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Effects of particle-hole excitations to nuclear Schiff moments in Xe isotopes
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The existence of the permanent electric dipole moment of a fundamental particle implies violation of time
reversal invariance. The electric dipole moment of a diamagnetic neutral atom is mainly induced by the nuclear
Schiff moment. In this study the Schiff moments induced by the interaction which violates parity and time reversal
invariance are calculated for various Xe isotopes using the shell-model wave functions. The contributions to the
Schiff moment from one-particle and one-hole excitations turn out to be very different from orbital to orbital. It
is also found that the contributions from the core excitations are larger than other particle-hole contributions.
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I. INTRODUCTION

The electric dipole moment (EDM) is a physical observable
which violates time reversal symmetry. Through the CPT
theorem stating that the simultaneous application of charge
(C), parity (P ), and time (T ) reversal operators keeps the
total symmetry of a system, violation of T reversal symmetry
is equivalent to the violation of CP reversal symmetry. The
Standard Model in particle physics violates CP invariance
only through a single phase in the Kobayashi-Maskawa matrix
that mixes quark flavors [1]. The resulting T reversal violation
is therefore expected to produce only tiny EDMs.

At present the upper limit on the neutron EDM is experi-
mentally 2.9 × 10−26e cm [2]. However, the Standard Model
predicts quite a small value, 10−32e cm [3–5]. Some theories
beyond the Standard Model predict larger EDMs [5–8]. Thus
if an EDM is observed experimentally to be larger than those
predicted by the Standard Model, it would provide evidence for
physics beyond the Standard Model, and also places important
constraints on the construction of a new physics.

EDMs originating from CP violation in the hadron sector
are searched for in neutron and diamagnetic atoms such
as 129Xe, 199Hg, and 225Ra. Measurements of EDMs for
these atoms have been attempted and their upper limits are
4.1 × 10−27e cm for 129Xe [9], 7.4 × 10−30e cm for 199Hg
[10], and 5.0 × 10−22e cm for 225Ra [11]. At present with
new techniques, experimental efforts searching for EDMs of
diamagnetic atoms are now in progress [12–15]. Hadronic
CP violation may also be searched for in ions [16]. It
was theoretically reported that the nuclear EDM would be
measured directly by using an ion instead of a neutral
atom [17,18]. The EDM of 6Li ion was calculated assuming
the one-meson exchange P and T violating nuclear forces
recently [19].

The EDM of a neutral diamagnetic atom arises from the
Schiff moment of the nucleus. The nuclear Schiff moment
originates mainly from two different sources; from nucleon
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intrinsic EDMs, and from the two-body nuclear interaction
which violates P and T invariance. In the latter case theoretical
calculations have been carried out for Hg, Rn, and Ra isotopes
using mean field theories [20–25]. However, until recently not
so many nuclei have been investigated theoretically.

In our previous study [26], the EDMs and Schiff moments
of Xe, Ba, and Ce isotopes arising from the nucleon intrinsic
EDMs were calculated in terms of the nuclear shell model. The
EDMs and Schiff moments of Xe isotopes which come from
interactions violating P and T invariance were also calculated
[27,28].

In the present paper the Schiff moments of the lowest 1/2+
states for 135Xe, 133Xe, 131Xe, and 129Xe nuclei are calculated
assuming two-body interactions violating P and T invariance.
Particularly effects of the particle-hole excitations from the
core of the nucleus are considered, which were not considered
in our previous study [27]. Furthermore, contributions to the
Schiff moment from one orbital to another is individually
calculated and analyzed.

The paper is organized as follows. In Sec. II, the framework
of the nuclear Schiff moments and the method of calculations
are presented. In Sec. III numerical results are given for
the Schiff moments. In Sec. IV the detailed discussion is
performed. Finally the results are summarized in Sec. V.

II. THEORETICAL FRAMEWORK

The Schiff moment operator S coming from the asymmetric
charge distribution in a nucleus [29] is expressed in terms of
spherical tensors
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where C(L)
μ represents the unnormalized spherical harmonics

with rank L and its projection μ, and i represents the ith
nucleon. Here A is the mass number of a specific nucleus,
and r i = (ri,θi,ϕi) indicates ith nucleon position. In this
study the Schiff moments are calculated for the lowest states
with spin I = 1/2. The third term in Eq. (1) vanishes for
these states since there is no quadrupole moment for I = 1/2
states. Here ei is the charge for the ith nucleon. ei = e is
taken for a proton and ei = 0 is assumed for a neutron.
The 〈r2〉ch is the mean squared radius of the nuclear charge
distribution [27].

By perturbation theory, the expectation value of the Schiff
moment operator is expressed as

S =
∑

T =0,1,2

S(T ), (4)

S(T ) =
∑

k

〈I+
1 |S(1)

0 |I−
k 〉〈I−

k |V PT
π(T )|I+

1 〉
E+

1 − 〈I−
k |H0|I−

k 〉 + c.c., (5)

where V PT
π(T ) represents the isoscalar (T = 0), isovector (T =

1), or isotensor (T = 2) interactions between nucleons. Here,
|I+

1 〉 and E+
1 represent the wave function and the eigenenergy

of the lowest state with spin I and positive parity for
the Hamiltonian H0, respectively. |I−

k 〉 represents the kth
intermediate state with spin I and negative parity. Note that
this expression is valid as long as |I−

k 〉 forms an orthonormal
complete system and each state |I−

k 〉 is not necessary to be the
eigenstate of the Hamiltonian H0. The details of this equation
are given in Appendix A. In the present study, only I = 1/2
states are considered. All these states have their projection
(spin third component) +1/2.

The lowest positive parity state, |I+
1 〉, is calculated using

the pair-truncated shell model (PTSM) [33–35]. The PTSM is
one of the shell-model approaches, but a gigantic shell model
space is restricted to the space mainly made of only low-
spin collective pairs. For single particle energies, five orbitals
between magic numbers 50 and 82 (0g7/2, 1d3/2, 1d5/2, 2s1/2,
and 0h11/2) are taken for neutrons and protons. The details of
the framework and Hamiltonian for diagonalization are given
in Ref. [35].

In this paper the P and T violating two-body interactions
V PT

π(T ) in Eq. (5) are considered as follows, which are explicitly
written as [30–32]:

V PT
π(0) = F0(τ 1 · τ 2)(σ 1 − σ 2) · rf (r), (6)

V PT
π(1) = F1[(τ1z + τ2z)(σ 1 − σ 2)

+ (τ1z − τ2z)(σ 1 + σ 2)] · rf (r), (7)

V PT
π(2) = F2(3τ1zτ2z − τ 1 · τ 2)(σ 1 − σ 2) · rf (r), (8)

where

f (r) = exp(−mπr)

mπr2

(
1 + 1

mπr

)
(9)

with r = r1 − r2, and r = |r|. The coefficients FT (T =
0,1,2) are expressed as

F0 = − 1

8π

m2
π

MN

ḡ
(0)
πNNgπNN, (10)

F1 = − 1

16π

m2
π

MN

ḡ
(1)
πNNgπNN, (11)

F2 = − 1

8π

m2
π

MN

ḡ
(2)
πNNgπNN, (12)

where MN is mass of a nucleon, mπ is mass of a pion, and
gπNN is the strong πNN coupling constant, and ḡ

(T )
πNN is the

strong πNN constant which violates P and T invariance with
isospin T . In the following ḡ

(T )
πNN and gπNN are denoted as ḡ(T )

and g for short, respectively.
The total Schiff moment is the summation of three isospin

components. In this study, Schiff moments are evaluated as
coefficients in front of ḡ(T )g,

S = a(0)ḡ
(0)g + a(1)ḡ

(1)g + a(2)ḡ
(2)g. (13)

Any intermediate state |I−
k 〉 in Eq. (5) is represented as a

one-particle and one-hole excited state (1p1h-state) from the
|I+

1 〉 state. Since the Schiff moment operator is a one-body
operator working only on protons, it is enough to consider
proton excited 1p1h states. To evaluate the Schiff moment in
Eq. (5), kth intermediate 1p1h state is given as∣∣I−

k 〉 = |(ij )K; I−〉 = N
(K)
ij [[c†iπ c̃jπ ](K) ⊗ |I+

1 〉](I ), (14)

where c
†
iπ (cjπ ) represents the proton creation (annihilation)

operator in the orbital i (j ), with c̃jm = (−1)j−mcj−m. Namely,
a 1p1h state with spin K , in which one proton excites from
orbital j to orbital i by the Schiff moment operator, is coupled
with the lowest state |I+

1 〉 to form an excited state |I−
k 〉. N (K)

ij is
a normalization constant determined as 〈I−

k |I−
k 〉 = 1. Here K

can take 1 or 0 for I = 1/2. The details of the orthogonalization
method are given in Appendix C.

By neglecting the residual interaction, the energy
denominator in Eq. (5) is approximately treated as
E+

1 − 〈I−
k |H0|I−

k 〉 ∼ (−Eij ), where Eij ≡ εi − εj represents
the single particle-hole excitation energies from orbital j to i.
Then Eq. (5) is written as

S(T ) = −
∑
Kij

〈I+
1 |S(1)

0 |I−
k 〉〈I−

k |V PT
π(T )|I+

1 〉
Eij

+ c.c. (15)

The details of this approximation are explained in
Appendix B and the validity of this approximation is discussed
in Sec. IV.

To calculate Eq. (15), three types of 1p1h excitations are
considered. The first type is a set of excitations from an orbital
between 50 and 82 to an orbital over 82. These excitations are
called type-I excitations. The second type is a set of excitations
from an orbital under 50 to an orbital between 50 and 82.
These excitations are called type-II excitations. The third type
is a set of excitations from an orbital under 50 to an orbital
over 82. These excitations are called type-III excitations. Note
that excitations among orbitals between 50 and 82 have no
contributions since these orbitals are not connected by the
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FIG. 1. The schematic illustration of three types of 1p1h excita-
tions considered in this study.

Schiff moment operator. The schematic picture representing
three types of 1p1h excitations is shown in Fig. 1.

For the type-I excitation, an intermediate state is explicitly
written as

|I−
k 〉type-I = N

(K)
ph [[a†

pπ c̃hπ ](K) ⊗ |I+
1 〉](I ). (16)

Here a
†
pπ represents the proton creation operator in the orbital

p, where p indicates an orbital over 82. c̃hπ represents the
proton annihilation operator in the orbital h, where h indicates
an orbital between 50 and 82. For the type-II excitation, an
intermediate state is written as

|I−
k 〉type-II = N

(K)
ph [[c†pπ b̃hπ ](K) ⊗ |I+

1 〉](I ). (17)

Here, c
†
pπ represents the proton creation operator in an orbital

p, where p indicates an orbital between 50 and 82. b̃hπ

represents the proton annihilation operator in the orbital
h, where h indicates an orbital under 50. For the type-III
excitation, an intermediate state is written as

|I−
k 〉type-III = N

(K)
ph [[a†

pπ b̃hπ ](K) ⊗ |I+
1 〉](I ). (18)

In this study, all orbitals under the magic number 50 are
considered for core orbitals. However, 0d3/2, 1s1/2, and 0s1/2

orbitals are not connected by the Schiff moment operator.
For orbitals over the magic number 82, all orbitals up to the
primary quantum number N = 8h̄ω from the bottom are con-
sidered. However, 2d5/2, 0j15/2, 0j13/2, 1h11/2, 0k15/2, 0k17/2,
2g7/2, 3d3/2, 3d5/2, and 4s1/2 orbitals are also not connected
by the Schiff moment operator. Orbitals over 8 h̄ω have
no contributions to the Schiff moment. This is because
the Schiff moment operator in Eq. (1) is constructed from
the 〈r2

i ri〉 and 〈r2
i 〉〈ri〉, and the following constraints are

imposed: |�n| � 3, |�	| = 1,3, and |�j | � 1, where n, 	,
and j indicate the radial oscillator quantum number, the orbital
angular momentum, and the total spin angular momentum,
respectively.

The energy of each single particle orbital is taken from the
Nilsson energy [36] as

εn	j = (
2n + 	 + 3

2

)
h̄ω − κ(2� · s + μ(�2 − 〈�2〉N ))h̄ω

(19)

with κ = 0.0637 and μ = 0.60, where 〈�2〉N = 1
2N (N + 3)

and h̄ω = 41A−1/3 MeV. The schematic figure representing
the single particle orbitals considered in this study for 129Xe
is shown in Fig. 2.
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FIG. 2. The proton-single-particle energy for each orbital taken
for 129Xe in units of MeV. The energy of the 0g7/2 orbital is adjusted
to be zero. Orbitals which are not connected by the Schiff moment
operator are not shown.

III. NUMERICAL RESULTS

To analyze the contribution to the Schiff moments from each
orbital, firstly a partial contribution of the excitation from any
orbital (h) between 50 and 82 to a specific orbital (p) over 82
(type-I excitations) is defined as

s
type-I
(T ) (p) = −

∑
Kh

〈I+
1 |S(1)

0 |I−
k 〉〈I−

k |V PT
π(T )|I+

1 〉
Eph

+ c.c.,

(20)

which is rewritten in terms of ḡ(T )g as

s
type-I
(T ) (p) = a

type-I
(T ) (p)ḡ(T )g, (21)

where and a
type-I
(T ) (p)’s are coefficients so determined in

evaluating the partial Schiff moment s
type-I
(T ) (p).

Secondly, a partial contribution of the excitation to any
orbital (p) between 50 and 82 from a specific orbital (h) under
50 (type-II excitations) is defined as

s
type-II
(T ) (h) = −

∑
Kp

〈I+
1 |S(1)

0 |I−
k 〉〈I−

k |V PT
π(T )|I+

1 〉
Eph

+ c.c.,

(22)

which is rewritten in terms of ḡ(T )g as

s
type-II
(T ) (h) = a

type-II
(T ) (h)ḡ(T )g. (23)
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TABLE I. Calculated results of a
type-I
(T ) (p) from each orbital p in

the shell over 82 (type-I excitations) for 129Xe (in units of 10−3 efm3).

T 1f7/2 0h9/2 0i13/2 2p3/2

0 +0.107 +0.265 −0.007 +0.079
1 +0.047 +0.107 −0.005 +0.049
2 +0.176 +0.380 −0.025 +0.214

T 1f5/2 1p1/2 1g9/2 0i11/2

0 +0.385 +0.055 +0.018 +0.001
1 +0.153 +0.020 +0.008 +0.000
2 +0.531 +0.063 +0.027 +0.000

T 1h9/2 2f5/2 2f7/2 3p1/2

0 +0.406 −0.062 +0.076 −0.013
1 +0.184 −0.025 +0.050 −0.001
2 +0.699 −0.089 +0.222 +0.007

T 3p3/2 1i11/2 1i13/2 2g9/2

0 +0.002 +0.000 +0.010 −0.001
1 −0.007 +0.000 +0.007 −0.000
2 −0.045 +0.000 +0.032 −0.001

Finally, a partial contribution of the excitation from a
specific orbital (h) under 50 to any orbital (p) over 82 (type-III
excitations) is also defined as

s
type-III
(T ) (h) =−

∑
Kp

〈I+
1 |S(1)

0 |I−
k 〉〈I−

k |V PT
π(T )|I+

1 〉
Eph

+ c.c., (24)

which is rewritten in terms of ḡ(T )g as

s
type-III
(T ) (h) = a

type-III
(T ) (h)ḡ(T )g, (25)

Table I shows calculated a
type-I
(T ) (p) for 129Xe. The

contributions from the 1f7/2, 0h9/2, 1f5/2, and 1h9/2 orbitals
are large since those orbitals in the 50–82 major shell mostly
contribute positively. Table II shows calculated a

type-II
(T ) (h) for

129Xe. The contribution from the 0g9/2 orbital becomes the
largest. The 0g9/2 orbital is connected to the 0h11/2 orbital by
the Schiff moment operator. The orbitals which demand large
1p1h-excitation energies (like 0p3/2 and 0p1/2 orbitals) also
have considerable contributions. Table III shows calculated

TABLE II. Calculated results of a
type-II
(T ) (h) from each orbital h

in the shell under 50 (type-II excitations) for 129Xe (in units of
10−3 efm3).

T 0g9/2 1p1/2 0f5/2 1p3/2

0 −3.642 +0.621 +1.964 +1.443
1 −2.022 +0.511 +0.867 +0.502
2 −8.488 +2.444 +3.239 +1.568

T 0f7/2 0p1/2 0p3/2

0 +0.883 +0.648 +0.982
2 +0.473 +0.273 +0.536
3 +1.953 +0.988 +2.236

TABLE III. Calculated results of a
type-III
(T ) (h) from each orbital h

in the shell under 50 (type-III excitations) for 129Xe (in units of
10−3 efm3).

T 0g9/2 1p1/2 0f5/2 1p3/2

0 −0.090 −0.134 −0.008 −0.336
1 +0.007 +0.060 −0.028 −0.146
2 +0.134 +0.491 −0.015 −0.537

T 0f7/2 0d3/2 1s1/2 0d5/2

0 −0.029 +0.055 −0.416 −0.036
1 −0.018 +0.020 −0.389 −0.028
2 −0.076 +0.064 −1.918 −0.133

a
type-III
(T ) (h) for 129Xe. These contributions are not so large

compared to results in Table II.
Table IV shows the calculated results of a(T ) for the lowest

I = 1/2 states of Xe isotopes. Here, using Eqs. (21), (23), and
(25), a(T ) is given by

a(T ) = a
type-I
(T ) + a

type-II
(T ) + a

type-III
(T ) (26)

with

a
type-I
(T ) =

∑
p

a
type-I
(T ) (p), (27)

a
type-II
(T ) =

∑
h

a
type-II
(T ) (h), (28)

a
type-III
(T ) =

∑
h

a
type-III
(T ) (h). (29)

The contributions of the core excitations are a few times larger
than those from the over-shell excitations for most of the
isospin components. The isotensor (T = 2) components are
largest for all nuclei. The previous results [27] are also shown
in Table IV. By comparing the present results with the previous
ones, some contributions of Schiff moments are found to be
nearly one order of magnitude larger than the previous ones
(for examples, isotensor components of 135Xe and 133Xe). The

TABLE IV. Calculated results of a(T ) for the lowest 1/2+ states (in
units of 10−3 efm3). Previous results (aprev

(T ) ) are taken from Ref. [27].

T a
type-I
(T ) a

type-II
(T ) a

type-III
(T ) a(T ) a

prev
(T )

0 +2.357 +0.670 −1.057 +1.969 +0.630
135Xe 1 +1.297 +1.693 −0.602 +2.389 +0.323

2 +5.427 +9.490 −2.554 +12.363 +1.31

0 +1.812 +1.716 −1.047 +2.481 +0.464
133Xe 1 +0.949 +1.510 −0.578 +1.882 +0.285

2 +3.982 +7.343 −2.419 +8.906 +1.24

0 +1.575 +2.097 −0.968 +2.704 +0.514
131Xe 1 +0.787 +1.282 −0.530 +1.539 +0.352

2 +3.145 +5.596 −2.177 +6.564 +1.60

0 +1.322 +2.897 −0.978 +3.242 +0.507
129Xe 1 +0.586 +1.140 −0.522 +1.204 +0.399

2 +2.192 +3.940 −1.961 +4.172 +1.89
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FIG. 3. The calculated results of a(T ) for (a) T = 0, (b) T = 1,
and (c) T = 2 as functions of mass number A for Xe isotopes (in units
of 10−3 efm3). The squares, diamonds, triangles, and circles represent
a

type-I
(T ) , a

type-II
(T ) , a

type-II
(T ) , and a(T ), respectively.

isoscalar component for 129Xe becomes 6.4 times larger than
the previous one. The reason for this difference between the
present and previous results is discussed in Sec. IV.

The present results for Xe isotopes are summarized in Fig. 3.
The calculated results of a(T ) are shown for each isospin as
functions of mass number A. Each a(T ) smoothly decreases
from 129Xe to 135Xe for the isoscalar (T = 0) component while
it smoothly increases for the isovector (T = 1) and isotensor
(T = 2) components.

IV. DISCUSSIONS

A. Comparison with other results

The present results, our previous results [27] and results by
Dmitriev et al. [25] are compared for 129Xe in Table V. The dif-
ference between the present study and the previous one is due
to improvement of the model space adopted in the calculation.

In the previous study the model space for diagonalization
was two major shells between the magic numbers 50 and 126.
The Schiff moment was exactly calculated within this model
space, but only four orbitals (1f7/2, 2p3/2, 1f5/2, and 2p1/2)
for type-I 1p1h excitations were assumed without considering
type-II and type-III excitations.

In the present study the model space is limited only to
the one major shell between the magic numbers 50 and 82.
However, evaluation of the Schiff moment is carried out by

TABLE V. The comparison of a(T )’s for 129Xe between present
results (This work), the results by Dmitriev et al. [25], and our
previous results [27] in units of 10−3 efm3. The isotensor (T = 2)
component in [25] is changed from its original sign in accordance
with the different sign definition of the isotensor (T = 2) interaction
in the present study.

T This work Ref. [25] Ref. [27]

0 +3.242 +8 +0.507
1 +1.204 +6 +0.399
2 +4.172 +9 +1.89

taking all the 1p1h excitations not only to all the orbitals
over 82, but also from all the orbitals under 50. Following
the present framework, the Schiff moment is again evaluated
using only the same orbitals and the same single-particle
energies adopted in the previous study. Then S = 0.84ḡ(0)g +
0.36ḡ(1)g + 1.32ḡ(2)g (in units of 10−3 efm3) is obtained,
which is reasonable compared with the previous result.

The Schiff moment of 129Xe was also calculated by
Dmitriev et al. [25]. They estimated the Schiff moment
assuming that 129Xe consists of the even-even core and one odd
neutron. They calculated the Schiff moment and predicted the
Schiff moment of 129Xe with core polarization as S = 8ḡ(0)g +
6ḡ(1)g − 9ḡ(2)g (in units of 10−3 efm3), which more or less re-
sembles our results. Note that our definition of the isotensor in-
teraction in Eq. (8) is different in its sign from that of Ref. [25].

B. Strength functions for the Schiff moment operator

To investigate each 1p1h contribution to the Schiff moment,
the strength function for the Schiff moment operator defined
by

sph(Eph) =
∑
K

〈
I+

1

∣∣S(1)
0

∣∣(ph)K; I−〉
(30)

and the strength function for the V PT
π(T ) operator defined by

vPT
ph(T )(Eph) =

∑
K

〈
(ph)K; I−∣∣V PT

π(T )

∣∣I+
1

〉
(31)

are both calculated and shown in Fig. 4 as a function of the
energy denominator Eph for the isoscalar (T = 0) components
of 129Xe. Here, partial contributions to the Schiff moment are
also shown in Fig. 4, which is defined as

Sph(T )(Eph)

= −
∑
K

〈
I+

1

∣∣S(1)
0

∣∣(ph)K; I−〉〈
(ph)K; I−∣∣V PT

π(T )

∣∣I+
1

〉
Eph

+ c.c.

(32)

The Schiff moment strengths are large both in regions be-
tween 5 ∼ 15 MeV and between 25 ∼ 35 MeV [see Fig. 4(a)].
In contrast, the V PT

π(T ) strength has several large contributions in
the region between 5 ∼ 15 MeV, but not so large contributions
above 25 MeV [see Fig. 4(b)]. As seen in Fig. 4(c), initially
the sign of the Schiff moment is negative due to the first
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FIG. 4. (a) The strength functions of Schiff moment operator
as a function of the energy denominator Eph for isoscalar (T = 0)
contributions of 129Xe. (b) The same as in (b), but for V PT

π (T ) operator.
(c) The same as in (a), but for partial contribution to the Schiff
moment. The summation of partial contributions to the Schiff moment
is also shown.

large negative contributions at around 6 MeV. However, most
of partial contributions to the Schiff moment after the large
negative contribution are positive. Then the value of the Schiff
moment gradually goes up to zero and finally the sign of
the Schiff moment becomes positive. The value of the total
Schiff moment is mostly determined by the energy of 15 MeV
and there are only limited contributions above 25 MeV. It
is noted that the energy difference of 15 ∼ 25 MeV exactly
corresponds to the energy gap of 2 h̄ω and these states in the
gap are not connected by the Schiff moment operator from
the |I+

1 〉.
In order to check the sum rule for the Schiff mo-

ment operator, we define the following energy-weighted
function:

ssum(Eph) ≡
Eph∑

E=E0

E|Sph(E)|2, (33)
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FIG. 5. (a) Energy weighted sum function for the Schiff moment
operator as a function of the energy denominator Eph for 129Xe. (b)
The same as in (a), but for V PT

π (T ) operator with the isoscalar (T = 0)
component.

where E0 is the ground-state energy. Then the Thomas-Reiche-
Kuhn (TRK) sum SEW [40–42] becomes

SEW = lim
Eph→∞

ssum(Eph)

= 1
2

〈
I+

1

∣∣[[S(1)
0 ,H0

]
,S

(1)
0

]∣∣I+
1

〉
. (34)

Recently the right-hand side of Eq. (34) is evaluated using
the random phase approximation (RPA) formalism [43] in the
atomic systems.

We also define a similar energy-weighted function for the
PT -violating potential,

V PT
sum(0)(Eph) ≡

Eph∑
E=E0

E|vph(0)(E)|2, (35)

where the subscript 0 indicates the isoscalar potential with
T = 0. These functions are shown in Fig. 5. The figures show
that, although the squared strength of the Schiff operator is
distributed even up to the particle-hole energy of 33 MeV, that
of the PT -violating potential already becomes very small after
the energy of 13 MeV.

C. Effects of residual interactions

Now let us discuss the effects of residual interactions. In
the mean field theories it is well known that the distributions
of multipole operators have large collective peaks and that
the residual interaction moves significant amounts of their
strengths up or down [44]. Here the residual interaction means
the remnant interaction of the two-body interaction, which is
not taken into account in the mean field, namely, which is
not absorbed in the one-body interaction. In the shell model
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approach two-body interactions are exactly diagonalized in the
model space and there is no need to care about the residual
interaction in the usual sense. However, even in the shell model
approach the interaction among nucleons in the model space
and those outside the model space has not been considered.
Here we denote this interaction as the residual interaction in
the shell model approach.

The unperturbed P and T conserving Hamiltonian H0 con-
sists of three parts: H0 = HP + HQ + HPQ. Here, HP ,HQ,
and HPQ represent the interaction among nucleons in the
model space, the interaction among nucleons outside the
model space and the interaction among nucleons between the
model space and the outside space, respectively. The detailed
explanation is given in Appendix B. Up to now, effects of
the residual interaction HPQ and the two-body interaction in
the model space H

(2)
P have been neglected in the evaluation

of Eq. (5).
The effects of the HPQ and H

(2)
P interactions appear in the

energy denominator in Eq. (5). The expectation values of HPQ

and H
(2)
P in terms of 1p1h states are denoted as �E

ph
PQ and

�E
ph
P , where p and h represent particle and hole single-particle

states, respectively.
Here, the effects due to the neglected interactions are

estimated by varying the energy �Eph = �E
ph
PQ + �E

ph
P .

The smallest single-particle excitation energy is found to be
Eph = εp − εh = 6.2 MeV (energy difference between the
0g9/2 and the 0h11/2 orbitals). Accordingly, the Schiff moment
is evaluated by taking �Eph = ±1 MeV. Here it has been
assumed that the �Eph should not be large compared to Eph

so that �Eph is set constant. In the case with �Eph = +1
MeV, the Schiff moment of 129Xe is calculated as S =
3.32ḡ(0)g + 0.98ḡ(1)g + 4.00ḡ(2)g (in units of 10−3 efm3) and
in the opposite case of �Eph = −1 MeV, the Schiff moment of
129Xe is calculated as S = 3.12ḡ(0)g + 1.22ḡ(1)g + 4.19ḡ(2)g
(in units of 10−3 efm3). The difference between results with
and without �Eph is about 10%.

D. Estimation of the atomic EDM and the global analysis

The relation between the Schiff moment and the atomic
EDM of 129Xe was calculated in Refs. [37–39]. Using the
following relation [37]:

d(129Xe) = 0.38 × 10−17

(
S

efm3

)
e cm, (36)

and the standard value of g = 13.5, the atomic EDM for 129Xe
is obtained as (in units of 10−19e cm)

d(129Xe) = 1.66ḡ(0) + 0.62ḡ(1) + 2.14ḡ(2). (37)

Now let us estimate the atomic EDM within the Standard
Model. The strong πNN coupling constants ḡ(T ) in the
Standard Model are recently estimated by Yamanaka et al.
[45]

ḡ(0) = −1.1 × 10−17, (38)

ḡ(1) = −1.3 × 10−17, (39)

ḡ(2) = +3.3 × 10−21. (40)

Using these values, the atomic EDM for 129Xe in the Standard
Model is estimated as

|dSM(129Xe)| = 2.5 × 10−36e cm. (41)

If a larger EDM than that in Eq. (41) is observed in experiment,
it becomes obvious evidence for physics beyond the Standard
Model.

In Ref. [46], constraints on P and T violating hadronic
and electron-nucleon parameters for diamagnetic systems and
the neutron were obtained using experimental upper limits
on EDMs and calculated Schiff moments for TlF molecule,
199Hg, 129Xe, and neutron. Similar analyses are performed by
incorporating the Schiff moment of 129Xe in the present work
and also the EDM of 199Hg in the update experiment [10],

|d(199Hg)| < 7.4 × 10−30e cm. (42)

Table VI shows the results of constraints on P and T violating
hadronic and electron-nucleon parameters for diamagnetic
systems and the neutron. Each coefficient does not largely
differ from the previous results [46], although all coefficients
become slightly larger.

V. SUMMARY

In the present study the nuclear Schiff moments induced
by the interaction which violates parity and time reversal
invariance are calculated for the lowest 1/2+ states of Xe
isotopes. The wave functions of Xe isotopes are calculated in
terms of the nuclear shell model approach. Excitations from
orbitals between the magic numbers 50 and 82 to orbitals over
82 (type-I excitations), the excitations from orbitals under 50
to orbitals between the magic numbers 50 and 82 (type-II

TABLE VI. P and T violating coefficients obtained from diamagnetic systems and the neutron. CT is the tensor electron-nucleon couplings
and ḡ(T ) is the strong πNN constant which violates P and T invariance with isospin T . d̄sr

n is a short-distance contribution to the neutron EDM.
This work A (0.38) indicates that the factor 0.38 is used in Eq. (24), while the factor 0.27 is used for this work B (0.27) of Ref. [38], which is
used in Ref. [46]. Compared to the analysis by [46] different signs are used for the coefficients in front of the ḡ(0) and ḡ(1). In the lowest row,
the results in Ref. [46] are also shown.

CT ḡ(0) ḡ(1) d̄sr
n (e cm)

This work A (0.38) 2.208×107 −11.63 × 10−10 1.710 × 10−10 17.43 × 10−24

This work B (0.27) 2.052×107 −10.82 × 10−10 1.664 × 10−10 16.20 × 10−24

Ref. [46] 1.265×107 −6.687 × 10−10 1.4308 × 10−10 9.878 × 10−24
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excitations), and the excitations from orbitals under 50 to
orbitals over 82 (type-III excitations) are considered for the
one-particle and one-hole excitations. It is found that the
contributions of type-II excitations are a few times larger than
those from the type-I and type-III excitations. The contribution
of excitation from the 0g9/2 orbital to the 0h11/2 orbital is the
largest. It is also found that the excitations which require large
excitation energies have negligible contributions.

The upper limit for the electric dipole moment of 129Xe
neutral atom is estimated using its Schiff moment. In the
Standard Model it has been obtained as |dSM(129Xe)| = 2.5 ×
10−36e cm. If a much larger EDM is observed, it would be
evidence for physics beyond the Standard Model.

It has been reported recently that the kaon exchange effect
is sizable [45]. As a future work, this effect should be
incorporated. Also it should be noted here that intrinsic EDMs
of nucleons also contribute to the Schiff moments [27,28,47].
These contributions should be taken into account for more
precise estimation of atomic EDMs.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for Scientific
Research (C) No. 16K05341 and No. 25400267 from Japan
Society for the Promotion of Science (JSPS), and also by
Grant-in-Aid for JSPS Fellows Grant No. 2610429. The
authors gratefully acknowledge fruitful discussions with Dr.
N. Yamanaka and Dr. A. Umeya.

APPENDIX A

In the operator representation of the Rayleigh-Schrödinger
perturbation theory with the unperturbed Hamiltonian H0 and
the perturbed Hamiltonian V :

H = H0 + V, (A1)

the ground state wave function is perturbed from |ϕ0〉 to

|ψ0〉 = |ϕ0〉 + Q

ε0 − H0
V |ϕ0〉 + · · · . (A2)

Here, Q = 1 − P with P = |ϕ0〉〈ϕ0| and H0|ϕ0〉 = ε0|ϕ0〉
with |ϕ0〉 being normalized. Here, the deviation of normal-
ization constant from one for |ψ0〉 is due to second order of
V and should be safely neglected in first order of V . Then the
expectation value of the Schiff moment operator S

(1)
0 for the

ground state |ψ0〉 is expressed in first order of V as

S = 〈ϕ0|S(1)
0

Q

ε0 − H0
V |ϕ0〉 + c.c.

=
∑
ij

〈ϕ0|S(1)
0 |i〉〈i| 1

ε0 − H0
|k〉〈k|QV |ϕ0〉 + c.c.

=
∑
ik

〈ϕ0|S(1)
0 |i〉〈i|k〉〈k|QV |ϕ0〉

ε0 − 〈H0〉ik + c.c.

=
∑

k

〈ϕ0|S(1)
0 |k〉〈k|V |ϕ0〉

ε0 − 〈H0〉kk

+ c.c., (A3)

where 〈H0〉kk = 〈k|H0|k〉 and the complete relation of any
basis states,

∑ |i〉〈i| = ∑ |k〉〈k| = 1 has been used. In the
final expression both 〈k|QV = 〈k|V and 〈i|k〉 = δik are
assumed.

APPENDIX B

In the present paper the total Hamiltonian H is divided
into the unperturbed part H0 and the perturbation V as H =
H0 + V , where H0 = HP + HQ + HPQ is the interaction
which does not break P and T invariance and V = V PT is
the P and T violating interaction.

In the following “c-particle” denotes any particle in an
orbital between the magic numbers 50 and 82 and “a-
particle” denotes any particle in an orbital over the magic
number 82. Here, HP is constructed solely from creation and
annihilation operators of c-particles, HQ is constructed solely
by creation and annihilation operators of a-particles, and HPQ

is constructed by creation and annihilation operators of c-
and a-particles. In the following only type-I excitations are
considered for simplicity.

In order to avoid unnecessary complications, the angular
momentum coupling and the single-particle orbital index are
abbreviated. Let us consider the expectation value of 〈H0〉kk =
〈k|H0|k〉, where |k〉 = a†c|g.s.〉 is the 1p1h state constructed
on the ground state |g.s.〉. Then we have

〈k|H0|k〉 = 〈g.s.|c†aH0a
†c|g.s.〉

= 〈g.s.|c†a{[H0,a
†c] + a†cH0}|g.s.〉

= Eg.s. + 〈g.s.|c†a[H0,a
†c]|g.s.〉

= Eg.s. + 〈g.s.|[c†a,[H0,a
†c]]|g.s.〉. (B1)

Here, we have used the fact that the ground state |g.s.〉 con-
sists only of c-particles. Namely a|g.s.〉 = 0 and H0|g.s.〉 =
Eg.s.|g.s.〉.

In the evaluation of the double commutator [c†a,[H0,a
†c]],

only the following terms in H0 contribute to 〈k|H0|k〉: (1) the
term containing only one a† and only one a operators, (2) the
term containing neither a† nor a operators.

Then up to two-body interactions, only the following
Hamiltonians:

HP = εcc
†c + Ac†c†cc, (B2)

HQ = εaa
†a, (B3)

H
(2)
PQ = Ja†c†ac, (B4)

contribute to 〈k|H0|k〉, where A and J indicate strengths of
two-body interactions depending on the orbitals involved. εc

and εa indicate single-particle energies.
Finally, we have

〈k|H0|k〉 = Eg.s. + εa − εc + �Eac
P + �Eac

PQ, (B5)

where �Eac
P ≡ 〈k|H (2)

P |k〉 and �Eac
PQ ≡ 〈k|H (2)

PQ|k〉. Here,

H
(2)
P = Ac†c†cc is the two-body part of the interaction HP in

the model space. H
(2)
PQ corresponds to the residual interaction.

The energy denominator in Eq. (A3) is given as (i.e., ε0 =
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Eg.s.)

ε0 − 〈H0〉kk = εc − εa − �Eac
P − �Eac

PQ. (B6)

APPENDIX C

In order to evaluate Eq. (5), intermediate states

|(ph)K; I−〉 = N
(K)
ph [[a†

pc̃h](K) ⊗ |I+
1 〉](I ) (C1)

should form an orthonormal system. In principal each state is
orthonormalized by Schmidt orthogonalization procedure by
requiring

〈(p′h′)K ′; I−|(ph)K; I−〉 = δp′pδh′hδK ′K. (C2)

Since it is a hard task to accomplish this requirement
numerically, for the type-I excitations, e.g., we only require

〈(ph)K; I−|(ph)K; I−〉 = 1 (C3)

and

〈(p′h)K ′; I−|(ph)K; I−〉 = δp′pδK ′K. (C4)

Thus

〈(ph′)K; I−|(ph)K; I−〉 = δh′h (C5)

is only approximately realized in this work. This overlap is
non-zero only when both h′ and h single-particle states are
occupied in |I+

1 〉. Thus this overlap is expected to be very
small in a many-body system.
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