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Fluctuations of conserved quantities, such as baryon, electric charge, and strangeness number, are sensitive
observables in heavy-ion collisions to search for the QCD phase transition and critical point. In this paper, we
performed a systematical analysis on the various cumulants and cumulant ratios of event-by-event net-strangeness
distributions in Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV from an ultrarelativistic

quantum molecular dynamics model. We performed a systematical study on the contributions from various strange
baryons and mesons to the net-strangeness fluctuations. The results demonstrate that the cumulants and cumulant
ratios of net-strangeness distributions extracted from different strange particles show very different centrality and
energy-dependence behavior. By comparing with the net-kaon fluctuations, we found that the strange baryons
play an important role in the fluctuations of net strangeness. This study can provide useful baselines to study
the QCD phase transition and search for the QCD critical point by using the fluctuations of net strangeness in
heavy-ion collisions experiment. It can help us to understand noncritical physics contributions to the fluctuations
of net strangeness.
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I. INTRODUCTION

One of the main goals of the high-energy nuclear collisions
is to explore the phase structure of strongly interacting hot
and dense nuclear matter and map the quantum chromody-
namics (QCD) phase diagram, which can be displayed by
the temperature (T ) and baryon chemical potential (μB).
Finite-temperature lattice quantum chromodynamics (LQCD)
calculations at zero baryon chemical potential region predicted
that the transition from the hadronic phase to quark-gluon
plasma phase is a smooth crossover [1,2], While at large μB

and low-temperature region, the finite density phase transition
is of first order [3–5]. So, there should be an end point at the
end of the first-order phase transition boundary towards the
crossover region [6,7].

Fluctuations of conserved quantities, such as net baryon
(B), net charge (Q), and net strangeness (S), have been
predicted to be sensitive to the QCD phase transition and QCD
critical point. Experimentally, one can measure various order
moments [variance (σ 2), skewness (S), kurtosis (κ)] of the
event-by-event conserved quantities distributions in heavy-ion
collisions. These moments are sensitive to the correlation
length (ξ ) of the hot dense matter created in the heavy-ion
collisions [8–10] and also connected to the thermodynamic
susceptibilities computed in lattice QCD [11–21] and in
the hadron resonance gas (HRG) [22–28] model. These
have been studied widely in experiment and theoretically
[29–36]. Experimentally, strange hadrons in the final-state
production can provide deep insight into the characteristics
of the system since they are not inherent inside the nuclei of
the incoming beam. Thus, the yield ratios and fluctuations of
strange particles have been studied at different experiments

*xfluo@mail.ccnu.edu.cn

[37–40]. Experimentally, the STAR experiment has reported
the cumulants of net-kaon (proxy for net-strangeness) multi-
plicity distributions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,

62.4, and 200 GeV [36,41]. However, the net kaon is not a
conserved quantity in QCD. We want to know to what extent
the net-kaon fluctuations can be used as an approximation of
fluctuations of net strangeness in heavy-ion collisions. Thus,
we calculated the cumulants of net-strangeness distributions
in Au+Au collisions at RHIC BES energies by including
different strange baryons and mesons with an ultrarelativistic
quantum molecular dynamics (UrQMD) model in version 2.3
[42]. This is to study the contribution from the strange baryons
and mesons to the fluctuations of net strangeness. This study
can provide baselines and qualitative background estimates for
the search for QCD phase transition and QCD critical point in
relativistic heavy-ion collisions.

This paper is organized as follows. In Sec. II, we will
introduce the UrQMD model. Then we show the definition
of cumulants and cumulant ratios in heavy-ion collisions in
Sec. III. Furthermore, we present the net-strangeness fluctua-
tion with the contributions from different strange particles in
Au+Au collisions from the UrQMD calculations and discuss
physical implications of these results in Sec. IV. Finally, the
summary will be given in Sec. V.

II. UrQMD MODEL

The ultrarelativistic quantum molecular dynamics
(UrQMD) [42] approach is one of the microscopic transport
models to describe subsequent individual hadron-hadron
interactions and system evolution. Based on the covariant
propagation of all hadrons with stochastic binary scattering,
color string formation, and resonance decay [42], the UrQMD
model can provide phase-space descriptions [43] of different
reaction mechanisms. At higher energies, e.g.,

√
sNN > 5 GeV,

2469-9985/2017/96(1)/014909(7) 014909-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.014909


CHANG ZHOU, JI XU, XIAOFENG LUO, AND FENG LIU PHYSICAL REVIEW C 96, 014909 (2017)

the quark and gluon degrees of freedom can not be neglected.
Also, the excitation of color strings and their subsequent
fragmentation into hadrons are the dominant mechanisms for
the multiple production of particles.

In addition, the UrQMD approach can simulate hadron-
hadron interactions at heavy-ion collisions with the entire
available range of energies from SIS energy (

√
sNN = 2 GeV)

to RHIC top energy (
√

sNN = 200 GeV) and the collision term
in the UrQMD model covers more than 50 baryon species
and 45 meson species as well as their antiparticles [42]. The
comparison of the data (this paper deals with net-strangeness
fluctuations) onto those obtained from the UrQMD model will
tell about the contribution from the hadronic phase and its
associated processes.

III. OBSERVABLES

Experimentally, one can measure particle multiplicity in
an event-by-event basis. By measuring the final-state strange
particle and antiparticles in heavy-ion collisions, we can count
the strange quark (Ns) and antistrange quark number (Ns̄) in
those strange hadrons, respectively. Different strange particles
have different numbers of (anti)strange quarks, e.g., the strange
baryons �, �, and � consist of 1, 2, and 3 strange quarks,
respectively, and the strange quark and antistrange quark
carry negative and positive strangeness quantum numbers,
respectively. We use N = Ns̄ − Ns to denote the number of the
net strangeness in one event and 〈N〉 = 〈Ns̄〉 − 〈Ns〉 to denote
the mean value of the net strangeness over the whole sample,
where Ns and Ns̄ represent the number of strange quarks and
antistrange quarks in one event (Nf = ∑

i n
f
i pi, f = s̄,s) and

the n
f
i are the strange (f = s) or antistrange quark number

(f = s̄) for the strange particle pi in one event.
Then the deviation of N from its mean value can be defined

as δN = N − 〈N〉. The various order cumulants of event-by-
event distributions of the variable N can be defined as follows:

C1,N = 〈N〉, (1)

C2,N = 〈(δN )2〉, (2)

C3,N = 〈(δN )3〉, (3)

C4,N = 〈(δN )4〉 − 3〈(δN)2〉2. (4)

Once we have the definition of cumulants, various moments
of net-strangeness distribution can be written as

M = C1,N , (5)

σ 2 = C2,N , (6)

S = C3,N

(C2,N )3/2
= 〈(δN)3〉

σ 3
, (7)

κ = C4,N

(C2,N )2
= 〈(δN)4〉

σ 4
− 3. (8)

Statistically [44], various cumulants are used to describe
the shape of a probability distribution. For instance, the
variance (σ 2) characterizes the width of a distribution,
while the skewness (S) and kurtosis (κ) are used to describe
the asymmetry and peakness of a distribution, respectively.
Theoretical and QCD-based model calculations show that the

high-order cumulants of conserved quantities, such as baryon,
strangeness, and electric charge number, are proportional to
the high power of correlation length (ξ ) [9,11].

〈(δN)2〉 ∼ ξ 2, (9)

〈(δN)3〉 ∼ ξ 4.5, (10)

〈(δN )4〉 − 3〈(δN )2〉2 ∼ ξ 7. (11)

Lattice QCD calculation tells us that the cumulants of
conserved quantities are sensitive to the susceptibilities of the
system [15,45],

Cn,N = V T 3χ
(n)
N (T ,μN ), (12)

where V is the volume of the system. Experimentally, it is very
difficult to measure the volume of the collision system, so the
cumulant ratios are constructed to remove the effect of system
volume. The moment product κσ 2 and Sσ can be expressed
in terms of cumulant ratios:

χ
(3)
N

χ
(2)
N

= C3,N

C2,N

= (Sσ )N , (13)

χ
(4)
N

χ
(2)
N

= C4,N

C2,N

= (κσ 2)N . (14)

With the above definitions, we can calculate various cu-
mulants and cumulant ratios for the measured event-by-event
net-particles multiplicity distributions.

IV. RESULTS

In this section, we present the centrality, rapidity, and
collision energy dependence of various cumulants (C1,C2,C3,
and C4) and cumulant ratios (κσ 2,Sσ ) of net-strangeness
distributions for Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6,

27, 39, 62.4, and 200 GeV from the UrQMD model. From low
to high energies, the corresponding statistics are 35, 113, 113,
83, 135, 135, and 56 ×106 minimum bias events, respectively.

The statistical errors are estimated based on the 
 theorem
[46,47]. To avoid autocorrelation, the collision centralities
are determined by the (anti)proton and charged pion mul-
tiplicities within pseudorapidity |η| < 1. We perform our
calculation with four cases [(i)K,(ii)K + �,(iii)K + � +
� + � + �,(iv)K + K0 + � + � + � + �], where both the
particles and antiparticles are included. For each case, we can
calculate the cumulants of net-strangeness distributions.

Figure 1 shows the pseudorapidity distributions (dN/dη)
of strange quarks and antistrange quarks for the most central
(0–5%) Au+Au collisions at

√
sNN = 7.7–200 GeV calculated

from the UrQMD model for the above four cases. The dN
dη

|
η=0

of strange and antistrange quarks monotonously increase with
increasing collision energy from 7.7–200 GeV for all the four
cases. If one considers only the K+ and K− (top row in Fig. 1),
the dN/dη distributions of the antistrange quarks are above
the strange quarks at all energies. The differences of dN/dη
between strange quark and antistrange quark become smaller
at higher energies. If we include the strange baryons, such as
the case of (K + � + � + � + �), the dN/dη distributions
of strange quarks are slightly above the antistrange quarks.
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FIG. 1. The dN/dη distribution of strange and antistrange quark multiplicities in four different cases in 0–5% most central Au+Au
collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV from the UrQMD model.

This can be explained by the interplay between the associate
production and pair production of K+ and K− from lower to
higher energies. At lower energies, the associated production
from the reaction channel NN → N�K+ dominates the
production of K+, which leads to the number of sbar quarks
being larger than the number of s quarks. However, the K+
and K− are mainly produced from pair production at higher
energies, which means the number of s̄ quarks and s quarks
are similar.

If we want to know to what extent the net-kaon fluctuations
can reflect the fluctuations of net strangeness, the first step
is to demonstrate the fraction of strangeness carried by K+
and K− over the total strangeness. Figure 2 shows the energy
dependence of ratios, which are the number of total strangeness
carried by kaons (K+ and K−) divided by the total strangeness
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FIG. 2. Energy dependence of yields ratio for the most central (0–
5%) Au+Au collisions at midrapidity (|η| < 0.5) from the UrQMD
model.

from all strange particles at midrapidity in 0–5% most central
Au+Au collisions from UrQMD calculations. We found that
the ratios of NK−/Ns+s̄ and NK++K−/Ns+s̄ have a smooth
increase with energy increasing from 7.7–200 GeV and the
value of NK++K−/Ns+s̄ at

√
sNN = 200 GeV is about 45%.

On the other hand, the ratios of NK+/Ns+s̄ smoothly decrease
with increasing energy. At low energies, such as 7.7, 11.5, and
19.6 GeV, the values of NK+/Ns+s̄ are much larger than those
of NK−/Ns+s̄ whereas the values of NK+/Ns+s̄ and NK−/Ns+s̄

are very close to each other at higher energies. The effects of
the energy dependence of changing kaon production can also
be explained by the kaon production mechanism. We also show
the fraction of strangeness carried by K0 and K̄0 over the total
strangeness, which are similar to the charged kaons. This can
be understood by the isospin balance between u and d quarks
in the midrapidity of heavy-ion collisions. The yields between
K+ and K0, K−, and K̄0 should be very close to each other,
respectively.

Figure 3 shows the centrality dependence of various
cumulants of net-strangeness multiplicity distributions at
midrapidity in Au+Au collisions at

√
sNN = 7.7–200 GeV

from UrQMD calculations. Based on the similarity of the
trends, those cumulants (C1,C2,C3, and C4) can be separated
into odd-order (C1,C3) and even-order cumulants (C2,C4).
The C2 and C4 show monotonic increase from peripheral
collision to central collision and the even-order cumulants
of net strangeness extracted from K and K + � have very
close values. It is observed that C1 and C3 also have a
similar trend and the values of net strangeness from K +
� and K + K0 + � + � + � + � are close to zero. The
net-strangeness number at initial state is zero, due to the
strangeness conservation, the net-strangeness number should
be also zero at final state. The results indicate a better
approximation for the real net strangeness is reached by
including more strange particles into the calculations. On the
other hand, the odd-order cumulants of net strangeness from
K + � + � + � + � are negative. This is because that it
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FIG. 3. Various cumulants of net-strangeness multiplicity distributions as a function of Npart at midrapidity region (|η| < 0.5) for Au+Au
collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV with the UrQMD model.

has a greater number of strange baryons (such as �, �, �,
and �) than the number of antistrange baryons especially at
low energies. This explains why the odd-order cumulants of
net strangeness (Ns̄ − Ns) remain negative.

Figure 4 shows various cumulants of net-strangeness
multiplicity distributions as a function of pseudorapidity
window size for the 0–5% most central Au+Au collisions
at

√
sNN = 7.7–200 GeV from UrQMD calculations. It is

similar to the centrality dependence of various cumulants
as is shown in Fig 3. The odd-order cumulants C1 and C3

show linear variation with the window size and the results
from K + � + � + � + � remain negative due to the large
number of strange quarks. For the even-order cumulants, they
show linear increase with increasing the rapidity window size.
When 
η is around 3, the even-order cumulants can reach

saturation and suppression, which can be understood by the
effects of net-strangeness number conservation.

Figure 5 displays various cumulants as a function of
collision energy at midrapidity for the most central (0–5%)
Au+Au collisions from the UrQMD model. We can observe
that the even-order cumulants (C2,C4) increase with increas-
ing the collision energy. However, the odd-order cumulants
(C1,C3) of net kaon decrease with increasing the collision
energy. Additionally, the mean value of net strangeness
from K + � and K + K0 + � + � + � + � are close to
zero. To understand those energy-dependence trends, let us
introduce the important properties of cumulants and moments
[8]. We use Cn to denote the nth-order cumulant of the
probability distribution of the random variable X. According
to the additivity of cumulants for independent variables, the
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FIG. 4. Pseudorapidity window size dependence of various cumulants of net-strangeness distributions for the most central (0–5%) Au+Au
collisions from

√
sNN = 7.7–200 GeV with the UrQMD model.
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FIG. 5. Energy dependence of various cumulants of net-
strangeness multiplicity distributions at midrapidity region (|η| <

0.5) for most central (0–5%) Au+Au collisions with the UrQMD
model.

additivity of cumulants can be written as

Cn(X + Y ) = Cn(X) + Cn(Y ), (15)

where X,Y are independent random variables, respectively.
With the homogeneity properties of cumulants, we have

Cn(X − Y ) = Cn(X) + Cn(−Y ) (16)

= Cn(X) + (−1)nCn(Y ). (17)

If the random variables X and Y are independently
distributed as Poisson distributions, then the X − Y will
distributed as Skellam distribution, the cumulants of net-

strangeness multiplicity distributions can be denoted by:

Cn(X − Y ) = Cn(X) + (−1)nCn(Y ) (18)

= 〈X〉 + (−1)n〈Y 〉. (19)

For odd-order cumulants:

C1(X − Y ) = C3(X − Y ) = 〈X〉 − 〈Y 〉. (20)

For even-order cumulants, we have:

C2(X − Y ) = C4(X − Y ) = 〈X〉 + 〈Y 〉, (21)

where, the X denotes the number of antistrange quark (X =
Ns̄), Y is the number of strange quark (Y = Ns), and X − Y
represents the net-strangeness number (X − Y = Ns̄ − Ns).
The energy dependence shown in Fig. 5 can be attributed to the
interplay between production mechanisms of strange and an-
tistrange particles as a function of energy. At low energies, the
associate production channel NN → N�K+ dominates the
production of K+, which makes the yield of K+ larger than
the yield of K−. At high energies, due to pair production,
the yields of the strange and antistrange particles are very
close to each other. For the case of net-kaon cumulants, from
Eq. (20), one can infer that the difference between odd-order
cumulants of K+ and K− will become small as increasing the
collision energies. Because of the additivity of the even-order
cumulants from s̄ quarks and s quarks as displayed by Eq. (21),
the even cumulants of net strangeness show an increasing
trend with increasing of the collision energy for different
cases. Since more strange particles are included, we observe
larger values of the even-order cumulants. Meanwhile, the net
strangeness obtained from K + K0 + � + � + � + � is a
good approximation of the real net strangeness and the values
of odd-order cumulants are close to zero.

Figure 6 and 7 show κσ 2 and Sσ of the net-strangeness
distributions as a function of the average number of participant
nucleons (Npart) in Au+Au collisions at

√
sNN = 7.7–200 GeV

from the UrQMD model. The κσ 2 from different cases show
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FIG. 6. Centrality dependence of κσ 2 in Au+Au collisions at
√

sNN = 7.7–200 GeV from the UrQMD model.
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weak centrality dependence. For the case of K and K + �,
the values of κσ 2 are consistent with unity within errors.
By including more multistrange baryons, such as the case
of K + � + � + � + �, the values of κσ 2 are above unity.
This indicates that the multistrange baryons play an important
role in the high-order fluctuations of net strangeness. This is
similar to the two charged particles in net-charge fluctuations.
The Sσ of net kaon increase with increasing the number
of participants and the values from K + � + � + � + �
and K + K0 + � + � + � + � are negative. This can be
explained by the Eq. (14). Because the C3 of the net strangeness
are negative, the Sσ are negative.

Figure 8 shows κσ 2 and Sσ of net-strangeness distributions
as a function of colliding energy for the most central (0–5%)
Au+Au collisions at midrapidity. The κσ 2 of net strangeness
especially from K and K + � are closed to unity and show
weak dependence on collision energy If the multistrange
baryons are included in the calculations, the values of κσ 2

are above unity. We also observed that the Sσ of net-kaon
distributions decrease with increasing collision energy and
the values calculated from K + � and K + K0 + � + � +
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FIG. 8. Energy dependence of cumulant ratios (κσ 2,Sσ ) of
net-strangeness multiplicity distribution in the most central (0–5%)
Au+Au collisions at midrapidity (|η| < 0.5) with the UrQMD model.

� + � are close to zero. One can observe different energy-
dependence behavior between κσ 2 and Sσ . This is because the
skewness is sensitive to the asymmetry between strangeness
and antistrangeness while the kurtosis is sensitive to the
multistrange baryon with strangeness number |s| >= 2. This
is similar with the net-charge case in that the charged two
particles have strong effects on net-charge fluctuations [22]. If
we take out the K0, the values of the Sσ become negative
and monotonically decrease with decreasing energy. This
indicates that the neutral kaons carry a similar amount of
strangeness as the charged kaons and show similar trends in
the Sσ as a function of energy. On the other hand, based on
a hadronic transport model (JAM) study in Au+Au collisions
at 5 GeV, we find that the effects of hadronic scattering on
proton fluctuations is negligible. One could also expect that
the hadronic rescattering effects are also small in net-kaon
fluctuations, however, detailed model studies are needed to be
carried out in the future.

V. SUMMARY

We have performed systematical studies on the centrality,
rapidity, and energy dependence of the cumulants (C1−C4) and
cumulant ratios (κσ 2 and Sσ ) of net-strangeness distributions
in Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39,

62.4, and 200 GeV from the UrQMD model. It is found
that fluctuations of net strangeness can be influenced by the
production mechanism of strangeness as a function of collision
energy, which causes different results between lower energies
and higher energies. Those differences can be understood
as the associate production of K+ plays an important role
at lower energies whereas pair production of strangeness
and antistrangeness dominates at higher energies. On the
other hand, our results show that κσ 2 of net strangeness has
weak centrality and energy dependence. In the current model
study, we showed that the fraction of total strangeness carried
in kaons is smaller than 45% and monotonically decreases
with decreasing energy. By comparing with the net-kaon
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fluctuations, we found that the multistrange baryons play an
important role in the fluctuations of net strangeness. Those
multistrange baryons lead to the values of κσ 2 becoming
above unity. However, in terms of searching for nonmonotonic
energy dependence of the fluctuation observable near QCD
critical point, the net-kaon fluctuations should still have
sensitivity. Since there is no QCD critical point and phase
transition physics implemented in the UrQMD model, our

model calculations can provide a baseline to search for the
QCD critical point in heavy-ion collisions.

ACKNOWLEDGMENTS

The work was supported in part by the MoST of China
973-Project No. 2015CB856901, NSFC under Grants No.
11575069 and No. 11221504.

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo,
Nature (London) 443, 675 (2006).

[2] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B
643, 46 (2006).

[3] S. Ejiri, Phys. Rev. D 78, 074507 (2008).
[4] G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP 04

(2011) 001.
[5] P. de Forcrand and O. Philipsen, Nucl. Phys. B 642, 290 (2002).
[6] M. A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004);

Int. J. Mod. Phys. A20, 4387 (2005).
[7] Z. Fodor and S. D. Katz, JHEP 04 (2004) 050.
[8] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[9] C. Athanasiou, K. Rajagopal, and M. Stephanov, Phys. Rev. D

82, 074008 (2010).
[10] Y. Hatta and M. A. Stephanov, Phys. Rev. Lett. 91, 102003

(2003); 91, 129901(E) (2003).
[11] R. V. Gavai and S. Gupta, Phys. Lett. B 696, 459 (2011).
[12] R. V. Gavai and S. Gupta, Phys. Rev. D 78, 114503 (2008).
[13] M. Cheng et al., Phys. Rev. D 79, 074505 (2009).
[14] A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012).
[15] H.-T. Ding, F. Karsch, and S. Mukherjee, Int. J. Mod. Phys. E

24, 1530007 (2015).
[16] A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D 86,

034509 (2012).
[17] B. Friman, F. Karsch, K. Redlich, and V. Skokov, Eur. Phys. J.

C 71, 1694 (2011).
[18] S. Mukherjee, R. Venugopalan, and Y. Yin, Phys. Rev. C 92,

034912 (2015).
[19] K. Morita, B. Friman, and K. Redlich, Phys. Lett. B 741, 178

(2015).
[20] P. Alba et al., arXiv:1702.01113.
[21] J. Noronha-Hostler, R. Bellwied, J. Gunther, P. Parotto, A.

Pasztor, I. P. Vazquez, and C. Ratti, J. Phys.: Conf. Ser. 779,
012050 (2017).

[22] F. Karsch and K. Redlich, Phys. Lett. B 695, 136 (2011).
[23] P. Garg, D. K. Mishra, P. K. Netrakanti, B. Mohanty, A. K.

Mohanty, B. K. Singh, and N. Xu, Phys. Lett. B 726, 691
(2013).

[24] J. Fu, Phys. Lett. B 722, 144 (2013).

[25] M. Nahrgang, M. Bluhm, P. Alba, R. Bellwied, and C. Ratti,
Eur. Phys. J. C 75, 573 (2015).

[26] P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. M. Sarti, M.
Nahrgang, and C. Ratti, Phys. Lett. B 738, 305 (2014).

[27] P. Alba, R. Bellwied, M. Bluhm, V. M. Sarti, M. Nahrgang, and
C. Ratti, Phys. Rev. C 92, 064910 (2015).

[28] P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. M. Sarti,
M. Nahrgang, and C. Ratti, J. Phys.: Conf. Ser. 599, 012021
(2015).

[29] X. Luo, M. Shao, C. Li, and H. Chen, Phys. Lett. B 673, 268
(2009).

[30] M. Nahrgang, 9th International Workshop on Critical Point and
Onset of Deconfinement, PoS CPOD2014, 032 (2015).

[31] J.-W. Chen, J. Deng, and L. Labun, Phys. Rev. D 92, 054019
(2015).

[32] L. Jiang, P. Li, and H. Song, Nucl. Phys. A 956, 360 (2016).
[33] S. Gupta, X. Luo, B. Mohanty, H. G. Ritter, and N. Xu, Science

332, 1525 (2011).
[34] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett. 103,

262301 (2009).
[35] M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
[36] J. Thaeder (STAR Collaboration), Nucl. Phys. A 956, 320

(2016).
[37] E. Al., J. Phys. G: Nucl. Part. Phys. 27, 311 (2001).
[38] F. Antinori et al. (NA57 Collaboration), Phys. Lett. B 595, 68

(2004).
[39] C. Alt et al. (NA49 Collaboration), Phys. Rev. Lett. 94, 192301

(2005).
[40] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89,

092301 (2002).
[41] J. Xu (STAR Collaboration), J. Phys.: Conf. Ser. 779, 012073

(2017).
[42] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[43] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); 41, 225

(1998).
[44] A. Hald, Int. Stat. Rev. 68, 137 (2000).
[45] X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).
[46] X. Luo, J. Phys. G 39, 025008 (2012).
[47] X. Luo, Phys. Rev. C 91, 034907 (2015); 94, 059901(E) (2016).

014909-7

https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1103/PhysRevD.78.074507
https://doi.org/10.1103/PhysRevD.78.074507
https://doi.org/10.1103/PhysRevD.78.074507
https://doi.org/10.1103/PhysRevD.78.074507
https://doi.org/10.1007/JHEP04(2011)001
https://doi.org/10.1007/JHEP04(2011)001
https://doi.org/10.1007/JHEP04(2011)001
https://doi.org/10.1007/JHEP04(2011)001
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevLett.91.129901
https://doi.org/10.1103/PhysRevLett.91.129901
https://doi.org/10.1103/PhysRevLett.91.129901
https://doi.org/10.1016/j.physletb.2011.01.006
https://doi.org/10.1016/j.physletb.2011.01.006
https://doi.org/10.1016/j.physletb.2011.01.006
https://doi.org/10.1016/j.physletb.2011.01.006
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.79.074505
https://doi.org/10.1103/PhysRevD.79.074505
https://doi.org/10.1103/PhysRevD.79.074505
https://doi.org/10.1103/PhysRevD.79.074505
https://doi.org/10.1103/PhysRevLett.109.192302
https://doi.org/10.1103/PhysRevLett.109.192302
https://doi.org/10.1103/PhysRevLett.109.192302
https://doi.org/10.1103/PhysRevLett.109.192302
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1140/epjc/s10052-011-1694-2
https://doi.org/10.1140/epjc/s10052-011-1694-2
https://doi.org/10.1140/epjc/s10052-011-1694-2
https://doi.org/10.1140/epjc/s10052-011-1694-2
https://doi.org/10.1103/PhysRevC.92.034912
https://doi.org/10.1103/PhysRevC.92.034912
https://doi.org/10.1103/PhysRevC.92.034912
https://doi.org/10.1103/PhysRevC.92.034912
https://doi.org/10.1016/j.physletb.2014.12.037
https://doi.org/10.1016/j.physletb.2014.12.037
https://doi.org/10.1016/j.physletb.2014.12.037
https://doi.org/10.1016/j.physletb.2014.12.037
http://arxiv.org/abs/arXiv:1702.01113
https://doi.org/10.1088/1742-6596/779/1/012050
https://doi.org/10.1088/1742-6596/779/1/012050
https://doi.org/10.1088/1742-6596/779/1/012050
https://doi.org/10.1088/1742-6596/779/1/012050
https://doi.org/10.1016/j.physletb.2010.10.046
https://doi.org/10.1016/j.physletb.2010.10.046
https://doi.org/10.1016/j.physletb.2010.10.046
https://doi.org/10.1016/j.physletb.2010.10.046
https://doi.org/10.1016/j.physletb.2013.09.019
https://doi.org/10.1016/j.physletb.2013.09.019
https://doi.org/10.1016/j.physletb.2013.09.019
https://doi.org/10.1016/j.physletb.2013.09.019
https://doi.org/10.1016/j.physletb.2013.04.018
https://doi.org/10.1016/j.physletb.2013.04.018
https://doi.org/10.1016/j.physletb.2013.04.018
https://doi.org/10.1016/j.physletb.2013.04.018
https://doi.org/10.1140/epjc/s10052-015-3775-0
https://doi.org/10.1140/epjc/s10052-015-3775-0
https://doi.org/10.1140/epjc/s10052-015-3775-0
https://doi.org/10.1140/epjc/s10052-015-3775-0
https://doi.org/10.1016/j.physletb.2014.09.052
https://doi.org/10.1016/j.physletb.2014.09.052
https://doi.org/10.1016/j.physletb.2014.09.052
https://doi.org/10.1016/j.physletb.2014.09.052
https://doi.org/10.1103/PhysRevC.92.064910
https://doi.org/10.1103/PhysRevC.92.064910
https://doi.org/10.1103/PhysRevC.92.064910
https://doi.org/10.1103/PhysRevC.92.064910
https://doi.org/10.1088/1742-6596/599/1/012021
https://doi.org/10.1088/1742-6596/599/1/012021
https://doi.org/10.1088/1742-6596/599/1/012021
https://doi.org/10.1088/1742-6596/599/1/012021
https://doi.org/10.1016/j.physletb.2009.02.044
https://doi.org/10.1016/j.physletb.2009.02.044
https://doi.org/10.1016/j.physletb.2009.02.044
https://doi.org/10.1016/j.physletb.2009.02.044
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1103/PhysRevD.92.054019
https://doi.org/10.1016/j.nuclphysa.2016.01.034
https://doi.org/10.1016/j.nuclphysa.2016.01.034
https://doi.org/10.1016/j.nuclphysa.2016.01.034
https://doi.org/10.1016/j.nuclphysa.2016.01.034
https://doi.org/10.1126/science.1204621
https://doi.org/10.1126/science.1204621
https://doi.org/10.1126/science.1204621
https://doi.org/10.1126/science.1204621
https://doi.org/10.1103/PhysRevLett.103.262301
https://doi.org/10.1103/PhysRevLett.103.262301
https://doi.org/10.1103/PhysRevLett.103.262301
https://doi.org/10.1103/PhysRevLett.103.262301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1016/j.nuclphysa.2016.02.047
https://doi.org/10.1016/j.nuclphysa.2016.02.047
https://doi.org/10.1016/j.nuclphysa.2016.02.047
https://doi.org/10.1016/j.nuclphysa.2016.02.047
https://doi.org/10.1088/0954-3899/27/3/308
https://doi.org/10.1088/0954-3899/27/3/308
https://doi.org/10.1088/0954-3899/27/3/308
https://doi.org/10.1088/0954-3899/27/3/308
https://doi.org/10.1016/j.physletb.2004.05.025
https://doi.org/10.1016/j.physletb.2004.05.025
https://doi.org/10.1016/j.physletb.2004.05.025
https://doi.org/10.1016/j.physletb.2004.05.025
https://doi.org/10.1103/PhysRevLett.94.192301
https://doi.org/10.1103/PhysRevLett.94.192301
https://doi.org/10.1103/PhysRevLett.94.192301
https://doi.org/10.1103/PhysRevLett.94.192301
https://doi.org/10.1103/PhysRevLett.89.092301
https://doi.org/10.1103/PhysRevLett.89.092301
https://doi.org/10.1103/PhysRevLett.89.092301
https://doi.org/10.1103/PhysRevLett.89.092301
https://doi.org/10.1088/1742-6596/779/1/012073
https://doi.org/10.1088/1742-6596/779/1/012073
https://doi.org/10.1088/1742-6596/779/1/012073
https://doi.org/10.1088/1742-6596/779/1/012073
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1111/j.1751-5823.2000.tb00318.x
https://doi.org/10.1111/j.1751-5823.2000.tb00318.x
https://doi.org/10.1111/j.1751-5823.2000.tb00318.x
https://doi.org/10.1111/j.1751-5823.2000.tb00318.x
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1088/0954-3899/39/2/025008
https://doi.org/10.1088/0954-3899/39/2/025008
https://doi.org/10.1088/0954-3899/39/2/025008
https://doi.org/10.1088/0954-3899/39/2/025008
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.94.059901
https://doi.org/10.1103/PhysRevC.94.059901
https://doi.org/10.1103/PhysRevC.94.059901



