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Parity partners in the baryon resonance spectrum
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We describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners,
and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector × vector
contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking
generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet
scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The
model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated
parity partners that sketch a realistic picture of their internal structure: ground-state, even-parity baryons are
constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an
important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated
by odd-parity diquarks.
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I. INTRODUCTION

In a symmetry-preserving treatment using relativistic quan-
tum field theory, one may generate the interpolating field for
the parity partner of any given state via a simple chiral rotation
of that associated with the original state. It follows that parity
partners will be degenerate in mass and alike in structure in
all theories that possess a chiral symmetry realised in the
Wigner-Weyl mode. This knowledge has long made the mass
splittings between parity partners in the strong-interaction
spectrum a subject of particular interest. A classic example is
provided by the ρ(770) and a1(1260) mesons: viewed as chiral
and hence parity partners, it has been argued [1] that their
mass and structural differences can be attributed entirely to
dynamical chiral symmetry breaking (DCSB), viz. realization
of chiral symmetry in the Nambu-Goldstone mode.

Potentially connected intimately with confinement [2],
DCSB is a key emergent strong-interaction phenomenon, and
regarding its role in explaining the splitting between parity
partners, additional insights can be developed by studying the
quantum field theory bound-state equations appropriate to the
ρ and a1 mesons. One finds that the rest-frame projections of
their Poincaré-covariant wave functions are primarily S wave
in nature [3–8], even though both possess nonzero angular
momentum [9,10], whose magnitude influences the size of the
splitting [5].
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On the other hand, the picture is quite different when
drawn using a quantum mechanical constituent-quark model.
Such a framework does not support the notion of chiral
partners, and the a1 meson is typically described as an L = 1
orbital-angular-momentum excitation of an L = 0 ρ-meson
quark + antiquark system, with the roughly 500 MeV mass
splitting produced by tuning the model’s potential [11,12].
Such conflicts of interpretation are repeatedly encountered in
the spectrum of light-quark mesons.

They are also common in the baryon spectrum. For instance,
quark models predict that the N (1535) 1

2
−

, �(1670) 1
2

−
, and

�(1750) 1
2

−
baryons are all states with three constituent-quarks

possessing one unit of orbital angular momentum, L = 1
[13]. However, in quantum field theory these systems appear
as chiral partners of the ground-state baryons N (939) 1

2
+

,

�(1116) 1
2

+
, and �(1193) 1

2
+

, in which case, again, the roughly
500 MeV mass differences should chiefly be generated by
DCSB. In this connection, elucidating the details of the
mechanism would be of great interest and value.

The preceding discussion highlights that baryon spec-
troscopy has played a key role in developing our understanding
of strong-interaction dynamics and formulating quantum chro-
modynamics (QCD) [14–17], and yet quark-model concepts
still seem a sound way to label and organize the spectrum of
baryon resonances. It is therefore worth exploring the field
theory perspective, in search of both common positions and
explanations for apparent conflicts. Herein, we pursue this
by employing quantum field equations in the continuum and
computing the spectrum produced by a particularly simple
interaction, which enables an algebraic analysis of the issues
involved. The interaction, the diquark correlations it supports,
and the baryon bound-state equations are all explained and
defined in Sec. II, our results are presented and discussed in
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Sec. III, and Sec. IV summarizes our findings and provides
them with a context.

II. BOUND-STATE EQUATIONS

A. Quark-quark interaction

The Dyson-Schwinger equations [18,19] provide a natural
framework for the symmetry-preserving treatment of hadron
bound states in quantum field theory, and the starting point in
the matter sector is knowledge of the quark-quark interaction.
This is now known with some certainty [20–27], as are its
consequences: While the effective charge and gluon and quark
masses run with momentum, k2, they all saturate at infrared
momenta, each changing by � 20% on 0 � √

k2 � mg ≈
mp/2, where mg is a renormalization-group-invariant gluon
mass scale and mp is the proton mass. It follows that, employed
judiciously, a symmetry-preserving treatment of a vector ×
vector contact interaction can provide insights and useful
results for those hadron observables whose measurement
involves probe momenta less than mg [6,7,28–43]. Hadron
masses are such quantities.

In the context of a vector × vector contact interaction,
a symmetry-preserving formulation of the coupled two-
and three-valence-body bound-state problems is detailed in
Refs. [6,7]. It is based upon the rainbow-ladder (RL) ap-
proximation, which is the leading order in a systematic DSE
truncation scheme [45], and we follow that approach herein,
using the same parameter values. They are reported in Table I,
along with the results they yield for the masses of the dressed
u = d and s quarks when used in the rainbow-truncation gap
equation.

In this approach, baryon masses are obtained by solving a
Poincaré-covariant Faddeev equation [46–49], which sums all
possible quantum field theoretical exchanges and interactions
that can take place between the three dressed quarks that
characterize its valence-quark content. A dynamical prediction
of Faddeev equation studies is the appearance of nonpointlike,
color-antitriplet quark + quark (diquark) correlations within
baryons, whose characteristics are greatly influenced by DCSB
[50–56]. Consequently, the baryon bound-state problem is
transformed into the exercise of solving the linear, homoge-
neous matrix equation depicted in Fig. 1.

TABLE I. Computed dressed-quark properties, required as input
for the bound-state equations employed herein. All results obtained
with contact-interaction strength αIR = 0.93π , and (in GeV) infrared
and ultraviolet regularization scales �ir = 0.24 = 1/rir and �uv =
0.905 = 1/ruv, respectively. N.B.: These parameters take the values
determined in the spectrum calculation of Ref. [35], we assume
isospin symmetry throughout, and �ir > 0 implements dressed-quark
confinement [44]. (All dimensioned quantities are listed in GeV.)

Input: current masses Output: dressed masses
m0 mu ms ms/mu M0 Mu Ms Ms/Mu

0 0.007 0.17 24.3 0.36 0.37 0.53 1.43

P
pd

pq

Ψa =
P

pq

pd

Ψb
Γ

a

Γb

FIG. 1. Poincaré covariant Faddeev equation. � is the Faddeev
amplitude for a baryon of total momentum P = pq + pd . The shaded
rectangle demarcates the kernel of the Faddeev equation: single
line, dressed-quark propagator; �, diquark correlation amplitude; and
double line, diquark propagator.

B. Diquark correlations

As highlighted by Fig. 1, in order to complete the Faddeev
equation kernels for all octet and decuplet baryons, and
their parity partners, it is necessary to compute the masses
and canonically normalized correlation amplitudes for each
diquark system that can contribute to these bound states. This
is readily achieved by solving Bethe-Salpeter equations in all
relevant channels, once those channels are identified.

Regarding color, all participating diquark correlations are
antitriplets because they must combine with the bystander
quark to form a color singlet. Notably, the color-sextet quark
+ quark channel does not support correlations because gluon
exchange is repulsive in this channel [50].

Diquark spin-flavor structure is more complex. It is revealed
by solving the Bethe-Salpeter equations, with the result that
a contact interaction supports the following systems (the
subscript indicates JP ):

�
j

0+ (K) = �H T
j

3̄f

[
iγ5E

j

0+ + 1

M
j
R

γ5γ · KF
j

0+

]
C, (1a)

�
f

1+μ(K) = �H T
g

6f
γ̃μC E

f

1+ , (1b)

�
j

0− (K) = �H T
j

3̄f
iC E

j

0− (1c)

�
j

1−μ(K) = �H T
j

3̄f
γ̃μγ5C E

j

1− , (1d)

where K is the total momentum of the correlation, K · γ̃ = 0;
M1

R = Mu = Md , M
2,3
R = 2MuMs/(Mu + Ms); �H = {iλ7

c, −
iλ5

c,iλ
2
c}, with {λk

c,k = 1, . . . ,8} denoting Gell-Mann matri-
ces in color space, expresses the diquarks’ color antitriplet
character; C is the charge-conjugation matrix;

{
T

j

3̄f
,j = 1,2,3

} = {iλ2,iλ5,iλ7}, (2a)
{
T

g
6f

,g = 1, . . . ,6
} = {s0λ

0 + s3λ
3 + s8λ

8,λ1,λ4,s0λ
0

− s3λ
3 + s8λ

8,λ6,s0λ
0 − 2s8λ

8}, (2b)

with s0 = √
2/3, s3 = 1/

√
2, s8 = 1/

√
6, {λk,k = 1, . . . ,8}

denoting flavor Gell-Mann matrices, λ0 = diag[1,1,1], and all
flavor matrices left-active on column [u,d,s]. Notably, using
a contact interaction, the amplitudes do not depend on the
relative momentum; i.e., angular momentum is suppressed
in these bound states, and it follows that a flavor-sextet
vector-diquark is not supported by a RL-like treatment of the
contact interaction [32]. (Our Euclidean metric conventions
are explained in Appendix A of Ref. [7].)
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We obtain the masses and amplitudes of the contact-
interaction diquark correlations by solving the appropriate
Bethe-Salpeter equations in a RL-like truncation. (At this level,
the equation for a JP diquark is readily obtained from that for
a J−P meson [50].) However, the pseudoscalar and vector
diquark equations are adjusted in order to implement DCSB
effects that are crucial for a successful description of the meson
spectrum but only appear in truncations that nonperturbatively
improve upon RL [5]. These adjustments mock up the impact
of DCSB-enhanced “spin-orbit” (SO) repulsion in the Bethe-
Salpeter kernels that feed upon L �= 0 components of meson
wave functions, which are normally subleading in light-quark
two-body systems. In Refs. [6,7], the desired result was
achieved by including a multiplicative factor gSO = 0.24 in
the Bethe-Salpeter kernels for the 0−, 1− diquarks: The value
was chosen to give the empirical size of the a1-ρ mass splitting.
(N.B.: In a Poincaré covariant treatment, no bound state can
be purely S or P wave; and gSO = 1 means no additional
repulsion beyond that generated by the RL kernel.)

In extending a contact-interaction analysis of the spectrum
and structure of baryons to include opposite-parity diquark
correlations, e.g., both P = + and P = − diquarks in P = +
baryons whenever physically allowed, we find the approach of
Refs. [6,7] to be inadequate because it produces a splitting
between 1− and 0− diquarks that is too small to support
a realistic spectrum. For instance, one finds that the parity
partner of the � baryon is unbound. The first step toward
eliminating this weakness is made by introducing two distinct
SO parameters in the meson sector, one for the axial-vector
channel and another for scalar: With

g
1+

qq̄

SO = 0.25, g
0+

qq̄

SO = 0.32, (3)

one obtains ma1 − mρ = 0.45 GeV, in line with experiment,
and mσcore − mρ = 0.29 GeV, which matches the splitting pro-
duced by the sophisticated Bethe-Salpeter kernels described in
Ref. [5]. The spectrum of ground-state mesons thus obtained
is listed in Table II.

We would like to emphasize here that the meson labels
indicate the quark cores of the respective systems, which are
distinguished in a well-defined manner from the empirical
states, as detailed, e.g., in Refs. [6,7]. To expand a little,
owing to our choice for the current-quark masses, mπ and
mK agree with experiment, but all other computed values for
ground-state masses are greater than the empirical values. This
is typical of DCSB-corrected kernels that nevertheless omit
resonant contributions, i.e., do not contain effects that may be
associated with a meson cloud. Such kernels should produce
dressed-quark-core masses for hadron ground states that are
larger than the empirical values, thereby leaving room for
resonant corrections to reduce the mass [57–64]. For instance,
the most complete computation of this sort predicts that such
effects reduce mρ by 0.13 GeV [62]. Applied to our result,
this would produce m

loop−corrected
ρ = 0.8 GeV, in fair agreement

with the empirical value: 0.78 GeV.
The second step is to dampen spin-orbit effects in diquark

channels; viz., we write

g
1−

qq ,0−
qq

SO = g
1+

qq̄ ,0+
qq̄

SO × sSO, sSO = 1.8, (4)

TABLE II. Upper panel. Quark-core masses of ground-state
mesons computed using a symmetry-preserving regularization of the
vector × vector contact interaction, with the input from Table I and
using Eq. (3). Middle panel. Row 1: Mass scales associated with
diquark correlations that play a role in the octet and decuplet spectra
of baryons, computed as described in connection with Eqs. (3) and (4).
Rows 2 and 3: Canonically normalized, momentum-independent
Bethe-Salpeter amplitudes associated with each diquark, Eqs. (1).
Lower panel. Analogous results from Ref. [7] for comparison.
Notably, in all cases the correlation mass increases by ≈0.1 GeV
with the addition of each dressed s quark. (All masses are listed
in GeV. The canonically normalized Bethe-Salpeter amplitudes are
dimensionless.)

H π K ρ K∗ φ σ κ a1 K1

mH 0.14 0.50 0.93 1.03 1.13 1.22 1.32 1.37 1.48

D 0+(1)
3̄f

0+(2,3)
3̄f

1+(1,2,4)
6f

1+(3,5)
6f

1+6
6f

0−(1)
3̄f

0−(2,3)
3̄f

1−(1)
3̄f

1−(2,3)
3̄f

mD 0.78 0.93 1.06 1.16 1.26 1.15 1.26 1.33 1.44

ED 2.74 2.88 1.30 1.36 1.42 1.06 1.08 0.51 0.50

FD 0.31 0.39

Ref. [7]

D 0+(1)
3̄f

0+(2,3)
3̄f

1+(1,2,4)
6f

1+(3,5)
6f

1+6
6f

0−(1)
3̄f

0−(2,3)
3̄f

1−(1)
3̄f

1−(2,3)
3̄f

mD 0.78 0.93 1.06 1.16 1.26 1.37 1.47 1.45 1.55

ED 2.74 2.91 1.30 1.36 1.42 0.40 0.39 0.27 0.27

FD 0.31 0.40

so that the modification factor in our RL-like diquark Bethe-
Salpeter equations is nearer unity and hence generates less
repulsion. Physically, this might be understood by acknowl-
edging that valence quarks within a diquark are more loosely
correlated than the valence-quark and valence-antiquark pair
in a bound-state meson and, consequently, spin-orbit repulsion
in diquarks should be less pronounced than it is in mesons.
The spectrum of diquark mass scales, obtained following the
procedure described above, is listed in Table II: a ±10% change
in sSO alters the 0−, 1− values by ∓2%.

The size of sSO in Eq. (4) is explained below. Meanwhile,
inspection of Table II reveals that this value serves to reverse
the 0+

qq̄ − 0−
qq , 1+

qq̄ − 1−
qq meson-diquark mass orderings that

are characteristic of RL truncation. As we shall see, such a
reversal in the 0−, 1− diquark channels seems to be required
if one wishes to obtain a realistic baryon spectrum from the
contact interaction. Whether such ordering is itself realistic,
however, ought to be checked using the most sophisticated
Bethe-Salpeter kernels that are currently available.

The truncation employed herein generates asymptotic
(freely propagating) diquarks. Such states are not observed
empirically and their appearance is an artifact of the truncation.
Higher order terms in the quark-quark scattering kernel, whose
analog in the qq̄ channel do not materially affect meson proper-
ties, ensure that QCD’s quark-quark scattering matrix does not
exhibit singularities which correspond to asymptotic diquark
states [65,66]. Studies with kernels that exclude diquark bound
states nevertheless support a physical interpretation of the
diquark mass scales, m(qq)JP , obtained using our truncation;
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viz., the quantity �(qq)JP := 1/m(qq)JP may be interpreted as a
range over which the diquark correlation can propagate before
fragmentation.

C. Faddeev equations

Figure 1 shows that the Faddeev kernels involve diquark
breakup and reformation via exchange of a dressed quark. In
order to present the most transparent analysis possible, we
follow Refs. [6,7] and introduce a simplification; viz., in the
Faddeev equation for a baryon of type B, the quark exchanged
between the diquarks is represented as

Sh(k) → g2
B

Mh

, (5)

where h = u,d,s is the quark’s flavor and gB is a coupling
constant. This is a variant of the “static approximation,” which
itself was introduced in Ref. [67]. It has a marked impact
on the Faddeev amplitudes, forcing them to be momentum
independent, just like the diquark Bethe-Salpeter amplitudes,
but calculations reveal that it has little impact on the computed
masses [40]. The values g8≡octet = 1.18, g10≡decuplet = 1.56,
were fixed in Ref. [6] in order to produce masses for the
nucleon and � baryon that are each inflated by roughly
0.2 GeV in order to ensure that the experimental values
are reproduced after meson-baryon final-state interactions are
incorporated [61,63,64,68–73].

With the inputs described above, one can construct all
Faddeev kernels associated with ground-state octet and de-
cuplet baryons and their parity partners. The structure of
those kernels depends on the form of the baryon Faddeev
amplitudes. They are simplest for the decuplet baryons because
their spin-flavor composition precludes a role for flavor-3̄
diquark correlations. For example, the amplitudes for the
positive-energy, doubly positive electric-charge �P=± baryons
are �±

μ = ψ±
μν(P )uν(P ), where uν(P ) is a Rarita-Schwinger

spinor, P is the baryon’s total momentum, and

ψ ±
μν(P )uν(P ) = �1

1+μ�1+
μν(K)D ±1

νρ (P )uρ(P ), (6a)

D ±1
νρ = f ±δνρG ±, (6b)

�1+
μν = [

δμν + KμKν/m2
{uu}

]
/
[
K2 + m2

{uu}
]
, (6c)

with m{uu} = m1
1+ (= 1.06 GeV from Table II) and G+(−) =

ID(γ5). (In the isospin symmetric limit, all charge states of the
� baryons are degenerate.)

Using Eqs. (6) and following the procedure detailed
in Refs. [6,7], one readily arrives at the following one-
dimensional eigenvalue equations for the masses m�± :

1 = g2
10

2π2Mu

E2
{uu}

m2
{uu}

∫ 1

0
dα C

iu
1 (σ )

× [
m2

{uu} + (1 − α)2m2
�±

]
[Mu ± αm�±], (7)

where E{uu} = E1
1+ ,

C1(σ ) = �
(
0,σ r2

uv

) − �
(
0,σ r2

ir

)
, (8)

with �(α,y) being the incomplete gamma function, and
σ = (1 − α)M2

u + αm2
{uu} − α(1 − α)m2

�± . (N.B.: Refs. [6,7]

assumed that the parity partner of a given baryon is obtained
by replacing the diquark correlation(s) involved by its (their)
parity partners. This overlooked the fact that a RL treatment
of the contact interaction does not support flavor-sextet vector
diquarks. The �− equation given here is therefore the preferred
form.)

The Faddeev amplitudes for the positive-energy nucleon
and its parity partner, � ± = ψ ±u(P ), are

ψ ±u(P ) = �1
0+�0+

(K) S ±(P )u(P )

+
∑

f =1,2

�
f

1+μ�1+
μν(K)A ±f

ν (P )u(P )

+�1
0− (K)�0−

(K)P ±(P ) u(P )

+�1
1−μ�1−

μν(K)V ±
ν (P )u(P ), (9)

where u(P ) is a Dirac spinor; �0+
(K), etc. are standard

propagators for scalar or vector bosons, detailed in Refs. [6,7],
with the appropriate masses from Table II, analogous to
Eq. (6c); and, with P̂ 2 = −1,

S ± = s ± IDG ±, iP ± = p ± γ5G ±,

iA ±f
μ = (

a ±f
1 γ5γμ − ia ±f

2 γ5P̂μ

)
G ±,

iV ±
μ = (

v ±
1 γμ − iv ±

2 IDP̂μ

)
γ5G ±. (10)

In order to obtain the masses, m2
±, and eigenvectors

(s ±,a ±f
1 ,a ±f

2 ,p ±,v ±
1 ,v ±

2 ), one substitutes the amplitudes from
Eq. (9) into the Faddeev equation depicted in Fig. 1 and
solves the resulting eigenvalue problems. The explicit form
of the nucleon’s Faddeev equation, obtained in the absence of
pseudoscalar and vector diquarks, is derived in Refs. [6,7].
Owing to isospin symmetry, the kernel can be reduced to
a 3 × 3 matrix because a ±

{ud} = −a ±
{uu}/

√
2. The extended

equation, including pseudoscalar and vector diquarks, and the
analogous complete equation for the nucleon’s parity partner
can both be obtained by following the same procedure. The
kernels may be expressed as 6 × 6 matrices, each element of
which has the type of algebraic structure expressed in Eq. (7).
[We list the spin-flavor composition of all baryon Faddeev
amplitudes in Eqs. (A1).]

The Faddeev equations for the other octet baryons and their
parity partners can similarly be obtained. In fact, if one keeps
track of isospin, then the �± equations may simply be obtained
from the N± equations by replacing the d quark by the s quark,
and the �± equations by making the exchange s ↔ u in the
�± equations. Regarding the I = 0 �± baryons, one must pay
some attention to ensuring the correct flavor structure, but this
is made straightforward by following Ref. [7]. The procedure
yields an 8 × 8-matrix Faddeev kernel describing systems that
involve only the I = 0 combinations of diquarks identified in
Eq. (A1b).

Solving the equations thus obtained, one finds that the
ground-state P = + octet baryons are primarily constituted
from like-parity diquarks, with negligible contributions from
P = − correlations. This was to be anticipated, given the
quality of existing studies that omitted P = − diquarks
[6,7]. Unexpectedly, on the other hand, the parity partners
of the ground-state octet baryons N∗(1535) 1

2
−

, �(1670) 1
2

−
,
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�(1750) 1
2

−
, � 1

2
−

are also dominated by P = + diquark
correlations and, consequently, too light. It appears, therefore,
that something important is missing from the RL-like contact-
interaction treatment of odd-parity octet baryons. As with
mesons and diquarks, the obvious candidate is spin-orbit
repulsion. We therefore introduce a new parameter into the
Faddeev equation for JP = (1/2)P baryons: gDB, a linear
multiplicative factor attached to each unequal-parity diquark
amplitude in the baryon’s Faddeev equation kernel. For
example, in the nucleon’s Faddeev equation,

N (940)

∣∣∣∣∣∣
E0+E0+ → E0+E0+

E0+E0− → gDB E0+E0−

E0−E0− → g2
DB E0−E0−

, (11)

with like treatment of all similar terms, whereas in the equation
for the nucleon’s parity partner, the pattern is reversed:

N∗(1535)

∣∣∣∣∣∣
E0+E0+ → g2

DB E0+E0+

E0+E0− → gDB E0+E0−

E0−E0− → E0−E0−

. (12)

The contact-interaction Faddeev equations for decuplet
baryons are very simple, with both positive- and negative-
parity systems involving only 6f axial-vector diquarks. Con-
sequently, we do not include a similar factor, thereby assuming
implicitly that spin-orbit repulsion is less important, but not
unimportant, in these J = (3/2) states. Whether this contact-
interaction feature is sensible or not can only be tested by
using more realistic Faddeev kernels. Some studies exist [74],
but it is desirable to conduct such analyses using kernels that
leave room for contributions from meson-baryon final-state
interactions and are capable of yielding testable resonance
structure predictions on a large domain of spacelike momenta
[71–73].

Faddeev equations describing all ground-state octet and
decuplet baryons and their parity partners are now in hand. At
this point, it is natural to ask whether one can simultaneously
address the radial excitations of these systems. In quantum
mechanics, the radial wave function for a bound state’s first
radial excitation possesses a single zero. A similar feature
is expressed in quantum field theory: Namely, in a fully
covariant approach, a single zero is usually seen in the relative-
momentum dependence of the leading Chebyshev moment of
the dominant Dirac term in the bound-state amplitude for
a hadron’s first radial excitation [73,75,76]. The existence
of radial excitations is therefore clear evidence against the
possibility that the interaction between quarks is momentum
independent: A bound-state amplitude that is independent of
the relative momentum cannot exhibit a zero. One may also
express this differently; viz., if the location of the zero is
at k2

0, then it is only possible for a momentum-independent
interaction to produce reasonable results for phenomena that
probe momentum scales k2 � k2

0. Typically, k2
0 ∼ 2M2 ∼

(0.5 GeV)2 [73,75,76].
In the phenomenological application of a contact interac-

tion, however, this difficulty has been skirted by means of an
expedient employed in Refs. [77,78]; i.e., one inserts a zero
by hand into the kernels described above. Plainly, the presence
of this zero reduces the coupling in the Faddeev equation and

hence increases the bound state’s mass. Although this may
not be as transparent with a more sophisticated interaction,
a qualitatively equivalent mechanism is responsible for the
elevated values of the masses of radial excitations [73,75,76].
We follow Refs. [6,7] in implementing this idea; viz., the
following replacement is made in each Faddeev kernel:

C1(σ ) → F1(σ ), (13)

where F1(σ ) = C1(σ ) − dFD1(σ ),

D1(σ ) =
∫ r2

ir

r2
uv

dτ
2

τ 2
exp[−τσ ]. (14)

We use 1/dF = 2M2
0 , with M0 defined in Table I: A 20%

change in this value changes the mass of no radial excitation
by more than 5% [6,7].

As already noted, a complete explanation of this method
for analyzing hadron radial excitations within a contact-
interaction framework can be found elsewhere [6,7]. The tool
thus defined appears to produce sensible estimates for the
masses of such baryons. However, the Faddeev amplitudes
are unrealistic; e.g., the nucleon’s radial excitation—the
Roper resonance—is predicted to contain essentially no scalar
diquark component, whereas realistic, momentum-dependent
kernels predict that the scalar diquark content of both the
nucleon and Roper is roughly 60% [73].

III. BARYON SPECTRUM

One is now in a position to compute masses and Faddeev
amplitudes for ground-state octet and decuplet baryons, their
parity partners, and the first radial excitation of each of these
systems.

In retracing the analysis of Ref. [7], we have introduced
two free parameters, viz., sSO in Eq. (4) and gDB, described in
connection with Eqs. (11) and (12). They are chosen in order
to ensure that the dressed-quark core of the nucleon’s parity
partner is not lighter than that of its first radial excitation and
the Faddeev amplitude of the � baryon’s parity partner is
dominated by negative-parity diquarks. These complementary
requirements are met with sSO = 1.8, Eq. (4), and

gDB = 0.1, (15)

values that yield the spectrum in Table III, which is represented
pictorially in Fig. 2. Since changes of ±10% in either
parameter have no material impact on these results, we
do not list a model error. This low level of sensitivity to
model-defining parameters enables us to achieve our primary
aim of developing qualitative insights into the spectrum and
structure of baryons, which can serve to inform a similarly
wide-ranging analysis using realistic Faddeev kernels. In this
connection, it is notable that the value of gDB is small and
enforces significant suppression of unmatched-parity diquarks
in a given J = 1

2 bound state: A value of gDB = 0.2 would
see positive-parity diquark correlations dominate in negative-
parity octet baryons, thereby reducing their masses. The issue
of whether such suppression is realistic cannot be addressed
until a sophisticated beyond-RL truncation is employed to treat
an equally large array of baryon bound states.
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TABLE III. Dressed-quark-core masses of ground-state octet
and decuplet baryons, their radial excitations, and all their parity
partners, computed using the formulation of a vector × vector contact
interaction described herein. Row 1: Baryon ground states. The lowest
mass state in each channel has positive parity. Row 3: First radial
excitations of the ground states, which provide the second level in each
channel. Row 5: Parity partners of the baryon ground states, which
provide the third level in each channel. Row 7: First radial excitations
of the parity partner to each of the baryon ground states, which
provide the fourth level in each channel. Masses in the rows labeled
“expt.” are taken from Ref. [13]: Where the estimated uncertainty in
the location of a resonance’s pole position is noticeable, it is indicated
by an error bar in Fig. 2; and an empty cell in any position indicates
that no empirically known resonance can confidently be associated
with the theoretically predicted state. (All masses are listed in GeV.)

N � � � � �∗ �∗ �

P = + n = 0 DSE 1.14 1.26 1.36 1.43 1.39 1.51 1.63 1.76
expt. 0.94 1.12 1.19 1.31 1.23 1.39 1.53 1.67

P = + n = 1 DSE 1.82 1.89 1.94 2.01 1.84 1.95 2.05 2.14
expt. 1.44 1.51 1.66 1.60

P = − n = 0 DSE 1.82 1.92 1.96 2.04 2.07 2.16 2.26 2.36
expt. 1.54 1.67 1.75 1.65 1.67 1.82

P = − n = 1 DSE 1.89 1.99 2.02 2.10 2.11 2.24 2.33 2.40
expt. 1.65 1.80 1.86 1.94

The Faddeev amplitudes associated with the masses listed in
Table III are cataloged in Table IV. We consider that the n = 0
(ground state) eigenvectors provide a sound guide; namely, a
more realistic Faddeev equation kernel should produce roughly
the same relative strengths of the various diquark components.
These strengths are depicted in Fig. 3, from which it is apparent
that the parameter choices in Eqs. (4) and (15) generate octet
baryons with natural diquark content; i.e., a baryon with
parity “P” is constituted primarily from like-parity diquark
correlations.

On the other hand, for the reasons detailed in connection
with Eq. (13), the eigenvectors associated with a contact
interaction treatment of radial excitations (n = 1) must be

treated with caution. For instance, the Table III prediction that
the nucleon’s radial excitation is almost purely constituted
from axial-vector diquark correlations is now known to be
an artifact of the contact interaction: Using a QCD-kindred
kernel, the scalar diquark component of this state is almost
precisely the same as that of the ground-state nucleon [73].

In Fig. 4, we depict the theory-experiment mass differences
computed from Table III. This difference is uniformly less than
0.2 GeV for ground states. Moreover, it usually decreases as
the number of s quarks in the system is increased, as illustrated
by the dashed lines in Fig. 4. For octet systems, there is another
regularity; viz., the theory-experiment difference is greatest for
the positive-parity radial excitations (≈0.35 GeV), less for the
(P = −,n = 0) states (≈0.25 GeV), and least for the (P =
−,n = 1) systems (≈0.22 GeV). The (P = +,n = 0) (i.e.,
ground state) and (P = +,n = 1) differences are consistent
with those found in Ref. [7], which ignored negative-parity
diquark correlations in positive-parity baryons. On the other
hand, the results for parity partners are a marked contradiction,
being much smaller herein. It follows that no study of odd-
parity baryons can be reliable unless it includes odd-parity
diquark correlations.

Having made these observations, it is worth returning
to the issue of meson-cloud effects on baryon masses. In
this connection, recall that our predictions, Table III, are
those for the mass of a given baryon’s dressed-quark core,
whereas the empirical values include effects associated with
meson-baryon final-state interactions, which typically produce
sizable reductions [69,79]. This was explained and illustrated
for the nucleon and � resonance in Sec. 4.5 of Ref. [6] and
in particular for the Roper resonance in Ref. [33]. Here we
reiterate those instances in which a comparison can be made
(masses in GeV):

N
P11
940 N

P11
1440 N

S11
1535 N

S11
1650 �

P33
1232 �

D33
1700

Herein 1.14 1.82 1.82 1.89 1.39 2.07
M0

B [69] 1.76 1.80 1.88 1.39 1.98
M0

B [79] 1.24 2.05 1.92 1.46 2.25

,

(16)

FIG. 2. Left panel (a): Pictorial representation of octet masses in Table III. Circles (black), computed masses; and diamonds (green),
empirical masses. On the horizontal axis, we list a particle name with a subscript that indicates its row in Table III; e.g., N1 means nucleon
column, row 1. In this way, the labels step through ground state, radial excitation, parity partner, and parity partner’s radial excitation. Right
panel (b): Analogous plot for the decuplet masses in Table III. Where noticeable, the estimated uncertainty in the location of a resonance’s pole
position is indicated by an error bar.
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FIG. 3. Diquark content of octet baryons, computed from the unit-normalised Faddeev amplitudes listed in Table IV: upper panel (a),
ground-state even-parity systems; and lower panel (b), their parity partners.

where M0
B , when it appears, is the relevant bare mass inferred

in the associated dynamical coupled-channels (DCC) analysis
[69,79].1 These bare masses have hitherto been uncertain and
dependent on model details. However, as we made no attempt
to fit the M0

B values, their proximity to our results suggests that
it might now be possible to place these bare masses on firmer
ground, investing them with meaning within the context of
hadron structure calculations that have a traceable connection
with QCD. Such a possibility is made more plausible by the

1It is notable that the bare masses determined in Ref. [69] do
not exceed our computed dressed-quark-core masses, whereas those
inferred in Ref. [79] are uniformly greater: relative error = −7 ± 4%.
Since meson-baryon final-state interactions normally act to lower the
pole mass of a resonance, this observation suggests that Ref. [69]
provides the more reliable indication of hadron quark-core masses.

FIG. 4. Theory-experiment mass differences computed, where
possible, from Table III. Horizontal axis: particle name with a
subscript that indicates its row in Table III; e.g., N1 means nucleon
column, row 1.

fact that, with the inclusion of odd-parity diquark correlations,
the agreement between our contact-interaction predictions and
the DCC bare masses is much better than previously found;
e.g., whereas the mean relative difference between contact-
interaction core masses and the bare masses from Ref. [69]
was 15 ± 13% in the absence of odd-parity diquarks, it is
herein just 2 ± 2%.

IV. CONCLUSION

Contemporary studies suggest that QCD possesses an
infrared fixed point and therefore exhibits nearly conformal
behavior at infrared momenta [23–27]. As a consequence,
when defined and used judiciously, a vector ×vector contact
interaction can be a useful tool for the analysis of numerous
low-energy hadron properties. Hadron masses are among
these quantities, and we therefore used such an interaction
to formulate Faddeev equations for the ground-state octet and
decuplet baryons, their first radial excitation, and the parity
partners of these systems. The solutions of the equations yield
the masses of the dressed-quark cores in these systems and
information about the associated internal structure. Notably,
dynamical chiral symmetry breaking (DCSB) drives the
formation of diquark correlations within baryons, and our
Faddeev equation kernels incorporate all diquarks supported
by a rainbow-ladder-like truncation of the equations describing
such correlations, viz., flavor-antitriplet scalar, pseudoscalar
and vector, and flavor-sextet axial vector.

A defect of rainbow-ladder (RL) truncation is that it
suppresses angular momentum within hadron bound states.
This weakness typically leads to a poor description of all but
the lowest mass entries in the spectra of various hadron species.
Therefore, in formulating the bound-state equations relevant
to a description of the baryon spectrum, we elaborated upon
RL truncation by introducing phenomenological parameters
that can ameliorate this sort of defect. We thereby arrived
at a model capable of yielding realistic insights, which can
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be used to guide subsequent studies with more sophisticated
interactions.

Our key modification was the introduction of two param-
eters that work to express spin-orbit repulsion, one in the
Bethe-Salpeter equations describing odd-parity diquarks and
another in the Faddeev equations. These two parameters, which
find their origin in DCSB, were tuned in order to ensure (i) that
the dressed-quark core of the nucleon’s parity partner is not
lighter than that of its first radial excitation and (ii) the Faddeev
amplitude of the � baryon’s parity partner is dominated by
negative-parity diquarks. The parameter values required to
achieve these ends indicate that orbital angular momentum
must play a significant role in the rest-frame wave functions
of all so-called P -wave baryons. Hence, a primary conclusion
of our analysis is that DCSB is the key to explaining the mass
splitting between parity partners and it works by enhancing
repulsive spin-orbit interactions between all quarks in the
bound state.

With this reformulation of the contact-interaction bound-
state equations, we calculated the mass and Faddeev ampli-
tudes of the dressed-quark cores in 32 isospin + strangeness-
distinct baryons, i.e., all octet and decuplet baryons, their
lowest radial excitations, and the parity partners of all these
systems. The computed masses of all systems are reasonable,
and the Faddeev amplitudes for ground states and their parity
partners describe a realistic picture of the internal compo-
sition of these systems: ground-state, even-parity baryons
are constituted, almost exclusively, from like-parity diquark
correlations, but odd-parity baryons must contain odd-parity
diquarks, and such correlations should be dominant therein.

An important next step is to compute the spectrum studied
herein using more realistic Faddeev equation kernels, e.g.,
those built from the momentum-dependent propagators and
diquark amplitudes used successfully in the description and
prediction of nucleon elastic and nucleon-to-resonance tran-
sition form factors on a large domain of spacelike mometa
[71–73]. This will help reveal just how realistic are the
perspectives suggested by the contact-interaction analysis
described herein.
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APPENDIX: ASSORTED FORMULAE

We assume isospin symmetry throughout, in which case it is
sufficient to specify the following spin-flavor column vectors

for the octet baryons supported by our formulation of the
contact interaction:

up =

⎡
⎢⎢⎢⎢⎢⎣

u[ud]0+

d{uu}1+

u{ud}1+

u[ud]0−

u[ud]1−

⎤
⎥⎥⎥⎥⎥⎦

↔

⎡
⎢⎢⎢⎢⎢⎢⎣

s 1
p

a 4
p

a 5
p

p 1
p

v 1
p

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A1a)

u� = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2 s[ud]0+

d[us]0+ − u[ds]0+

d{us}1+ − u{ds}1+√
2 s[ud]0−

d[us]0− − u[ds]0−

d{us}1− − u{ds}1−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

↔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 1
�

s [2,3]
�

a [6,8]
�

p 1
�

p [2,3]
�

v [6,8]
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1b)

u� =

⎡
⎢⎢⎢⎢⎢⎣

u[us]0+

s{uu}1+

u{us}1+

u[us]0−

u[us]1−

⎤
⎥⎥⎥⎥⎥⎦

↔

⎡
⎢⎢⎢⎢⎢⎢⎣

s 2
�

a 4
�

a 6
�

p 2
�

v 2
�

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A1c)

u� =

⎡
⎢⎢⎢⎢⎢⎣

s[us]0+

s{us}1+

u{ss}1+

s[us]0−

s[us]1−

⎤
⎥⎥⎥⎥⎥⎦

↔

⎡
⎢⎢⎢⎢⎢⎢⎣

s 2
�

a 6
�

a 9
�

p 2
�

v 2
�

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A1d)

where [·]JP and {·}JP denote, respectively, flavor combinations
generated by T3̄f

and T6f
in Eqs. (2), with the subscript indicat-

ing the spin parity of the associated correlation. Naturally, the
same vector applies to ground states, their parity partners, and
the associated radial excitations. The differences between these
states are expressed in the values of the coefficients s, a1,2, p,
and v1,2 that appear in Eq. (10) and are obtained by solving the
appropriate Faddeev equations. A shorthand notation for these
coefficients, which expresses their connection with Eqs. (2),
is specified by the rightmost column of each of Eqs. (A1):
superscript “1” connects with T 1

3̄f
, . . . , superscript “4” →

T 1
6f

, and . . . , superscript “9” → T 6
6f

. The unit-normalized
amplitudes obtained as solutions of our octet baryon Faddeev
equations are listed in Table IV.

It is worth comparing Eqs. (A1b) and (A1c), with the
latter adapted to the neutral �0 case following Eq. (49) in
Ref. [7]. While the �0 and �0 baryons are associated with the
same combination of valence quarks, their spin-flavor wave
functions are different: The �0

I=0 contains more of the lighter
J = 0 diquark correlations than the �0

I=1. It follows that the
�0 must be lighter than the �0. The mechanism underlying
this splitting is analogous to that which produces the π -ρ mass
difference, and also to that associated with the color-hyperfine
interaction used in quark models. It is realized here via the
breaking of isospin symmetry in the associated baryon wave
functions.
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TABLE IV. Contact-interaction Faddeev amplitudes (dimensionless, unit normalized) for each of the octet baryons and their low-lying
excitations. The superscript in the expression si or ai is a diquark enumeration label associated with Eq. (A1). The rightmost column lists the
square of the largest J = 0 contribution to the amplitude; i.e., it measures either the probability of finding a scalar diquark in an even-parity
baryon or a pseudoscalar diquark in an odd-parity baryon. N.B.: In the notation of Eq. (10), we list only a4

1,2 for the nucleon because
a 5

1,2 = −a 4
1,2/

√
2.

(P,n) s 1 s 2 s [2,3] a 4
1 a 4

2 a 6
1 a 6

2 a [6,8]
1 a [6,8]

2 a 9
1 a 9

1 p 1 p 2 p [2,3] v 1
1 v 1

2 v 2
1 v 2

2 v [6,8]
1 v [6,8]

2 PJ=0

(+,0) N 0.88 0.38 −0.06 0.02 0.02 0.00 77%

� 0.66 0.59 0.45 0.08 0.02 0.03 0.01 0.00 79%

� 0.85 0.45 −0.26 −0.13 −0.01 0.01 0.01 0.00 72%

� 0.89 −0.33 0.31 −0.05 −0.04 0.03 0.02 0.00 79%

(+,1) N 0.02 0.52 −0.62 0.07 0.02 −0.02 0%

� 0.03 0.06 0.77 −0.62 0.14 0.06 0.01 -0.01 0%

� 0.02 0.52 −0.13 −0.74 0.13 0.36 0.13 −0.11 0%

� 0.03 −0.31 0.42 0.15 −0.32 0.70 0.24 −0.24 0%

(−,0) N 0.35 0.04 0.00 0.92 −0.05 0.18 84%

� 0.25 0.22 0.01 −0.02 0.69 0.63 −0.05 0.12 87%

� 0.42 0.11 −0.06 0.06 −0.03 0.88 0.00 0.16 78%

� 0.35 −0.01 0.01 0.01 −0.02 0.91 −0.11 0.21 82%

(−,1) N 0.53 0.28 0.26 0.62 0.34 0.04 39%

� 0.41 0.37 0.28 0.25 0.36 0.60 0.25 -0.05 49%

� 0.52 0.37 −0.18 0.39 −0.17 0.56 0.27 0.02 31%

� 0.61 −0.21 0.22 −0.19 0.22 0.58 0.34 0.04 34%

The analogous vectors for the decuplet baryons are

u� = [
u{uu}+1

] ↔ [
f 4

�

]
, (A2a)

u�∗ =
[
s{uu}1+

u{us}1+

]
↔

[
f 4

�∗

f 6
�∗

]
, (A2b)

u�∗ =
[
s{us}1+

u{ss}1+

]
↔

[
f 6

�∗

f 9
�∗

]
, (A2c)

u� = [
s{ss}+1

] ↔ [
f 9

�

]
. (A2d)

Only the �∗ and �∗ systems possess nontrivial unit-normalized Faddeev amplitudes:

(P,n) f 4 f 6 f 9

(+,0) �∗ 0.61 0.79

�∗ 0.85 0.52

(+,1) �∗ 0.71 0.71

�∗ 0.88 0.47

(−,0) �∗ 0.68 0.74

�∗ 0.87 0.49

(−,1) �∗ 0.67 0.75

�∗ 0.87 0.50.

(A3)

In each case, the mixed-flavor diquark is favored for an obvious
reason; viz., considering the Faddeev equation kernel, it is
fed by twice as many exchange processes as the like-flavor
correlation.

We do not record the baryon Faddeev equations herein.
They are readily derived, following the procedures detailed
in Refs. [6,7], but the final expressions for octet sys-
tems are lengthy with, e.g., the kernel for the � baryon
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involving 64 entries. On the other hand, each such entry
has a simple form, similar to that on the right-hand side
of Eq. (7), and all kernels are recognizable extensions of
those listed in full elsewhere [6,7]. Hence, those interested

in repeating the calculations described herein need only
ensure they can recover the elements already published
and then complete the kernel matrices using the same
methods.
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