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K~ nuclear states: Binding energies and widths
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K~ optical potentials relevant to calculations of K~ nuclear quasibound states were developed within several
chiral meson-baryon coupled-channels interaction models. The applied models yield quite different K~ binding
energies and widths. Then the K~ multinucleon interactions were incorporated by a phenomenological optical
potential fitted recently to kaonic atom data. Though the applied K~ interaction models differ significantly in
the K~ N subthreshold region, our self-consistent calculations of kaonic nuclei across the periodic table lead
to conclusions valid quite generally. Due to K~ multinucleon absorption in the nuclear medium, the calculated
widths of K~ nuclear states are sizable, 'k~ > 90 MeV, and exceed substantially their binding energies in all

considered nuclei.
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I. INTRODUCTION

The near-threshold KN attraction seems to be strong
enough to bind the antikaon in the nuclear medium and form
a kaonic nucleus [1-4]. However, strong absorption of K~
in nuclear matter, as well as in-medium modifications and
distinct energy dependence of the K~ N scattering amplitudes
attributed to the A(1405) resonance could call this presumption
into question and thus have to be carefully accounted for in
relevant calculations.

Unique information allowing us to fix the K~ p interaction
at and above threshold is provided by low-energy KN
scattering data (summarized, e.g., in Ref. [5]), threshold
branching ratios [6], and, in particular, strong interaction
energy shift and width of kaonic hydrogen atom [7]. The
K ~n interaction is much poorly determined due to the lack
of sufficiently accurate data. Considerably less is known about
the K~ N interaction below threshold. Information about the
subthreshold interaction of K~ with nucleons comes from the
analyses of ¥ spectra in the region of A(1405) and especially
from the measurement of energy shifts and widths of K~
atomic states throughout the periodic table [8,9].

The theoretical description of the K~ N interaction is
currently provided by chirally motivated meson-baryon in-
teraction models. Parameters of these models are tuned to
reproduce the above low-energy K~ N observables. In the
present study, the free-space K~ N scattering amplitudes
derived within various chiral SU(3) meson-baryon coupled-
channels interaction models: Prague (P) [10], Kyoto-Munich
(KM) [5], Murcia (M1 and M2) [11], and Bonn (B2 and
B4) [12] are used to construct the kaon self-energy operator
ITg-. The free s-wave scattering amplitudes Fg- p(ﬁ) and
Fx-n(+/s) considered in this work are shown in Fig. 1. Being
constrained by the data, the Fg - ,(/s) amplitudes [Fig. 1 (top)]
agree with each other at threshold and, except the Bonn model
amplitudes, also above threshold. The form of B2 and B4
amplitudes deviates from the others because higher partial
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waves were included in the Bonn model fits. All the K~ p
amplitudes differ considerably below threshold, which implies
the region relevant for K ~-nuclear bound-state calculations.
Moreover, they are significantly energy dependent below
threshold due to existence of A(1405) resonance which is
dynamically generated in these models. It is thus important
to evaluate the K ~-nucleus potential self-consistently [13,14].
The K ~n amplitudes [Fig. 1 (bottom)] differ appreciably from
each other in the entire energy range considered here. Figure 1
illustrates significant model dependence of the input scattering
amplitudes. As a result, binding energies Bg- and widths 'k -
of kaonic nuclear states calculated within the above K~ N
interaction models are expected to differ substantially from
each other.

The implications of self-consistent treatment of energy
dependence of chirally inspired K~ N amplitudes near thresh-
old for calculations of K ~-nuclear states were discussed in
Ref. [15]. Due to a sizable downward energy shift towards
¥ threshold, the K~ potential constructed within the P
model yields relatively small K~ widths because only the
K~ absorption on a single nucleon, KN — 7Y (Y = A, X),
is involved in this model [13-15]. In nuclear medium,
K~ multinucleon interactions, such as K" NN — YN, take
place as well [16-18] and should thus be considered in
any realistic study of K ~-nuclear quasibound states. Indeed,
recent analyses of kaonic atoms have confirmed that a phe-
nomenological term representing K ~ multinucleon processes
has to be added to the optical potential constructed from
in-medium chirally motivated K~ N amplitudes in order to
achieve good fit to the data [17,18]. In Refs. [13-15], the
K~ NN absorption was included using a phenomenological
potential and, as a consequence, the K~ widths increased
and became comparable with K~ binding energies. Although
the chiral K~ N interaction models do not involve the K~
multinucleon processes explicitly, Sekihara et al. [19] derived
nonmesonic K~ interaction channels within a chiral unitary
approach for the s-wave KN amplitude and calculated the
ratio of mesonic to nonmesonic K~ absorption at rest in
nuclear matter. The experimental information about this ratio
comes from bubble chamber experiments [20-22]. Recently,
Friedman and Gal have supplemented the K ~ single-nucleon
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FIG. 1. Energy dependence of real (left) and imaginary (right) parts of free-space K~ p (top) and K ~n (bottom) amplitudes in considered
chiral models (see text for details). Thin vertical lines mark threshold energies.

potential constructed from several chiral K~ N amplitude
models by a phenomenological term representing the K~
multinucleon interactions and fitted its parameters to kaonic
atom data for each meson-baryon interaction model separately
[18]. Moreover, they confronted the total K~ optical potential
with experimental fractions of K~ absorption at rest. They
found that only the P and KM models supplemented by the K~
multinucleon potential are able to reproduce both experimental
constraints simultaneously. These two models were recently
used in calculations of K~ quasibound states [23] and the K~
multinucleon interactions were found to cause radical increase
of the widths of K ~-nuclear states.

In this work, we apply all six chirally motivated meson-
baryon coupled-channels interaction models considered in
Ref. [18] to calculations of K ~-nuclear quasibound states,
aiming at exploring model dependence of predicted K~
binding energies and widths. Then we supplement the K~
single-nucleon potential by a corresponding phenomeno-
logical optical potential describing the K~ multinucleon
interactions in order to study in detail their impact on K~

binding energies and widths. Unlike previous calculations,
we consider various K~ N interaction models presented in
recent years. Most of them were never applied in such studies
before. We perform unique calculations of kaonic nuclear
quasibound states using the K ~-nuclear potentials containing
both K~ single-nucleon and multinucleon interactions which
were fitted to available data for each meson-baryon interaction
model.

The paper is organized as follows. In Sec. II we present
construction of the in-medium K ~ N amplitudes from the free-
space amplitudes derived within chirally inspired coupled-
channels models of meson-baryon interactions. We introduce a
self-consistent scheme for treating energy dependence of these
amplitudes and derive for each interaction model a relevant
K~ -nuclear potential. We discuss results of our calculations
of K~ -nuclear quasi-bound states using these potentials. In
Sec. III, we present phenomenological potentials describing
K~ multinucleon interactions and explore their impact on the
widths and binding energies of kaonic nuclear quasibound
states. A brief summary is given in Sec. IV.

015205-2



K~ NUCLEAR STATES: BINDING ENERGIES AND WIDTHS

II. CHIRALLY MOTIVATED K~ NUCLEAR POTENTIALS

The binding energies Bg- and widths I'x- of K ~-nuclear
quasibound states are determined by solving self-consistently
the Klein-Gordon equation

[V + g —mi- — Mg (k0] =0, (1)

where C‘Z)K— =mK7—BK7 —iFK—/Z—VCZCz)K— —Vc,
mg- is the K~ mass, V¢ is the Coulomb potential introduced
via the minimal substitution [24], and p is the nuclear
density distribution. The energy- and density-dependent kaon
self-energy operator I1g- describes K~ interactions with the
nuclear medium.

The self-energy operator I1x- in Eq. (1) is constructed in
a “tp” form with the in-medium amplitudes derived from the
chirally motivated K~ N scattering amplitudes presented in
Fig. 1. It is expressed as

Mg- = 2Re(wg- )V,
s 1 1
=—47T£|:F0—Pp+Fl<—,0p+Pn)j|, (2)
my

2 2

where Fy and F) are the isospin 0 and 1 s-wave in-medium
amplitudes, respectively, /s is the total energy of the K~ N
system, my is the nucleon mass, and V1(<1_) stands for the
(single-nucleon) K ~-nucleus optical potential. The kinemat-
ical factor 4/s/my comes from transforming amplitudes
from the two-body center-of-mass frame to the laboratory
frame. The p, and p, denote proton and neutron density
distributions, respectively, in a given core nucleus obtained
within the relativistic mean-field model NL-SH [25]. We
consider static nuclear density distribution, which means that
core polarization effects are not included in our calculations.
The polarization effects are A dependent—for instance, within
the P model, they increase Bg- by ~6 MeV in Li, by <2 MeV
in Ca, and by <0.5 MeV in Pb [15]. In any case, the role
of the nuclear polarization is less pronounced than the model
dependence.

The modifications of the free-space amplitudes due to Pauli
principle in the medium are accounted for by using the multiple
scattering approach (WRW) [26]. The in-medium amplitudes
Fy and F are then given in the following form:

FK*n(\/E)

F = s
1+ 3868 Frou(V5)p
3)
Fo [2Fk p(v/5) = Fia(/5)]
1+ 362 2Fk p(J5) = Frn(V/5)lp
where
9 ®d
o= 24l 1= /O S expligniio. @
F

Here pg is the Fermi momentum corresponding to density
p =2p2/(3r?), ji(t) is the spherical Bessel function, and

q :,/wi, —mi,/pp. The integral I, in Eq. (4) can be
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evaluated analytically as [18]

2 2 2
q° q q 4
4], =1 — — 4+ —(24+ —)In( 1+ —
‘ 6+4<+6>“(+q2>

4 ) 5
361[2 arctan(q / )]- (%)

In Fig. 2, we present the K~ p and K ~n amplitudes in
the considered models, modified by the WRW procedure at
saturation density py = 0.17 fm™> plotted as a function of
energy. It follows from comparison with Fig. 1 that the K~ p
amplitudes are affected significantly by Pauli correlations:
The real part of the amplitudes becomes attractive in the
entire energy region below threshold (except the B2 and B4
models) and the imaginary part is considerably lowered below
threshold. On the other hand, the K ~rn amplitudes are modified
by Pauli correlations only moderately.

In previous calculations [13,15], the in-medium mod-
ifications of the K~ N amplitudes in the P model [10]
were accounted for in a different way. The integration over
the intermediate meson-baryon momenta in the underlying
Green’s function was restricted to a region ensuring the
nucleon intermediate energy to be above the Fermi level
(denoted further “Pauli”’). Moreover, the in-medium hadron
self-energies (denoted “Pauli4-SE”) were considered in some
cases as well. In Fig. 3, we compare the Pauli correlated
amplitudes with the WRW modified amplitudes in the P
model. Both approaches, WRW and Pauli, yield similar K~ N
in-medium reduced amplitudes' fx-y = %(fkfp + fx-») in
the subthreshold energy region. Above threshold, the behavior
of Pauli and WRW modified amplitudes is different. The effect
of hadron self-energies is illustrated in Fig. 3 as well. The
Pauli correlated and Pauli4+-SE amplitudes are again quite
similar to each other farther below threshold (in the region
relevant to K~ -nuclear bound state calculations), but they
differ appreciably near and above threshold.

The existence of the subthreshold resonance A(1405),
which is dynamically generated in chirally motivated coupled-
channels models, causes that the K~ p amplitudes exhibit
strong energy (and density) dependence near and below thresh-
old. This feature requires a proper self-consistent scheme for
evaluating the K~ optical potential in both calculations of K~
atomic as well as nuclear states [13,15,17,18].

The in-medium amplitudes entering Eq. (3) are a function
of energy /s given by Mandelstam variable

s =(Ey + Ex-)* — (Pv + px-)%, (6)

where EszN—BN, EK— =mK7—BK7 —Vc, and
Dk~ is the nucleon (kaon) momentum. Unlike the free two-
body center-of-mass system, the momentum-dependent term
(py + px-)* # 0 in the K -nucleus center-of-mass frame,
which generates additional substantial downward energy
shift [13]. The non-negligible momentum term is on averaging
over angles equal to p%(, + pjzv. This averaging, i.e., dropping
the term ~px- - py, has been meant to provide a mean value

'Fx-n = g(p) fx-ng(p'), where g(p) is a momentum-space form
factor (see Ref. [13]).
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FIG. 2. Energy dependence of real (left) and imaginary (right) parts of WRW modified K~ p (top) and K ~n (bottom) amplitudes at
0o = 0.17 fm™ in considered models. Thin vertical lines mark threshold energies.

of the energy /s for a given density. It is not a substitute
for a proper treatment of Fermi motion. The effect of Fermi
motion was studied in detail in Ref. [27] where it was
demonstrated that the Fermi averaging has a small effect on the
K~ binding energy. Nevertheless, we performed calculations
using averaging on the level of K~ N amplitudes instead of
angular averaging. We verified that both approaches yield very
similar results—K ~ binding energies differ by <2% and the
widths by <10%.

The kaon kinetic energy is given in the local density
approximation by

Pk-

= —Bg- —ReVx- — V¢, @)
Zme

where V- is the K~ -nuclear optical potential. The nucleon
kinetic energy is expressed within the Fermi gas model as

2 2/3
Py _ m(@) , ®)

where Ty = 23 MeV is the average nucleon kinetic energy
and p is the average nuclear density distribution.

Finally, the K~ N amplitudes can be expressed as a function
of energy /s = Ey, + 8+/s where Ey, = my + mg- and the
energy shift §./s is expanded near threshold in terms of binding
and kinetic energies (to leading order):

23
8+/s ~ —By — Bx- — Ve — ,BNTN<§>
— Bk-[—Bk- —ReVk-(r) = Vcl, ©))

where ﬂN(K*) = mN(Kf)/(mN + me) and BN = 8.5 MeVis
the average binding energy per nucleon. After introducing
specific forms of density dependence ensuring that §./s — 0
as p — 0 in agreement with the low-density limit (for details,
see Ref. [17]) the energy shift §,/s in Eq. (9) has the following
form:

2/3
8/s = _BNQ_ — Bw |:BK P4 Ty <£i)
P Pmax P

13
Ve <pp ) } + Bx-ReVi-(r), (10)
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FIG. 3. Energy dependence of free-space (dotted line) amplitude fx-y = %( Sfk-p + fx-n) compared with WRW modified amplitude
(solid line), Pauli (dashed line), and Pauli 4+ SE (dot-dashed line) modified amplitude for py = 0.17 fm~= in the P model (left: real parts, right:

imaginary parts). The thin vertical line indicates the K~ N threshold.

where ppax 1s the maximal value of the nuclear density. The K ~
binding energy Bg- is multiplied by p/pmax, Which ensures
that the K~ kinetic energy expressed in Eq. (7) in terms of
local density approximation is positive at any nuclear density.

It is to be noted that since the input of our work was adopted
from the kaonic atoms analysis of Friedman and Gal [18], it is
desirable to keep consistent and use similar kinematics in our
calculations.

In Fig. 4 we present the downward energy shift
84/s = E — Ey, as a function of relative density p/po probed
in the self-consistent calculations with in-medium K~ optical
potential V,((l,) based on amplitudes from chiral models P,
KM, M1, and M2. The calculations were performed for the
160 + K~ system. The models considered here predict quite
different energy shifts, reaching at the saturation density values
between ~—40 MeV for the M2 model and ~—100 MeV for
the P model. The energy shifts corresponding to the Bonn
models B2 and B4 are not plotted in the figure since these
models do not yield any K ~-nuclear bound state. It is to be
noted that though the free-space amplitudes in Fig. 1 are shown
only to /s = 1370 MeV, the amplitudes for KM and P models
are available down to 1300 MeV. The energy shifts §4/s in the
models shown in Fig. 4 are thus safely in the available energy
region.

In calculations presented in this work, we take into account
only Pauli correlations in the medium expressed within the
WRW approach. One might argue that the effect of hadron self-
energies should be included as well. In Fig. 5 we demonstrate
the role of hadron self-energies in “°Ca. We compare the K ~
potential VI({Q calculated in the P model within the WRW
method (left panel) with the K~ potential calculated using the
Pauli and Pauli 4+SE in-medium amplitudes, used in previous
calculations of K ~-nuclear bound states [15] (right panel).
The hadron self-energies modify considerably the potential
evaluated at threshold while their effect becomes rather small
in self-consistent treatment of the energy shift. Then the

WRW, Pauli, and Pauli+SE options for in-medium modifi-
cations of K~ N amplitudes give nearly identical K ~-nucleus
potentials.

As was shown in Figs. 1 and 2, the chiral K~ N amplitudes
differ considerably below threshold, thus in the region relevant
to calculations of kaonic nuclear states. As a consequence,
corresponding K ~-nucleus potentials derived using these
amplitudes differ significantly as well. In Fig. 6, we present
real (left) and imaginary (right) parts of the K ~-nuclear optical
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FIG. 4. Subthreshold energies probed in the '°0 4+ K~ nucleus
as a function of relative density p/py, calculated self-consistently
using K~ N amplitudes in the P (dot-dashed line), KM (solid line),
M1 (dashed line), and M2 (dotted line) models.
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FIG. 5. K~ nuclear potential V" in “Ca calculated using chiral K~ N P amplitudes at threshold (dashed lines) and with /s (Eq. (8) of

K-

Ref. [15]) (solid lines) in two in-medium versions: WRW (left panel) and Pauli+SE (right panel). The Pauli version (right panel, dotted line)

for /s from [15] is shown as well (see text for details).

potential V1(<]—) in “°Ca, calculated self-consistently within P,

KM, M1, and M2 models. The depths of ReVl(;_) are ranging
from 30 MeV in the M2 model to 110 MeV in the P model.
The imaginary parts of the K~ potentials are rather shallow
inside the nucleus, which reflects sizable downward energy
shift to the vicinity of threshold of the main decay channel
K~N — n¥. The apparent dip in the surface region is due to
the low-density limit adopted in §4/s [see Eq. (10)].

The 1s binding energies Bx- and widths ['x- in selected
nuclei are presented in Fig. 7. The calculated K~ binding
energies are strongly model dependent due to different depths
of ReVI(;_) in various K ~ N interaction models. However, they
exhibit similar A dependence in all models considered. The
K~ widths are rather small and weakly A dependent. The KM

ReVy! (MeV)

r (fm)

model predicts widths up to three times larger than the P and
M1 models. The M2 model yields similar widths as the KM
model for 2%®Pb and *°Zr, while the widths in lighter nuclei are
comparable with the P model widths. It is to be noted that we
get no kaonic nuclear bound states for the Bonn models B2 and
B4 because the real parts of the in-medium K~ N amplitudes
are repulsive in the relevant subthreshold region (see Figs. 1
and 2).

InFig. 8 (left panel) we compare K ~-nuclear single-particle
spectra in 40Ca, calculated using various K~ N interaction
models. Again, the K~ binding energies Bg- strongly depend
on the model used. The relative position of the K ~ spectra is in
accordance with the depths of the K ~-nucleus potentials VI?,)
shown in Fig. 6. The corresponding K~ N — mY conversion

. , . , .
o TR
D0k e o N \\\ ,l/;/ _
L M2 KM ™/ 1
S a0b -
[5) -
s P 1
‘:L>M _60 — —
E i 1
80+ _
100 .
L | L | L
0 4 6
r (fm)

FIG. 6. Real (left) and imaginary (right) parts of the K ~ nuclear potential V,((lf in **Ca calculated self-consistently using chiral P (dot-dashed
line), KM (solid line), M1 (dashed line), and M2 (dotted line) amplitudes.
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FIG. 7. 1s K~ binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently in P (circles), KM
(squares), M1 (diamonds), and M2 (triangles) models. K ~-multinucleon interactions are not considered.

widths are presented in Fig. 8 (right panel). In the P and KM
models, the 1s-state widths are reduced due to considerable
energy shift towards the 7% threshold and become smaller
than the widths of excited states, for which 4/s is farther from
the r X threshold. On the other hand, the K~ widths calculated
in M1 and M2 models follow the opposite trend. It is because
/s in these models is much closer to the K~ N threshold where
the (dominant) imaginary part of the K~ p amplitudes starts
to decrease towards the threshold (see Fig. 2). This feature
is more pronounced in the M2 model, which gives a smaller
downward energy shift due to the shallower K ~ potential (1d
and 2s states are unbound).

Following results of calculations presented so far, one might
conclude that at least some K~ N interaction models predict
sufficiently bound kaonic nuclear states with relatively narrow
widths. In the nuclear medium, however, K~ multinucleon
processes take place as well. They are becoming more and

100
40 -
- CatK A
8O s -
e =
> Ip™-
s | ]
M 40+ S -
—. 1d
20+ R -
2s -
0 =
P KM M M2

more important with increasing nuclear density and K~
binding energy [28,29]. We will demonstrate their significant
role in self-consistent calculations of kaonic nuclei in the next
section.

III. THE ROLE OF K~ MULTINUCLEON INTERACTIONS

The K~ multinucleon interactions are an inseparable
component of every realistic description of K ~-nucleus
interactions. As was shown in recent analysis by Friedman and
Gal [18], the single-nucleon K~ potential constructed within
all chiral meson-baryon interaction models considered in this
work has to be supplemented by a phenomenological term
representing K~ multinucleon processes in order to obtain
good fit to kaonic atom data. The total K~ optical potential
is then a sum of single-nucleon and multinucleon potential
Vk- = V1(<],) + v, where the single-nucleon potential VI((],) is

50

VoarK -
40l

P KM M1 M2

FIG. 8. K~ binding energies (left) and widths (right) in s, p, and d levels in #0Ca calculated self-consistently in P, KM, M1, and M2

models. K~ -multinucleon interactions are not considered.
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TABLE 1. Values of the complex amplitude B and exponent «

used to evaluate V,((z,) for all chiral meson-baryon interaction models

considered in this work.

P1 KM1 P2 KM2
o 1 1 2 2
ReB (fm) —-13+02 -09+£02 -05=+06 03=%0.7
ImB (fm) 1.5 £ 0.2 14 £02 46 £07 38 £0.7

B2 B4 M1 M2
o 0.3 0.3 0.3 1
ReB (fm) 24 £ 0.2 3.1 +£0.1 03 £01 21=£02
ImB (fm) 0.8 £ 0.1 0.8 £ 0.1 08 £01 12=£02

given by Eq. (2) and the multinucleon term V,((z,) is of the form

o
2Re(wy- )V = —4n3(ﬁ> o. (11)
00

The values of the complex amplitude B and positive exponent
« listed in Table I were obtained by fitting kaonic atom data
for each K~ N amplitude model separately [18]. Moreover,
the total K~ optical potentials Vg- were then confronted
with branching ratios of K~ absorption at rest. Only two
models, P and KM, were found to reproduce simultaneously
the fractions of K~ single-nucleon absorption from bubble
chamber experiments [20-22] and kaonic atom data. Yet we
performed calculations for all six discussed K~ N amplitude
models. It is to be noted that the P and KM models could
be regarded as equivalent within the uncertainties shown in
Table I.

The dominant mode of K~ absorption on two nucleons in
the nuclear interior is the nonpionic conversion K" NN —
YN [19,28,30]. Since the amplitude ImB is constant, we
multiply it by kinematical suppression factor to account for
phase space reduction for decay products in K" NN — XN
absorption in the nuclear medium. The suppression factor used
in our calculation is of the form

o = M| L5y — (my + ms)|lsm — (my —myx)?]
ENT G2\ IM? = (my + my)21M? — (my — ms )]

X O(/s,, —my —ms), 12)

where M = 2my + mg- and /s, = M — 8./s [28].

It is to be noted that for processes on a single nucleon, the
proper energy dependence is embedded directly in the K~ N
amplitudes constructed within chirally motivated coupled-
channels models.

Analyses of Friedman and Gal have shown that kaonic atom
data constrain reliably the real part of the K ~ optical potential
up to ~25% of py and its imaginary part up to ~50% of
po- The shape of the phenomenological K~ optical potential
VI((Z,) in the nuclear interior is thus a matter of extrapolation
to higher densities. In order to allow for more flexibility, we
consider different options for V[(f,) beyond the half density limit
p(r) =0.5p) in our calculations. First, the form (11) is
applied in the entire nucleus (full density option, FD). Second,
the potential VI((Z,) is fixed at constant value Vﬁ (0.5p¢) for
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FIG. 9. Subthreshold energies probed in the 2%®Pb + K~ nucleus
as a function of relative density p/py, calculated self-consistently
in all K~ N amplitude models considered, supplemented by the FD
variant of V,(f,). The dashed and dotted areas denote the uncertainty
bands calculated in the KM1 and KM2 models and the shaded gray
band represents their overlap.

p(r) = 0.5p¢ (half density limit, HD). In the third approx-
imation (TR), the tp form of VI((Z_) is assumed for densities
p(r) > 0.5p, in Eq. (11), ie., V> ~ —4xB(0.5)p for
p(r) = 0.5p0.

In Fig. 9, we present subthreshold energy shift
84/s = E — Ey, as a function of the nuclear density in 2**Pb,
calculated in all K~ N interaction models considered in this
work, with the FD version of the K~ multinucleon potential.
For illustration, we show also the uncertainties involved in the
KMI1 and KM2 multinucleon potentials. They are denoted by
dashed and dotted areas and the gray shaded band denotes their
overlap. After including the K~ multinucleon interactions in
the KM and P models (the only two models accepted by
analysis of Ref. [18]), the energy shift 8./s for a particular
density becomes smaller and moves back towards the K~ N
threshold (compare Fig. 4 and Fig. 9). On the other hand, the
B2, B4, and M2 models supplemented by a strongly attractive
K~ multinucleon potential ReV,((z,) (see Table I) probe much
deeper energy region below threshold than the KM and P
models. In fact, fairly deep ReVI(f,), (200-300) MeV, causes
that K~ will be bound even in the Bonn models B2 and B4.

We witness large model dependence of the downward
energy shifts §4/s, ranging from —35 to —230 MeV in
the nuclear center. This suggests that the models yield
considerably different K~ optical potentials. Yet, the KM and
P models could be regarded as equivalent since they all lie in
corresponding uncertainty bands and describe kaonic atom
data equally well. We note that the free-space amplitudes
in the M1, M2, B2, and B4 models were available only for
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FIG. 10. The respective contributions from K~ N (dashed dotted line) and K~ NN (dashed line) potentials to the total real (left) and
imaginary (right) K~ optical potential in the ***Pb + K~ nucleus, calculated self-consistently in the FD version of KMI (top) and KM2
(bottom) models. The shaded areas denote the uncertainty bands. The K~ single-nucleon potential (KN, blue solid line) calculated in the KM

model (i.e., without multinucleon interactions) is shown for comparison.

/s = 1370 MeV. Therefore, we fixed the K~ N amplitudes at
constant value Fg-y(1370) when /s got below 1370 MeV in
our self-consistent calculations.

The individual contributions from single-nucleon VI((I_) and

multinucleon VI((Z_) potentials to the total K~ optical potential
V- including their uncertainties (shaded areas) are shown
in Fig. 10, calculated self-consistently for 2Pb + K~ in the
KM1 (top panels) and KM2 model (bottom panels) and the
FD version of VI((Z,). For comparison, we present the single-
nucleon K~ N potential (KN, blue solid line) derived from the
K~ N amplitude model KM without considering multinucleon
interactions. The contribution from Re VI((Z_) tothe total real K -
nucleus potential is repulsive in the KM1 model, as well as in

the P1 and P2 models (not shown in the figure). As a result, the
total K ~-nucleus potential including multinucleon processes
is less attractive than the original single-nucleon K ~-nucleus
potential. In the KM?2 model the contribution from Vl(f,) brings
additional attraction to the total potential due to positive sign
of the effective amplitude ReB (see Table I). However, the
extensive uncertainty band in Fig. 10 proves that the sign of
ReB in the KM2 model is insignificant. The V1(<1—) part of the
optical potential in the KM1 and KM2 models (as well as in
other models) differs from the original single-nucleon K~ N
potential due to the different subthreshold energy shift (see
Fig. 9 and Fig. 4). The uncertainties in the K~ N part arise
from variations of §./s caused by the uncertainties in total
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FIG. 11. Theratio of ImVI(J,) (dashed line) and ImVl(f,) (solid line)
potentials to the total K~ imaginary potential ImVk- as a function
of radius, calculated self-consistently for the 1s K~ state in 2%Pb
using the KM1 model and different options for the K~ multinucleon
potential. The relative nuclear density p/p, (dotted line) is shown for
comparison.

K~ -nuclear potential. The depths of the total ReVg- in the
KM1(2), P1(2), and M1 models including the multinucleon
potential VI((Z,) are of the range ~(50-100) MeV (not quoting
uncertainties).

Adding K~ multinucleon absorptions dramatically in-
creases the depth of the total imaginary K~ potential as
illustrated in the right panels of Fig. 10. In the KM models
(as well as P models, not shown in the figure), ImVg- is
much deeper than ReVg- for both values of @ even when the
uncertainties are taken into account. The K~ multinucleon
processes contribute substantially to K~ absorption mainly
in the interior of a nucleus. As a result, the depth of
ImVg- ~(70-170) MeV in the KM1, P1, and M1 models and
ImVg- >~ 270 MeV in the KM2 and P2 models (not quoting
uncertainties). The range of V,(f,) potential is considerably

smaller than the range of the V,((l,) potential and thus in the
surface region of a nucleus, K~ single-nucleon absorption
dominates in accordance with experimental findings [20-22].

The B2, B4, and M2 models yield the real part of the total
K ~-nucleus potential extremely deep, ~(200-300) MeV in
the nuclear interior, thanks to a strongly attractive ReV,(f,). On
the contrary, the imaginary part of the Vg - potentials in these
models is shallower than in the KM 1 model.

Next, we evaluated the fractions of the K~ single- and
multinucleon absorptions as a ratio of ImVI?,) and ImVl(f,)
with respect to the total imaginary K~ potential ImVk-.
These ratios are depicted in Fig. 11 as a function of radius,
calculated self-consistently for the 1s K ~ state in 2°Pb using
the KM1 model and HD, TR, and FD options for V,(<2,). For
comparison, the relative density p/p¢ (thin dotted line) is
shown here as well. Since the range and density dependence
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TABLE II. 1s K~ binding energies and widths (in MeV) in vari-
ous nuclei calculated using the single-nucleon K~ N KM amplitudes
(denoted KN); plus a phenomenological amplitude B(p/p)“, where
o = 1 and 2, for “half-density limit” (HD), tp option (TR), and full
density option (FD).

KM model

KN HD TR FD HD TR FD

oLi Bx- 25 11 Not Not 23 19  Not
I'k- 45 116 bound bound 122 160 bound
2C Bgx- 45 34 20 Not 48 44  Not
k- 44 114 182 bound 125 191 bound
0  Bgx- 45 34 25 Not 48 46  Not
Cx- 40 109 158 bound 121 167 bound
0Ca Bx- 59 50 40 Not 64 63 Not

k- 37 113 164 bound 126 175 bound
NZr  Bx- 69 56 47 17 72 71 30

k- 36 107 156 312 120 167 499
28pp  Bx- 78 64 56 33 80 80 53

Cyx- 38 108 153 273 122 163 429
P model a=1 a=2

KN HD TR FD HD TR FD

L Bk~ 38 21 Not Not 36 28  Not
I'k- 40 112 bound bound 133 183 bound
2c Bxk- 64 50 35 Not 64 57  Not
k- 28 96 165 bound 122 196 bound
Y0 By 64 50 39 Not 63 59 Not
k- 25 94 142 bound 117 169 bound
“Ca By~ 81 67 56 Not 82 79  Not

Tk- 14 95 145 bound 120 175 bound

NZr  Bx- 90 74 62 19 87 8  Not
Fg- 12 88 136 340 114 164 bound

28ph B 99 82 70 37 92 92 474

k- 14 92 137 302 117 163  412°

“the solution of the Klein-Gordon equation for Im Vi - scaled by factor
0.8.

of VI((I,) and V,((z,) potentials is different (see Fig. 10) the

relative contribution of ImV,((l,) and ImV,({Z,) to K~ absorption
is changing with the radius (density). In the surface region
of a nucleus, the dominant process is the K~ absorption on a
single nucleon, while in the nuclear interior, the single-nucleon
absorption is reduced due to the vicinity of the & X threshold
and multinucleon absorption prevails. All three higher-density
versions of VI((Z,) yield the same fractions of single- and
multinucleon absorption at the nuclear surface and differ
slightly from each other inside the nucleus.

The above-discussed K~ N amplitude models supple-
mented by K~ multinucleon interactions described by the
phenomenological potential V,(f,) were applied to calculations
of K™ -nuclear bound states in various nuclei across the
periodic table. We considered all three extrapolations HD, TR,
and FD of V.

In Table II, we present 1s K~ binding energies Bg- and
widths 'k -, calculated in the KM and P models, respectively.
For comparison, we show also K~ binding energies and
widths calculated only with the underlying chirally inspired
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TABLE III. 1s K~ binding energies and widths (in MeV) in '°O
and °*Pb calculated using the single-nucleon K~ N amplitudes M1,
M2, B2, B4 plus a phenomenological amplitudes B(p/po)* from
Table I.

PHYSICAL REVIEW C 96, 015205 (2017)

TABLE IV. K~ binding energies and widths (in MeV) in **Pb
calculated using the single-nucleon K~ N KM amplitudes (denoted
KN); plus a phenomenological amplitude B(p/pp)*, where « = 1, for
half density (HD) and full density (FD) options (see text for details).

M1 M2 B2 B4

KN FD KN FD KN FD KN FD

%0 Bx- 25 48 10 135 Not 98 Not 170
Tk- 16 117 22 244 bound 271 bound 190
28pp Bx- 56 80 38 170 Not 146 Not 200
k- 14 121 32 214 bound 259 bound 174

K~ single-nucleon potential. In these models, which provide
reasonable description of kaonic atom data and fractions
of K~ single- and multinucleon absorptions at rest, K~
widths increase considerably after including K ~ multinucleon
processes, while K~ binding energies change only slightly
(they decrease in KM1, P1, and P22 models and increase in
KM2 model). For the FD multinucleon potentials V(z_), the
antikaon is unbound in the vast majority of nuclei. In *°Zr
and 2°Pb, we found 1s K~ quasibound states, however, the
K~ binding energies of such states are small and widths are
huge, one order of magnitude larger than the binding energies.
For other variants of V,((z,) potential, HD and TR, K~ widths
are of order ~100 MeV but, again, the binding energies are
much smaller than the widths in most nuclei. The smallest K ~
widths are predicted in the P model for « = 1 and the HD
option; nevertheless, they still exceed noticeably the binding
energies. These results hold generally and remain valid even
when the uncertainties in the multinucleon potential V,(f,) are
taken into account.

For completeness, we show in Table III binding energies
and widths of the K~ 1s states in '°0 and 2*®Pb, calculated in
M1, M2, B2, and B4 models and FD variant of V,(f,). Unlike
KM and P models, these models give K~ quasibound states
for the FD option also in '°O due to strongly attractive K~
multinucleon interactions. However, the predicted K ~ binding
energies are again much smaller than the widths (except the B4
model, which yields comparable binding energies and widths).
Howeyver, it is to be stressed that none of the models in Table 111
reproduces experimental values of the fractions of K~ single-
and multinucleon absorptions at rest.

Table IV presents the binding energies and widths of K~
quasibound states in 208pp, - calculated in the KM1 model
with FD and HD options of the multinucleon potential. The
binding energies and widths of K~ states calculated with the
underlying K~ N single-nucleon potentials (KN) are presented
here for comparison. The K~ N — 7Y conversion widths are

’For the FD variant of the P2 model, we had to scale huge
imaginary part ImVg- by factor 0.8 in order to get fully converged
self-consistent solution of the Klein-Gordon equation Eq. (1). The
calculation with the unscaled imaginary potential is not numerically
stable due to extremely strong K~ absorption—the nonconverged
I'k- > 500 MeV while the corresponding Bx- < 15 MeV.

pp+ K- 1s  lp 1d 1f lg 1h li
KN Bg- 78 70 61 52 42 31 20

Fxk- 38 38 40 42 45 46 47
HD Byx- 64 58 51 42 33 22 8

k- 108 110 112 115 120 127 143
FD  Bg- 33 24 9 Not Not Not Not
k- 273 285 306 bound bound bound bound

gradually increasing in excited states as §./s is moving away
from the 7 X threshold. However, the increase in the KM
model is not as pronounced as in the P model [15], where the
difference between the K~ widths due to K~ single-nucleon
absorption in the 1s and 1i states is 235 MeV (compare also
[k~ of excited states in *°Ca for various K~ N amplitude
models in Fig. 8). For the HD option of multinucleon potential,
the K~ binding energies are smaller and widths are more than
twice larger than in the KN case. In the FD version of V(z,),
the number of excited K~ quasibound states is considerably
reduced because of strong K ~ absorption.

IV. CONCLUSIONS

We performed calculations of K~ nuclear quasi-bound
states using K -nucleus optical potentials derived self-
consistently from K~N amplitudes, obtained within sev-
eral recent chirally-motivated meson-baryon coupled-channels
models. Following analyses of Friedman and Gal [17,18]
these models need to be supplemented by a phenomenological
term representing K — multinucleon interactions in order to fit
kaonic atom data. Though only the P and KM models are able
to reproduce at the same time the experimentally determined
fractions of K ~ single-nucleon absorption at rest [ 18], we con-
sidered also the other K~ N amplitude models in order to ex-
plore model dependence of our calculations. The main aim of
our work was to assess the effect of the K~ multinucleon pro-
cesses on binding energies and widths of kaonic nuclear states.

First, we constructed the chirally motivated K~ single-
nucleon part of the optical potential using six different sets of
K~ N amplitudes. In order to account for Pauli correlations
in the nuclear medium, we applied the multiple-scattering
WRW procedure [26]. We verified that hadron self-energies,
considered in previous calculations of in-medium K~ N
amplitudes [13,14], affect the K~ single-nucleon potential
only slightly in the energy region relevant to our current
calculations. An important aspect of chirally motivated K~ N
amplitudes is their energy dependence, which has to be
treated self-consistently, taking into account the non-negligible
contribution from K~ and N momenta. Each of the considered
models gives different depths of ReVk- in a nucleus and thus
probes different energy regions below the K~ N threshold. The
resulting K~ binding energies Bg- are then strongly model
dependent. The widths of the 1s K ~-nuclear states come out
quite small. The smallest widths I'x- are predicted by the
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Murcia model M1, whereas the KM model predicts the K~
widths three times as large.

Next, we added to each K~ single-nucleon potential V1(<1,)
a corresponding phenomenological multinucleon potential
VI((Z,), parameters of which were recently fitted to kaonic
atom data [18]. Since the kaonic-atom data probe the K~
optical potential reliably up to at most ~50% of py, we
considered three different scenarios for extrapolating V1(<2—)
to higher densities, p > 0.509. Though the applied models
differ widely in the subthreshold region, our calculations
lead to some quite general conclusions, valid for each of
the K ~-nucleus interaction models. We found that the K~
multinucleon absorption gives rise to substantial increase of
the widths of K~ -nuclear states. The K~ widths exceed
considerably the K~ binding energies in the vast majority of
nuclei. In the KM and P models, the only models accepted by
the analysis of Friedman and Gal [18], the FD variant of V1(<2-)
even does not yield any K ~-nuclear bound state in most of the
nuclei under consideration. We verified that these conclusions
remain valid even after taking into account the uncertainties in
the multinucleon potential VI((Z,).

After exploring various chirally inspired coupled-channels
models of meson-baryon interactions together with a

PHYSICAL REVIEW C 96, 015205 (2017)

phenomenological K~ multinucleon part fitted to reproduce
the experimental data, we feel free to conclude that the widths
of K~ -nuclear quasibound states in nuclei with A > 6 are
considerably larger than their binding energies. Therefore,
observation of such states in experiment seems highly unlikely.
We believe that our results will stimulate theoretical studies of
the role of K~ multinucleon processes in lighter K ~-nuclear
systems in which few-body techniques are applicable.
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