interaction with external
electromagnetic fields and charged nucleons can be described
through a combination of EFT(π/) with nonrelativistic quantum
electrodynamics (NRQED) [10]. The Lagrangian of this
effective nuclear theory is expressed in terms of an isospin
doublet field N = (pn), which comprises a two-component
Pauli spinor for the proton (p) and the neutron (n), as the
most general density conceivable under the constraints of
gauge invariance, locality, hermiticity, parity conservation,
time-reversal symmetry, and Galilean invariance. To leading
order (LO) in the strong interaction and to order 1/m in the
Foldy-Wouthuysen-Tani expansion of the Dirac theory, the
effective theory, as relevant for the A-nucleon one-photon
sector, reads [6]

L = N †
{
i∂0 − eQ̂A0 + 1

2m
(∂ − ieQ̂A)2 + ĝN

e

2m
σ · B

}
N

+ cT

mℵ (NT PiN )2 + cS

mℵ (NT P̄3N )2 + d3

mℵ4
(N †)3(N )3

+ l1
e

mmπ

(NT PiN )†(NT P̄3N )Bi

+ l2
e

mmπ

iεijk(NT PiN )†(NT PjN )Bk. (1)
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Where, here, and throughout this work, neutrons and protons
are assumed to have the same (quark mass dependent) mass
m = m(mπ ). A,B are the three-dimensional electromagnetic
vector potential and magnetic fields, Q̂ = 1

2 (1 + τ3) is the
charge operator, and ĝN = gp/n(1 ± τ3) the single-particle
magnetic moment. Pi and P̄3 are projections onto two-nucleon
spin triplet and singlet states, respectively.

Three bare low-energy constants (LECs) cS,cT ,d3

parametrize the strong interaction and need to be deter-
mined by a matching procedure as well as the four LECs,
{gp,gn,l1,l2}, which couple the gauge field to the nucleon(s).
Without its kinetic terms, the radiation field is static. In
the Coulomb gauge, the equation of motion for A0 is time
independent and can be integrated to yield

A0(r,t) = e

∫
N †(r ′,t)N (r ′,t) + ρext(r ′,t)

|r − r ′| d r ′, (2)

where the total charge density in the numerator may contain
dynamical and static (ρext) parts. The former constitutes
the Coulomb interaction if substituted in the second term
of the Lagrangian. Through the static distribution ρext the
single-nucleon current is coupled to an external charge. Matrix
elements of this operator are usually parameterized by the
point-charge radius (see below). The unnatural scaling of
the interaction terms with respect to a peculiar low-energy
scale ℵ ∼ 1/as (as is the scattering length), and a break-
down scale of the order of the pion mass mπ demands a
nonperturbative treatment of the three strong LECs, while the
four magnetic couplings are perturbative.1 Of the latter, the
two-body parameters l1,l2 are suppressed by 1/mπ relative to
the one-body terms gn/p. The range of applicability of this
theory constrains the momenta of the interacting nucleons
to values below ∼mπ/2. Within this range, the Coulomb
interaction is nonperturbative for momenta �e2m/4π [11] and
requires an additional counterterm. For momenta of the order
of e2m/4π or larger, e.g., in the helion bound state [12,13],
the interaction is perturbative. The Lagrangian, subject to
these rules, defines EFT(π/) for the description of light nuclei
in the presence of an external magnetic field and Coulomb-
interacting protons. For practical few-nucleon calculations, we
translate the Lagrangian and the power counting into a nuclear
Hamiltonian Ĥnucl and an interaction Hamiltonian Ĥnucl-B

between the nucleons and the magnetic background field:

Ĥnucl = −
A∑
i

∇2
i

2m
+

A∑
i<j

V̂2b(ij ) +
A∑

i<j<k

∑
cyc

V̂3b(ijk), (3)

where V̂2b, V̂3b are the two- and three-body potentials,

V̂2b(ij ) =
[
c�
S

1

4
(1 − σ i · σ j ) + c�

T

1

4
(3 + σ i · σ j )

]
δ�(r ij )

+
[
c�
ppδ�(r ij ) + e2

rij

]
1

4
(1 + τ i,z)(1 + τ j,z) (4)

and

V̂3b(ijk) = d�
3 δ�(r ij ,r ik). (5)

1We assume e|B| � mmπ ∼ 1017 GeV2 ∼ 1018 G.

We chose delta functions to be approximated by Gaussians
with parameter �,

δ�(r ij ) = e− �2

4 r2
ij

δ�(r ij ,r ik) = e− �2

4 (r2
ij +r2

ik ). (6)

We vary � for an estimate of the renormalization-group
dependence of observables. For this estimate, no theoretical
upper bound on � exists. Due to the few-body methods, we
set a practical limit of 15 fm−1. If � is chosen too small,
important contributions to an A-body amplitude might be
cut off. Based on the estimate that the lowest A-body pole
corresponding to a binding energy BA demands intermediate
two-nucleon momenta of about

√
2mBA/A [14], we used

� � 2 fm−1 which exceeds this bound for all considered
A � 3 observables and pion masses.

The interaction between the nucleons and the magnetic field
is expressed through the magnetization density current

Ĥnucl−B = (μ(1) + μ(2)) · B, (7)

where

μ(1) =
A∑

i=1

μN

(
gp + gn

2
σ i + gp − gn

2
σ iτi,z

)
(8)

and

μ(2) =
A∑

i<j

μN

[
l�1 (σ i − σ j )(τi,z − τj,z)

+ l�2 (σ i + σ j )
]
δ�(r ij ). (9)

μN = |e|h̄/2mc is the mπ dependent, natural nuclear magne-
ton (nNM). The process of eliminating the � dependence for
a set of observables by absorbing it into the LECs is indicated
by the superscripts. Divergences from the above-mentioned
nonlocal Coulomb repulsion are renormalized by c�

pp. Like
the nucleon mass and the proton charge, the gyromagnetic
factors gp,gn of the nucleons substitute bare LECs. Projection
operators for the two- and three-nucleon channels are written
explicitly with standard SU(2) (iso)spin matrices.

To solve the two- and three-body Schödinger equation
with Ĥnucl in order to determine bound and scattering states
whose properties are used to calibrate the LECs, and whose
Ĥnucl-B matrix elements yield their leading electromagnetic
characteristics, we employ two numerical techniques: the
effective-interaction hyperspherical-harmonic (EIHH) method
[15,16], and the refined resonating-group (RGM) method [17].
Details of the numerical implementation of both methods
can be found in Ref. [18] and references therein. Besides
benchmarking the two numerical techniques, we compare their
results with an analytic two-nucleon calculation in the so-
called zero-range approximation which is identical to EFT(π/)
for an infinite regulator �.

Having defined the formal structure and the algorithms used
to solve the theory, we specify observables presumably within
its range of applicability in order to, first, calibrate the LECs,
and second, exploit their predictive power. As in Ref. [18], we
investigate three different realizations of the standard model,
and thereby the quark-mass dependence of light nuclei. First,
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we determine the LECs for the natural (mπ = 137 MeV)
case, by matching to experimental data. The strong interaction
parameter cT is tuned to the deuteron binding energy, cS to the
neutron-proton-singlet scattering length, and d3 to the triton
binding energy. The magnetic parameters are chosen to yield
the magnetic moments of the triton (l1) and the deuteron (l2).

Second, we match to lattice QCD predictions for SU(3)-
degenerate quarks with a mass corresponding to mπ =
806 MeV. At this mπ , all two-nucleon singlet states are
bound. The LEC cS is thus adapted to reproduce the np
singlet binding energy. If the magnetic field is nonzero, the
eigenstates are no longer states with well defined spin. As
long as the fields support bound states in the singlet and
triplet channels, the eigenstates will be superpositions of the
two. This was realized in Ref. [19] where the operator basis
for the extraction of the two-nucleon ground state included
sink and source interpolating fields with different total spin.
The diagonalization of the ensuing correlation matrix yielded
eigenstates with energies split by 
E 3S1, 1S0 . This splitting
can be related to the EFT �1 LEC as follows. For B = 0,
the Hamiltonian sustains two np S-wave bound states |0〉,|1〉
with total angular momentum j = 0,1 and energies Bnp,BD .
For B 	= 0, the operator μ · B couples the two channels for
mj = 0 and shifts the energy eigenvalues to

B± = 1

2

(
BD + Bnp ±

√
(BD − Bnp)2 + 4t2

01|B|2
)

× BD−Bnp�|B|≈ (BD + Bnp)

2
± t01|B|, (10)

with t01 = 〈0|μ · B̂|1〉. Using Eq. (7), the energy split is thus
parametrized with l1:


E 3S1, 1S0 = 〈0|μ · B|1〉 = |B|[(gp − gn)〈ϕ(np)|ϕ(D)〉
+ 4l1〈ϕ(np)|δ�(r)|ϕ(D)〉], (11)

with ϕ(np/D) being the radial wave functions of the sin-
glet/triplet states. The magnetic parameter l1 can thereby
alternatively be tuned to reproduce this energy split. All other
LECs are fitted to the same observables as at physical pion
mass.

For the intermediate pion mass mπ = 450 MeV, two-
nucleon LQCD binding energies constrain cS,cT . Data input
for the magnetic couplings, μD, μ 3H, and t01, is unavailable.
Assuming a linear dependence of l1,2 on mπ , we interpolate
linearly between the fitted values at physical mπ and 806 MeV
pion mass. We interpolated separately for each cutoff value,
and thereby translated an EFT uncertainty to mπ = 450 MeV.
This assumption is based on the hypothesis of the pion-mass-
independent existence of a shallow two-nucleon state. The
magnetic moment of such a state is quite accurately reproduced
in the shell-model approximation. The l1,2 corrections will then
be relatively small in units of natural nuclear magnetons.

A comment about the Coulomb interaction between protons
is in order. While the proton-proton scattering length and
the 3He binding energy are known experimentally, LQCD
calculations which consider some version of QED for the
electromagnetic interaction of the quarks are, as of now,
unattainable. In order to estimate the effect of dynamical
U(1) gauge fields, we proceed as follows. We assume that
QCD corrections to the QED fine-structure constant α are
insignificant for the accuracy of this work. What justifies
the perturbative treatment of the Coulomb force for physical
3He holds also for the bound two and three-nucleon states
containing two protons, i.e., the pp singlet, and 3He with
heavier pions. These systems should even be more amenable
to a perturbative expansion because of the larger binding
momenta associated with their binding energies (Table I). An
ansatz for the effective interaction resultant from quark QED
as a Coulomb exchange, whose iterations should be strongly
suppressed in bound states, and a counterterm to renormalize
low-energy amplitudes, seems appropriate. We expect this
“model” to shift the di-proton binding energy by the amount
an iterated Coulomb interaction with α = αphysical determines,
plus a correction from cpp to eliminate cutoff dependence. We
fixed c�

pp by enforcing the split B(np) − B(pp) = 0.5 MeV. As
this differs from a splitting induced by Coulomb by � 1 MeV
over the considered cutoff range (see discussion of Fig. 1), we
cannot discriminate the ensuing cpp from other values which
set the splitting at values which differ by ∼1 MeV. All choices
for the splitting correspond to different effective QED models,

TABLE I. Experimental and LQCD data for binding energies (MeV), magnetic moments (nNM), the two-body transition matrix element
t01 (nNM), and scattering lengths (fm).

Observable Nature [20] mπ = 137 MeV LQCD mπ = 450 MeV [21–23] LQCD mπ = 806 MeV [19,24]

m 938.9 1226(12) 1634(18)
μn −1.913 −1.908(38) −1.981(19)
μp 2.793 2.895(56) 3.119(74)
Bnp 12.5(50) 15.9(40)
a

singlet
np −23.75

app −7.806
BD 2.225 14.4(32) 19.5(48)
μD 0.857 1.22(10)
t01 5.48(20)
B 3H 8.482 53.9(107)
μ 3H 2.979 3.56(19)
B 3He 7.718
μ 3He −2.127
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FIG. 1. Cutoff dependence of the LECs cS (solid line, left y axis),
cT (dashed line, left y axis), and cpp (short-dashed line, right y axis)
for three pion masses, mπ = 137 MeV (red), mπ = 450 MeV (blue),
and mπ = 806 MeV (green).

of which we assess two: cpp to yield the 0.5 MeV splitting
and cpp = 0 to yield an insignificantly �-dependent splitting
�1 MeV.

III. RESULTS

The EFT defined above is utilized to pre/postdict elec-
tromagnetic characteristics of the proton-proton, the singlet-
neutron-proton, the deuteron, triton, and helium systems in the

form of point-charge radii, magnetic moments, and magnetic
polarizabilities. Numerical results are compiled in Table II
as obtained for the three pion masses where enough data is
available to renormalize the EFT. The uncertainties are to be
viewed as lower bounds as they are inferred solely from the �
sensitivity. For the consistency analysis discussed in Sec. III A,
we also considered the uncertainty in the input data but used
the central LEC values for subsequent calculations.

A. Low-energy constants and data consistency

The renormalization of the EFT demands regulator in-
dependence of a set of observables. With this set taken
as specified in the previous section, we obtain a cutoff
dependence of the LECs as shown in Fig. 1 for cS,cT ,cpp,
and Fig. 2 for l1,l2. The numerical values of these LECs are
presented in Appendix A. For a thorough discussion of the
behavior of cS,cT , namely, the dominating �2 dependence
and the small Wigner-SU(4)-symmetry breaking component
(overlapping solid and dashed lines in Fig. 1 for � → ∞),
we refer the reader to Ref. [18]. A different dependence of
the small correction term cpp in the proton-proton channel is
found here: an asymptotic behavior (short dashed lines, right y
axis in Fig. 1) for all three pion masses of lim�→∞ cpp ∝ �3.
This unmasks the difference of the divergence structure of the
Coulomb exchange as found in Ref. [11] relative to that of a
two-nucleon loop. The latter is absorbed into cS,cT , while cpp

is needed if the bubble is cut by a static Coulomb exchange.
A comment about previous calculations which demand cpp

is in order. Here, we find cpp to adjust cS by less than 0.1%
(compare scales in Fig. 1) over the considered cutoff range
from 2 to 15 fm−1. Despite the enhanced effect on observables,

TABLE II. EFT(π/) results (� → ∞ extrapolations) for point-proton charge radii (rch ≡ 〈r2
p〉1/2 fm), magnetic moments (nNM), and

polarizabilities (fm3). Preexisting experimental [20] or LQCD values [19] are written below EFT postdictions. Single entries represent true
EFT predictions. Uncertainties result from � variations.

mπ = 137 MeV mπ = 450 MeV mπ = 806 MeV

NN singlet rch 0.588(260) 0.458(240)
deuteron rch 1.55(24) 0.550(250) 0.416(250)

Expt. 1.97
βM 0.0733(1) 2.92(1)10−2

sum rule [25] 0.072
AV18 [26] 0.0774

EFT [27] 0.096

triton rch 1.16(23) 0.767(310) 0.460(280)
Expt. [28] 1.55

LO-EFT [29] 1.13(34)
μ 2.979 3.08(6) 3.41(3)

Exp. 2.979 LQCD 3.56(18)
βM 8.2(1)10−4 3.9(4)10−5

LQCD 2.6(18)10−4

helion rch 1.30(28) 0.793(300) 0.472(290)
Expt. 1.78

μ −2.13(1) −2.15(5) −2.17(6)
Expt. −2.127 LQCD −2.29(12)

βM 9.7(1)10−4 3.9(4)10−5

LQCD 5.4(21)10−4
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FIG. 2. Cutoff dependence of the LECs l1 (solid line), and l2
(dashed line) for three pion masses, mπ = 137 MeV (red), mπ =
450 MeV (blue), and mπ = 806 MeV (green). The values for
mπ = 137 MeV, and mπ = 806 MeV are fitted to experimental and
LQCD date respectively. The mπ = 450 MeV values are results of an
interpolation.

setting cpp = 0, as in Ref. [30], does not indicate a severe
cutoff dependence, e.g., in predictions for the 3He binding
energy or the proton-proton scattering length. This fallacy is
a consequence of the specific regularization chosen here, and
was avoided in, e.g., Ref. [31] with a different scheme, and in
Ref. [12] with the same formalism as employed in this work.
Within our scheme, we find the divergence only by splitting
the LEC in the pp channel as shown.

For the coupling of the photon to the two-nucleon vertex,
i.e., l1,l2, we observe an asymptotic behavior of lim�→∞ li ∝
�−2. This dependence can be derived analytically by un-
derstanding the limit � → ∞ as the well-known zero-range
approximation (see Appendix B). Another peculiarity at the
largest pion mass is the sign difference of l2 compared to the
physical point. This is understood from the comparison of
the deuteron’s magnetic moment to those of its constituents.
At leading order, μD = μp + μn, which is larger than the
experimental value but smaller than the lattice measurement at
mπ = 806 MeV. The next-to-leading-order (NLO) l2 term thus
either reduces or enlarges μD. To attest to the consistency of
the theory with the measured and calculated data, we compare
possible matching conditions on l1 and l2 in Fig. 3. Each band
shown in the figure defines the area of allowed l1,l2 pairs, which
are consistent with one measurement/calculation of a magnetic
moment. As μD is insensitive to the l1 term, it only constrained
l2. This constraint is shown by an horizontal band, with a
width representing the total uncertainty, where we considered
statistical and systematic errors in quadrature. At larger pion
masses, an electromagnetically induced transition between the
singlet and triplet bound states is allowed. The respective
matrix element has been calculated with LQCD, and we can
constrain the EFT with this additional input, t01, via Eq. (11).
The ∼4% uncertainty in t01 translates with Eq. (11) into a

FIG. 3. Interdependence of two-body LECs consistent with the
magnetic moments of the deuteron (green, horizontal), the triton
(blue, negative slope), 3He (red, positive slope), and the magnetic-
field contribution to the dinucleon energy splitting δE 3S1, 1S0

(purple,
vertical) at mπ = 806 MeV. The bandwidth resembles the total
lattice uncertainty in the respective observable. The black lines marks
the LEC values which yield the experimental deuteron, triton, and
3-helium magnetic moments at the physical pion mass.

relatively small uncertainty in l1 compared with its calibration
to μ 3H (compare red and blue band widths to the representative
purple line width in Fig. 3). At physical mπ , this transition
represents a breakup or fusion of a deuteron or a scattering
neutron-proton singlet, respectively, but is not used here. The
lattice predictions for μ 3H (μ 3He) constrain the LECs to a
negatively (positively) sloped band. The slope dl2/dl1 has the
same magnitude but opposite sign, dependent upon whether
μ 3H or μ 3He is used. This follows from the structure of the
l1 operator [Eq. (9)] whose isospin matrix element flips sign,
while spin and coordinate-space matrix elements are identical
at 806 MeV and almost equal at physical mπ .

Consistency between data and theory is attested in Fig. 3
by an overlap region of all four bands. The l2(l1) dependencies
shown in the figure are for extrapolations � → ∞ from the
interval 4–15 fm−1 in which the necessary matrix elements
were obtained. The EFT uncertainty is not explicit in the
graph, but it is responsible for the three physical lines not
intersecting in a point. In the mπ = 806 MeV case, we see
a similar situation considering constraints due to magnetic
moments. On the other hand, the transition matrix element t01

seems to be inconsistent with the other observables, although
still acceptable since it is within the current LQCD error bars.

B. Three nucleons at mπ = 450 MeV

First, we discuss observables at mπ = 450 MeV, where
we rely on interpolated values for l1,l2 because of insufficient
data. For predictions in the three-nucleon sector one three-body
observable is required to renormalize the EFT. No such datum
has been calculated at mπ = 450 MeV. The magnetic moment
of the triton, for example, can thus only be given as a function
of its binding energy. This dependence is shown in Fig. 4
for the two unphysical pion masses at LO and NLO. First,
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FIG. 4. The magnetic moment of the triton as a function of its
binding energy for mπ = 806 MeV [gray (� = 4 fm−1) → black
(� = 15 fm−1)] and mπ = 450 MeV (blue, � = 8 fm−1). Vertical
dashed lines mark the deuteron-neutron thresholds at BD = 19.5 MeV
and BD = 14.4 MeV, respectively. LO results with one-body-current
coupling (dotted lines) are compared with NLO values (solid lines)
which consider also the two-body-current coupling l1,l2. Asymptotic
limits are indicated with arrows, for B 3H → BD: μ 3H → 1.196 nNM
(450 MeV), μ 3H → 1.472 nNM (806 MeV); and B 3H → ∞: μ 3H →
2.70 nNM (450 MeV), μ 3H → 3.119 nNM (806 MeV).

we observe that with increasing � (light gray to black solid
line, NLO at mπ = 806 MeV; for mπ = 450 MeV and LO
results the � dependence is qualitatively the same and is
not shown in Fig. 4) μ 3H rises discontinuously from the
threshold energy BD to a constant at LO, while at NLO μ 3H
rises linearly with B 3H. In the limit of B 3H → BD, i.e., for
barely bound, very shallow states, all curves approach the
naive limit μ 3H ∼ 2/3μD − 1/3μn of a free deuteron-neutron
system with appropriate spin orientation. For B 3H � BD, LO
results converge to the shell-model/Schmidt [32] values and
thus provide a deep consistency check for the numerical
method to produce the compact triton. The deviation δμ 3H
from the Schmidt limit due to the photon coupling to the
two-nucleon contact is about 15% and vanishes only at
threshold. The critical binding energy at which δμ 3H changes
linearly with B 3H is about 2–4 MeV above threshold for the
finite �s considered here. In the zero-range limit, this critical
energy seems to converge to zero (consider the behavior at
mπ = 806 MeV and NLO in Fig. 4) which indicates the
aforementioned discontinuous transition from the free-particle
to the shell-model approximate values of μ 3H.

Assuming that 3/2BD(450) < B 3H(450) < B 3H(806), the
correlation in Fig. 4 yields the constraint

μ 3H = 3 ± 0.3 nNM at mπ = 450 MeV. (12)

A linear interpolation between B 3H’s at physical and 806 MeV
mπ suggests a central value of B 3H = 29.7 MeV.

BD = 2.22 MeV

1S0 np states

r2 p

1 2
[fm

]

Λ [fm−1]

A = 2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14

FIG. 5. Regulator dependence of the point-charge radii for the
two- (left panel) and three-nucleon (right panel) bound states at the
physical (red), 450 MeV (blue), and 806 MeV (green) pion masses.
Solid lines refer to one-proton systems, i.e., the deuteron, np, and
triton. Results for two-proton systems are shown with (dash-dotted)
and without (dashed) electrostatic repulsion between the protons. For
A = 2, the lines indicated with an arrow correspond to singlet np

state, while the lower solid lines mark the triplet deuteron.

C. Charge radii

We shall employ the theory now to analyze the spatial
distribution of nucleons within a nucleus at all three pion
masses. Canonically, this is encoded in the radial moments of
a nucleus. These moments are expansion coefficients of form
factors. We consider the coupling of a nucleus to an external
electric charge distribution which is parametrized with a charge
form factor

FC(q2) = 1 −
〈
r2
p

〉
6

q2 + · · · . (13)

In leading order, it suffices to consider the one-body, scalar
coupling via ρext [Eq. (1)], analogous to the leading contribu-
tion to the magnetic moment (see below). Two-body-current
contributions to the charge radius appear at O(Q3) as described
in Ref. [33], and thus the point-charge radius calculation for
an A-nucleon bound state with Z protons amounts to

〈
r2
p

〉 = 1

Z
〈A|

A∑
i=1

1

2
(1 + τz,i)r2

i |A〉. (14)

We obtain the bound-state wave function as a solution of
the Schrödinger equation in coordinate space with the above
defined interaction. Nucleons are assumed to be pointlike in
this approach, and hence the comparison with experiment
becomes more favorable if the datum, the charge radius 〈r2

c 〉,
is corrected by a finite proton and neutron size:2 〈r2

c 〉 =
〈r2

p〉 + R2
p + N/(A − N )R2

n.
The A = 2 case. The dependence on the Gaussian regulator

for all two-nucleon bound states at the physical and two
unphysical pion masses is given in the left panel of Fig. 5.
We find approximately the same �-convergence rate for
the radii of the deuteron and the singlet np. In turn, the

2Rp ≈ 0.841 fm and Rn ≈ −0.116 fm, respectively.
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difference between the respective values is � independent,
which reflects the variation in the binding energies, that are
cutoff independent by construction.

The np singlet states at larger pion masses are not as deeply
bound as the triplet states. Binding-energy differences of
δB450 ∼ 1.9 MeV and δB806 ∼ 3.6 MeV, respectively, result
in charge radii which are different by an amount smaller
than the EFT uncertainty.3 With no electromagnetic repulsion
between the protons, the charge radii of the proton-proton
and neutron-proton singlets are identical. Even the effect of a
Coulomb-induced splitting B(np) − B(pp) = 0.5 MeV (see
discussion of cpp calibration) is found to be insignificant; i.e.,
〈r2

c 〉 of the now shallower di-proton is still almost identical
to that of the α = 0 scenario. Based on this observation, one
would not expect LQCD predictions at 450 and 806 MeV mπ

of this observable to be affected strongly by dynamical QED.
The A = 3 case. The � dependencies of the point-charge

radii of the triton and 3He (Fig. 5) suggest again approximately
equal theoretical EFT uncertainties for all pion masses, as
inferred from the shape similarity of the respective curves.
Again, the main motivation for this analysis is to assess the
sensitivity of the observable with respect to electromagnetic
interactions between the nucleons. At mπ = 137 MeV, the
additional proton in 3He results in a significantly larger system,
even if no Coulomb interaction is included. Note the difference
to the two-nucleon case, where energetically degenerate pp
and np singlets also have the same charge radius. For three
nucleons, an identical binding energy for the triton and 3He,
8.48 MeV, does not produce the same charge radii. The effect
of the Coulomb repulsion and the cpp counterterm, which is
adjusted to the pp scattering length, is relatively small, yet
significant (dashed and dash-dotted lines). At mπ = 450 MeV,
the respective differences in the radius between the triton and
the charged and uncharged 3He are tiny. Finally, at mπ = 806
MeV, all three systems yield almost identical point-charge
radii.

The results do not identify the binding energy as the main
factor inducing the differences in this observable. This is
apparent at physical mπ , where the uncharged 3He has the
same binding energy as the triton. The latter is � independent
by construction, while the binding energy of the charged
3He nucleus is subject to a theoretical uncertainty within the
considered � range because it is the pp scattering length
(mπ = 137 MeV) or the pp binding energies (unphysical
mπ ’s) which are used to renormalize cpp. This residual �
dependence of B 3He is not reflected in the results, as we find
the shape of the corresponding dash-dotted curves in the right
panel of Fig. 5 indistinguishable from those which represent
systems with fixed binding energy.

In our analysis, we therefore identify the breaking of
the Wigner SU(4) symmetry as the main source of this
difference in the point-charge radii of 3H and 3He. For an
SU(4) symmetric triton or helion we would expect the neutron
point-charge radius to be identical to the proton point-charge
radius, and to the matter radius. The breaking of this symmetry

3A lower bound of which is given by the difference of the radii
obtained at smallest and largest �, i.e., about 0.3 fm (see Table II).

enlarges the radius of the majority species, since the 1S0

channel is less attractive then the 3S1 channel. At higher
pion masses [18] the SU(4) symmetry is restored, and as a
consequence we see the point proton charge radius difference
shrinking with increasing pion mass.

The conclusion is the same as in the two-nucleon sector:
the QED uncertainty in LQCD predictions of this observable
at large pion masses is expected to be negligible.

Comparing the A = 2 and 3 cases. A comparison of radii
in two- and three-nucleon systems supports the refutations
of a correlation between system size, as measured by the
point-charge radius, and binding energy. At mπ = 137 MeV,
this correlation would still yield the correct hierarchy with the
triton as the most deeply bound, and thus smallest, system,
followed by 3He, which is not as deeply bound and larger,
up to the largest and shallowest deuteron. In contrast, we
find all three-nucleon systems larger in size at the unphysical
pion masses relative to the np bound states, despite the
fact that the latter are more weakly bound. At mπ = 450
MeV, two- and three-nucleon systems have approximately the
same charge radius. The counterintuitive ordering of two- and
three-nucleon radii is a first indication of the peculiarity of
the NN system at mπ = 806 MeV. Below, we will comment
on the polarizability as another instance of an unexpected
response of the NN system. To conclude this section, we note
that the orderings are unaffected by the regularized Coulomb
interaction and consequently should be characteristics of the
strong interaction.

D. Magnetic moments

In Table III we present the evolution of the nuclear magnetic
moments in EFT(π/). The values of the shell-model approxi-
mation yield the magnetic moment as the sum of the single-
particle contributions with appropriate spin orientations. This
simple approximation works well, within 15% for mπ =
137 MeV and mπ = 806 MeV, for all considered nuclei.
We then consider the coupling of the LO EFT(π/) magnetic
one-body currents to a bound nucleus, as a first refinement of
the shell model. As expected, the deuteron magnetic moment is
unaffected. However, the agreement between theory and data
gets worse for the A = 3 nuclei, particularly at the physical
pion mass. To understand this result, we should return to the
discussion in Sec. III B and consider the competing pictures
of a compact A = 3 nucleus versus a shallow cluster state
composed of a neutron or proton orbiting around a deuteron.
For a compact nucleus, the single-particle picture, μ 3H = μp

and μ 3He = μn, dominates. For a clustered state, we expect
that μ 3H −→ (2/3μD − 1/3μn) as B 3H → BD, and therefore
we expect to obtain a smaller magnetic moment (this argument
applies equally to 3He). This explanation is consistent with
the difference in binding energies between the rather shallow
trimers at the physical pion mass, and the deeply bound
mπ = 806 MeV trimers.

The two-body magnetization current that appears at NLO
reconciles the theory with the available data. For the physical
case we see an agreement at the 2 permille level. This might not
be that impressive, as l1 was fitted to reproduce the 3H magnetic
moment. In contrast the A = 3 results for the mπ = 806 MeV
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TABLE III. The evolution of the magnetic moments (in nNM) of the A = 2,3 nuclei in EFT(π/) for mπ = 137 MeV and mπ = 806 MeV.
The LECs at mπ = 137 (806) MeV where calibrated using μD and μ 3H (μD and t01).

mπ = 137 MeV mπ = 806 MeV

deuteron triton helion deuteron triton helion

Shell model 0.879 2.793 −1.913 1.138 3.119 −1.981
LO 0.879 2.746 −1.862 1.138 3.118 −1.979
NLO 0.857 2.979 −2.130 1.220 3.405 −2.170
Expt./LQCD 0.857 2.979 −2.127 1.220(95) 3.56(19) −2.29(12)

case are predictions of our theory, and it can be seen that they
agree with the LQCD data within error bars.

The discrepancy between the nuclear magnetic moments
and theoretical predictions relaying on the one-body magne-
tization current, only, have a history in nuclear physics. It
was suggested, for example, that a d-wave admixture in the
nuclear wave function can resolve this discrepancy; see, e.g.,
Ref. [4]. The wave function in LO EFT(π/) of the A = 2,3
nuclei, however, has no d-wave component. Therefore, such
explanations are excluded from our theory. As we have shown,
this limitation is compensated by the two-body currents, that
reconcile the theory with the experimental/LQCD data.

E. Magnetic polarizabilities

In general, polarizabilities parametrize the second-order
response of a system to an external probe. The dominant
terms, which are quadratic in the magnetic field, are provided
in the EFT(π/) formalism by an additional insertion of the
one- and two-body magnetic-moment couplings as given in
Eq. (8) and (9). The system is thereby subjected to the
probe at different points in spacetime, and the polarizability
is then sensitive to its deformation. In coordinate-space
Schrödinger-equation practice, the calculation is analogous
to a second-order perturbation of the energy; see Appendix C.
Again, the zero-range approximation in the two-nucleon case
allows for an analytic derivation of the cutoff dependence of
this quantity. This estimate was made in [34], and yields a
cutoff-independent polarizability of the deuteron.

The results for the magnetic polarizability of the deuteron
βD, triton β 3H, and helium β 3He are listed in Table II. In Figs. 6

0 2 4 6 8 10
Λ [fm−1]

0.7

0.8

0.9

1.0

β M
[1
0−
3
fm
3 ]

FIG. 6. Regulator dependence of the magnetic polarizability EFT
calculations for 3He and triton mπ = 137 MeV.

and 7, we compare the regulator dependence of the polarization
for the two A = 3 mirror nuclei: 3He and triton at mπ = 137
MeV and mπ = 806 MeV. The functional dependence for
interpolating the data points was chosen as a1 + a2/�

2, where
a1 and a2 are two constants employed to fit the data. The
numerical accuracy, indicated by error bars in the figures, was
used as a measure of the importance of the different data points
in the fit.

At mπ = 137 MeV, our postdictions for βD are consistent
with previous theoretical analyses and extractions based on
cross-section data (see Table II). The absolute value of βD

is two orders of magnitude larger than the single-nucleon
polarizabilities and justifies, in part, why we call the deuteron
a shallow nucleus. Our predictions4 for β 3H and β 3He signify
relatively compact, rigid three-nucleon bound states because
they are of the same order of magnitude as βn/p.

At mπ = 806 MeV, all polarizabilities—neutron/proton,
deuteron (with jz = ±1), and the three-nucleon states—are
found by LQCD to be of the same order of magnitude. In
particular, this entails a deuteron, which is by that measure
as rigid and compact as the one- and three-nucleon states.
This rigidity is consistent with the relatively large deuteron
binding energy at mπ = 806 MeV. The EFT postdictions, in
turn, suggest a different response. For jz = ±1 we get βD ≈ 0,
but for jz = 0 we find βD to be two orders of magnitude
larger than βp/n and therefore relatively pliant, as at mπ =
137 MeV. Furthermore, we postdict β 3H and β 3He to be an order
of magnitude smaller than the LQCD predictions. Even the
relatively large numerical uncertainty (see β 3H at � = 8 fm−1

in Fig. 7) cannot account for this difference.
If we interpret the lattice results such that the polarizabilities

of composite nuclei are dominated by the rigidity of the
constituents and almost independent of binding effects, the
discrepancy seems logical because the EFT considers nucleons
as pointlike objects. Hence, the EFT description ignores
their shape distortion in the external field and reflects only
the effect on the relative positions of the constituents. The
heuristic picture, suggested by the lattice calculations, of
nuclei composed of very pliant nucleons refutes the intuitive
caricature of a dense package of rigid spheres, and represents
a challenge for the EFT description.

4To our knowledge, these numbers are first-time predictions and
thus cannot be compared with others.
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FIG. 7. Regulator dependence of the magnetic polarizability EFT
calculations for 3He and triton mπ = 806 MeV.

IV. SUMMARY

We have analyzed the pion-mass dependence of magnetic
moments, charge radii, and polarizabilities of the deuteron,
triton, and helion as characteristics of nuclei in external
electromagnetic fields. The observables were calculated model
independently according to the pionless-effective-field-theory
formalism as developed for physical few-nucleon systems.
For unphysical pion masses, calculations were based on a
previously applied match of this theory to lattice QCD data.
The robustness of the results with respect to different models to
account for the electromagnetic interaction within two-proton
systems was assessed.

Results which pertain to physical nuclei are consistent with
data and previous calculations. The polarizabilities of the triton
and helion are included as predictions awaiting experimental
verification.

For the analysis of lattice data at mπ = 450 MeV, we
calculated the dependence of the triton’s magnetic moment
on its binding energy. This dependence is found to approach
the shell-model limit at large binding energies and to decrease
linearly up to a discontinuity at the deuteron-neutron threshold.
The relatively small slope of the linear dependence leads to a
prediction of the magnetic moment of the triton and helion. A
conjectured triton binding energy based on this prediction is
found consistent with a linear dependence of this energy on
the pion mass.

Charge radii and magnetic moments of two-proton nuclei
are found to be insensitive with respect to different models for
the electromagnetic interaction between constituent protons
relative to the accuracy which is expected from a NLO EFT
analysis. Nuclei at larger pion masses are found to be more
robust in the two scenarios we used to estimate the effect of
dynamical QED.

In terms of the magnetic polarizability, we found the
deuteron to be much more pliable relative to the one- and
three-nucleon QCD calculations, and of the same order of
magnitude as the physical deuteron.
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APPENDIX A: THE LOW ENERGY CONSTANTS

In Table IV we list the LECs used in our calculations.

TABLE IV. The LECs c�
S,T ,pp, d�

3 (GeV) and l�1,2 (n.d.) for physical (mπ = 140 MeV) and lattice (mπ = 450, 806 MeV) nuclei for various
values of the momentum cutoff � (fm−1).

mπ � c�
T c�

S d�
3 c�

pp l1 l2

140 2 − 0.1423 − 0.1063 0.06849 − 0.0008303 2.530 − 0.4652
4 − 0.5051 − 0.4350 0.6778 − 0.007646 0.7349 − 0.1086
6 − 1.091 − 0.9863 2.653 − 0.01685 0.3588 − 0.04717
8 − 1.899 − 1.760 7.816 − 0.02750 0.2125 − 0.02617

10 − 2.929 − 2.757 20.48 − 0.03917 0.1403 − 0.01660
12 − 4.182 − 3.976 50.94 − 0.05202 0.09932 − 0.01152
15 − 6.480 − 6.222 195.6 − 0.07200 0.06470 − 0.007324

450 2 − 0.1637 − 0.1574 0.1580 − 0.003267 2.023 0.0288
4 − 0.4837 − 0.4730 0.8374 − 0.009155 0.556 − 0.00168
6 − 0.9741 − 0.9591 2.711 − 0.01653 0.269 − 0.00207
8 − 1.635 − 1.616 7.182 − 0.02494 0.160 − 0.00150

10 − 2.466 − 2.443 17.33 − 0.03422 0.106 − 0.00107
12 − 3.468 − 3.440 40.04 − 0.04421 0.075 − 0.000843
15 − 5.291 − 5.256 137.0 − 0.06032 0.049 − 0.000579

806 2 − 0.1480 − 0.1382 0.07102 − 0.002125 1.476 0.5907
4 − 0.4046 − 0.3885 0.3539 − 0.006886 0.3017 0.1199
6 − 0.7892 − 0.7668 1.001 − 0.01298 0.1242 0.0492
8 − 1.302 − 1.273 2.221 − 0.02007 0.06710 0.02656

10 − 1.942 − 1.907 4.308 − 0.02814 0.04194 0.01660
12 − 2.710 − 2.670 7.712 − 0.03676 0.02860 0.01130
15 − 4.103 − 4.052 16.84 − 0.05077 0.01805 0.007092
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APPENDIX B: MAGNETIC MOMENTS IN THE
ZERO-RANGE LIMIT

The analysis of the two-nucleon system based on an
interaction constrained by a single datum, namely the deuteron
binding energy, was instigated almost a century ago in
Ref. [35]. What later became known as the zero-range
approximation can be used here to derive analytically the
dependence of the two-body-current LECs l1,l2 as introduced
in Eqs. (1) and (9).

The bound-state solution of the Schrödinger equation in an
area of vanishing potential reads

〈r|BS〉 = AS√
4π

e−κr

r
, (B1)

where As is the wave function normalization and κ = √
mB is

set by the deuteron’s (dineuteron’s) binding energy BD (Bnn).
The contribution of the one-body current as parametrized

in Eq. (8) is evaluated to be

〈BS|μ(1)|BS〉 = A2
S

2κ
μN (gp + gn). (B2)

Similarly, the two-body current regularized with a Gaussian,
Eq. (9), yields the following result for the spin-triplet state:

〈BS|μ(2)|BS〉 = As
2μNl2�

2. (B3)

Cutoff independence implies l2 ∝ �−2. This regulator depen-
dence was found above (see discussion of Fig. 1) numerically.
We can coepmpare these expressions with the EFT(π/) cal-
culation of [6] where the authors used a power-divergence-
subtraction method introducing a dimensional regularization
scale μ,

μD = μN (gp + gn) + l̃2
√

mBD(μ −
√

mBD)2. (B4)

These results coincide in the zero-range limit where in
which the asymptotic wave function is normalized to 1, and
A2

S → 2
√

mBD . The μ dependence of the NLO LEC can be
determined for arbitrary values of μ but will coincide with the
� dependence for μ � mπ .

APPENDIX C: MAGNETIC POLARIZABILITIES

The calculation of polarizabilities as parametrizations of the
second-order response of a nucleus (spin-quantum numbers
j0,m0) to perturbation given by its coupling to an external
magnetic field is explained here. Specifically, the twice-
iterated coupling of the photon to the nucleus shifts its energy
by an excitation of intermediate states n:


E(2) =
∑∫

n

〈j0m0|μ · B|jnmn〉〈jnmn|μ · B|j0m0〉
En − E0

≡ 1

2

∑
λν

(−)νβ(λ)
ν B(λ)

ν . (C1)

Thereby, the spherical components of the polarizability

β(λ)
ν = 2

3

∑∫
n

|〈j0||μ||jn〉|2
En − E0

×
∑

q

(−)q〈j0m0jnmn|1q〉2〈1q1 − q|λν〉, (C2)

and the quadratic field tensor

B(λ)
ν = (−)ν

∑
pq

〈1p1q|λν〉BpBq (C3)

are defined. For B = Bez, the expression of the shift in terms
of scalar and tensor polarizability is


E(2) =
(

− 1

2
√

3
β

(0)
0 + 1√

6
β

(2)
0

)
B2 (C4)

with

β
(0)
0 = −2

3

√
3

2j0 + 1

∑∫
n

|〈j0||μ||jn〉|2
En − E0

,

β
(2)
0 = −12

√
5

m2
0 − 1

3j0(j0 + 1)√
(2j0 + 3)(2j0 + 2) · · · (2j0 − 1)

×
∑∫

n

|〈j0||μ||jn〉|2
En − E0

W(jnj012; 1j0). (C5)

Weighted with Racah’s W coefficient, we combine matrix
elements for the allowed transition, where care has to be taken
to include the additional jn = 0 bound states at the unphysical
mπ . The definition of scalar and tensor polarizabilities is then
identical to that used in Ref. [19].
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