
PHYSICAL REVIEW C 96, 014619 (2017)
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Four light-mass nuclei are considered by an effective two-body clusterization method: 7Li as 3H + 4He, 7Be as
3He + 4He, 8Be as 4He + 4He, and 6Li as 2H + 4He. The low-energy spectra of the first three are determined from
single-channel Lippmann-Schwinger equations. For the last, two uncoupled sets of equations are considered:
those involving the 3S1 and those of the posited 1S0 states of 2H. Low-energy elastic scattering cross sections
are calculated from the same 2H + 4He Hamiltonian, for many angles and energies for which data are available.
While some of these systems may be more fully described by many-body theories, this work establishes that a
large amount of data may be explained by these two-body clusterizations.
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I. INTRODUCTION

The scattering and cluster spectra formed by an α particle
with each of the four light-mass nuclei considered herein
constitute basic information required for studies of nuclear
reactions responsible for the relative abundances of light
atomic nuclei observed throughout the universe. These arose
from the big bang, and in light stars (�1.5M�) proton-proton
chain reactions lead to the formation of nuclei up to mass 8.
Once the α particles generated in those reactions are present
in sufficient number, the triple-α process can produce 12C, the
crucial feature being the energy of the Hoyle state in 12C lying
just above the breakup threshold. In the triple-α process, the
first two α particles fuse to form 8Be whose instability to α
decay results in an equilibrium concentration of 8Be in stellar
environments.

As noted by Dubovichenko and Uzikov [1], experimen-
tal studies of astrophysical nuclear reaction properties are
complicated by the fact that the energies of most relevance
are extremely low; frequently so low that direct measurement
is nearly impossible. Thus, astrophysical quantities are often
extrapolated from scattering data taken at higher energies, and
such linear extrapolation is not always justified. In addition,
experimental errors in measured cross sections are often large
(for radiative capture cross sections they are as much as 100
percent), depreciating the results of any extrapolation. In such
cases, theoretical predictions such as those presented herein
can be necessary.

In recent years, the spectra and elastic scattering of these
light mass cluster systems has become of interest as test beds
for modern theoretical techniques. For example, Refs. [2–4]
used the resonating group method with the no-core shell model
(RGM-NCSM) and Ref. [5] used an Alt-Grassberger-Sandhas
three-body approach to that end. An interesting method of
analytic continuation of the elastic scattering data at positive
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energies to negative energies was investigated in Ref. [6],
and applied to extract bound-state properties of the 2H + 4He
system.

Dubovichenko and Uzikov [1] note that while there are
many microscopic models of the continua of light mass nuclei,
they usually entail cumbersome multichannel calculations, the
accuracy of which cannot always be determined reliably. Con-
sequently, with the view toward current or future assessments
of astrophysical aspects of nuclear physics, the application
of relatively simple, but realistic, models is justified. Usually
such model calculations are set by finding the best agreement
with available low-energy scattering data. Herein we follow
that procedure but add the requirement that the cluster model
reproduce the low lying spectrum (bound and resonant) of the
compound nucleus, including the binding energy relative to
the cluster pair threshold.

In this way we consider the light mass clusters leading
to the four compound nuclei of interest to be describable
with an effective two-body, single-channel model. None of the
four nuclei forming the clusters have low-lying excited states
below nucleon breakup thresholds. However the compound
systems formed, 6Li, 7Li, 7Be, and 8Be, do. We use a
Sturmian expansion approach to solve Lippmann-Schwinger
(LS) equations; an approach that provides a low energy
spectrum (bound and continuum states) of the compound
nucleus formed by each cluster considered, as well as giving
the relevant S matrices with which scattering cross sections
can be evaluated.

In this investigation, we calculate the low-energy elastic
scattering cross section of the 4He + 2H system and the
low-energy spectrum of 6Li from the same clusterization,
both using the same interaction potential. Investigation of the
low-energy scattering of deuterons from 4He dates back to
experimental work in the 1930s [7]. As noted, Refs. [2–4] used
a RGM-NCSM method and considered 2H-4He scattering,
among other reactions. Reference [5] used an Alt-Grassberger-
Sandhas three-body method in momentum space at deuteron
energies of 4.81 and 17.0 MeV also for the 2H-4He system.
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While details of this scattering may be investigated in a more
fundamental way, e.g., by using three- or six-body approaches,
it remains useful to investigate how much of the spectrum
and cross section may be explained by a simpler two-body
clusterization. A similar phenomenological semimicroscopic
model has been used recently to calculate phase shifts, for
which a good match to data was obtained [1] as was the
calculated S factor for capture.

We have also used the same method to specify the spectra
of 7Li and 7,8Be from the clusters of 3H, 3He, and 4He with
4He respectively. Spectra of 7Li and 7Be have been found
previously [8] by solving the coupled-channel problems of
nucleons coupling to 6He and 7Be nuclei allowing for the
nucleons to interact with low excitation states of the nuclei.
The results agreed well with known states in the spectra. Here
we do not have a coupled-channel problem since, for the range
of energies we consider, all nuclei involved can be taken to be
in their ground states. The spectra of the two mass-7 nuclei
have two bound states and two resonance states below ∼7 MeV
excitation.

The last system we consider, 8Be, has only two resonance
states in its low excitation spectrum: the ground and first
excited states at 3.03 MeV. The next resonance state has a
centroid of 11.35 MeV. The ground state resonance lies just
0.0918 MeV above the two-α breakup threshold and is very
narrow (5.57 eV); both features are crucially important in the
three-α stellar process. The 4He-4He cluster calculation is of
the simplest form in the effective two-body approach, and the
two resonance states can be found with appropriate energy
values.

In the next section we give a précis of the method used
and follow that with a short statement on the forms of charge
distributions used to ascertain the Coulomb interactions of
the clusters. Then in Sec. IV we report on the spectra of the
clusters 7Li and 7,8Be found with the method we have used.
The spectra and scattering cross sections for the 2H-4He cluster
are then given and discussed in Sec. V. Conclusions are drawn
in Sec.VI.

II. STURMIAN EXPANSION SOLUTIONS
OF LIPPMANN-SCHWINGER EQUATIONS

The method uses separable expansions of the assumed
interaction potentials between two nuclei. The form factors in
that expansion are derived from Sturmian functions defined
from the chosen two-cluster interaction potentials. In the
cases of 4He coupled with 3H, 3He, and another 4He cluster,
the two nuclei have no excited states of low excitation. For
example 4He has resonance states, but they lie above 20 MeV
excitation. Thus, we deal with single channel interactions of a
spin- 1

2 or spin-0 particle with a spin-0 4He. With the 2H-4He
clusterization, we consider that there are two uncoupled sets
of equations to solve; those formed by the 3S1 and, separately,
the 1S0 states of the 2H.

Then with channels c = (l,I ); Jπ (l is the orbital quantum
number of relative motion, I the spin 0, 1

2 , or 1 as appropriate
for the nucleus chosen to cluster with an 4He nucleus), the LS

equations for the single-channel T matrices have the form

T Jπ

cc′ (p,q; E) = V Jπ

cc′ (p,q) + μ
∑
c′′

∫ ∞

0
V Jπ

cc′′ (p,x)

× x2

k2 − x2 + iε
T Jπ

c′′c′ (x,q; E)dx, (1)

where the momentum k = √
μE, with μ designating

2mred/h̄
2; mred is the reduced mass. Solutions of Eq. (1) are

sought using the (finite sum) expansion

Vcc′ (p,q) ∼
N∑

n=1

χ̂cn(p) η−1
n χ̂c′n(q). (2)

To evaluate scattering cross sections, one needs the S matrices
which are linked to the T matrices as [9,10]

Scc′ = δcc′ − iπμkc′Tcc′

= δcc′ − i(lc′−lc+1)πμ

N∑
n,n′=1

√
kcχ̂cn(kc)

× ([η − G0]−1)nn′ χ̂c′n′(kc′)
√

kc′ , (3)

In this representation, G0 and η have matrix elements

[G0]nn′ = μ
∑

c

∫ ∞

0
χ̂cn(x)

x2

k2 − x2 + iε
χ̂cn′(x)dx,

[η ]nn′ = ηnδnn′ . (4)

Bound states of the compound system, if they exist, are defined
by the zeros of the matrix determinant in Eq. (3) when the
energy, E, is less than zero.

The input matrices of potentials are taken to have the form

Vcc′ (r) = V coul
cc′ (r) + [V0δc′cf (r) + V��f (r) [� · �]

+VIIf (r)[I · I] + V�Ig(r)[� · I]]cc′ , (5)

wherein local form factors (Woods-Saxon functions)

f (r) = [
1 + e( r−R

a
)
]−1

, g(r) = 1

r

df (r)

dr
, (6)

are used. If needed, the surface can be deformed (R =
R(θφ) = R0[1 + ε]). Details of this and of the relevant matrix
elements are given in Ref. [11]. V coul

cc′ (r) are elements of the
Coulomb potential matrix. The forms we use are given in the
next section.

III. CHARGE DISTRIBUTIONS FOR THE NUCLEI AND
THE COULOMB INTERACTION BETWEEN THEM

We assume both nuclei in the cluster have finite charge
distributions of three parameter Fermi (3pF) form, viz.,

ρch(r) = ρ0

[
1 + wc

(
r

Rc

)2
]

1

1 + exp
(

r−Rc

ac

) , (7)

where Rc and ac are the radius and diffuseness parameters for
a Woods-Saxon distribution, and wc is a scaling parameter.
The central charge density is that with which the volume
integral of the distribution equates to the charge of the nucleus
represented.
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FIG. 1. The geometry for two interacting nuclei, both having a
3pF charge distribution.

To define the Coulomb interaction between such charge
distributions, first consider that felt by a positively charged
point test particle with charge δe and a general spherical charge
distribution, ρ0f (r), i.e.,

V
(pt)

coul (r) = δe

∫
ρ0f (r ′)

1

|r′ − r|dr′. (8)

After expanding in multipoles and performing angular inte-
gration, the only nonzero component comes from the s wave
(� = 0), whence

V
(pt)

coul (r) = 4π (δe)ρ0

∫ ∞

0
f (r ′)v�=0(r ′,r)r ′2dr ′. (9)

where v�=0(r ′,r) = 1
r>

with r> and r< being the greater and
lesser of r ′ and r , respectively. The radial integration splits
into two terms, giving

V
(pt)

coul (r) = 4π (δe)ρ0

[
1

r

∫ r

0
f (s)s2ds +

∫ ∞

r

1

s
f (s)s2 ds

]
.

(10)

With both nuclei in the clusterization having 3pF charge
distributions, the field given in Eq. (10) is folded with the
3pF charge distribution for the second body. The geometry is
as shown in Fig. 1.

With s =
√

r2 + r ′2 − 2rr ′ cos(θ ), the Coulomb potential
is

Vcoul(r) = 2π

∫ ∞

0
r ′2f (r ′)dr ′

∫ π

0
V

(pt)
coul (s) sin(θ ) dθ. (11)

For 4He, the parameter values of the 3pF charge distribution
are as given in Ref. [12,13]. They are Rc = 1.008 fm, ac =
0.327 fm, and w = 0.445. As 3H is listed [12,13] as also
having a root-mean-square (rms) charge radius of 1.7 fm, the
4He parameter set has been used for its charge distribution
as well. 3He is listed [12,13] as having a slightly larger rms
charge radius, 1.88 fm. As there is no specified set of 3pF
parameters given, we considered a range of values for them,
since, as shown in Ref. [14], variation in the three parameters
leads to minimal difference in results provided the rms charge
radius is kept constant. The set used is listed in Table I.

For 2H, the rms charge radius has been determined [15] to
be 2.13 fm. To have that value with the average distribution of
the single proton smeared out over an appreciable distance, that

TABLE I. Diverse 3pF parameter values giving a root-mean-
square charge radius of 1.88 fm.

Rc 1.02 1.02 1.04 1.04 1.06 1.06 1.08 1.08 1.1
ac 0.358 0.362 0.358 0.362 0.356 0.36 0.356 0.36 0.356
w 0.49 0.43 0.48 0.42 0.5 0.44 0.49 0.46 0.48

rms radius is met using the set of 3pF parameters R = 0.012
fm, ac = 0.592 fm, and wc = 0.

IV. STUDIES OF THE 3H + 4He, 3He + 4He
AND 4He + 4He SYSTEMS

These cases are taken to be single-channel problems given
that the components are quite strongly bound and have no
excited states below nucleon emission thresholds. However,
the compound systems do have well established spectra and,
for the 3H + 4He and 3He + 4He systems, the states that
we might expect to obtain with a potential model are those
indicated in Table II. The reactions involving 4He that lead to
them, or have the mass-7 states as a compound system, are
indicated by the check marks.

No orthogonalizing pseudopotential (OPP) [17] to effect
inclusion of the Pauli principle has been used in treating
these clusters as single-channel problems since all states found
thereby are orthogonal. Thus any state that should be blocked
because it requires the 7 or 8 nucleons to lie in the 0s shell
simply can be ignored. Only if there is channel coupling does
a problem arise in ensuring that the Pauli principle is satisfied
[11]. With channel coupling, all resultant states of the cluster
are linear combinations of all states of the same spin-parity
defined in the potentials for each of the target states considered.

A. The 3H + 4He and 3He + 4He systems

Spectra of 7Li and 7Be have been found previously [8]
using the multi-channel algebraic scattering (MCAS) program
written for spin- 1

2 particles coupling to a nucleus. The results
agreed well with known states in the spectra. A program has
now been written for 4He (spin-0) particles coupling to a
nucleus. This has been used to again calculate the spectra
for the compound nuclei, 7Li and 7Be, as a check against the
results found earlier [8].

For the check run, the interaction with strength parameter
values (in MeV), V0 = −76.8, Vll = 1.15, and VlI = 2.34 was
used. The geometry of the Woods-Saxon form was set with
R0 = 2.39 and a = 0.68 fm. The Coulomb potential was set,
as in Ref. [8], to be that from a uniformly charged sphere.
The charge radius for the 4He + 3H calculation was taken
as Rc = 2.34 fm, while a slightly larger charge radius (2.39)
was used for the 3He + 4He calculation. These values differ
(slightly) from those used previously [8] in a study of the
same compound systems but taken as 3H and 3He projectiles
coupled to an 4He target. The differences are due primarily
to our current use of the nuclear masses listed in Ref. [19]
rather than the nucleon mass numbers. Using this interaction,
we obtained the results listed in Table III and in the columns
with the heading “check.” The comparison between the results
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TABLE II. States in 7Li and of 7Be relevant to this investigation and known reactions [16] involving 4He that populate them.

J π 7Li 7Be

3H(4He,n) 4He(3He,π+) 4He(4He,p) 4He(3He,γ ) 4He(3He,3He),(3He,p) 4He(4He,n)

3
2

− √ √ √ √ √
1
2

− √ √ √ √
7
2

− √ √
5
2

− √ √

given in Ref. [8] and by these check runs is sufficiently good
that we deem the two codes used to give equivalent results.

Using 3pF distributions for both nuclei in the clusters
instead of the uniform sphere approach above, and with
adjusted nuclear potential parameter values, the results listed in
Table III in the columns specified as “present” were obtained.
For these results, the nuclear interaction parameter values were
V0 = −80.15 MeV, V�� = 1.1 MeV, and V�I = 3.0 MeV with
a Woods-Saxon geometry, R0 = 2.35 fm and a0 = 0.64 fm.
The 3pF parameter set defined above to give an rms charge
radius of 1.7 fm was used for both 3H and 4He, while that
used for 3He we choose to be the first set in Table I, namely
Rc = 1.02 fm, ac = 0.358 fm, and wc = 0.49. Using the other
sets of parameter values listed in Table I (all of which gave
an rms charge radius of 1.88 fm) varied the spectral energies
from those listed by no more 25 keV (centroids and widths).

The “present” results agree to within 200 keV (energies
and widths). This is encouraging since only the 4He breakup
thresholds (2.47 and 1.59 MeV for 7Li and 7Be) lie in the range
shown.

B. The 4He + 4He system

We have evaluated the spectrum resulting for the clusters
4He + 4He as another single-channel problem, since the 4He
nucleus is strongly bound and has no other bound state in
the (low-energy) spectrum. From Ref. [16], we note that
the 0+

1 and 2+
1 states of 8Be have been found with the

4He(4He,γ ) and 4He(4He,4He) reactions. With a (positive-
parity) interaction (V0 = −47.1 MeV, Vll = 0.4 MeV, R0 =
2.1 fm, and a0 = 0.6 fm) and the Coulomb potential from
folding two 3pF distributions, two low-excitation resonance
states for 8Be, relative to the cluster threshold, are found.

They are the ground state (0+) resonance having centroid
and width energies of 0.092 MeV and 5 eV (cf. experimental
values [18] 0.092 MeV and 5.96 eV) and a first excited (2+)
resonance state with centroid and width energies of 3.16 and
1.11 MeV compared with experimental values of 3.03 and
1.51 MeV respectively. With this simple (local Woods-Saxon)
single-channel interaction, no 4+ resonance state is found, at
least below 20 MeV excitation.

In this case, the interaction allows a 0s state bound by
20 MeV, which, due to Pauli blocking, is deemed to be spurious
and so has been ignored since all resultant states from the single
channel problem are orthonormal.

V. RESULTS FOR THE 2H + 4He SYSTEM; CROSS
SECTION AND SPECTRUM OF 6Li.

We consider the 2H-4He system as two single-channel
problems: one for the 3S1 (ground) state and the other for
the posited 1S0 state of the deuteron. We do not consider the
states to be coupled by a spin-isospin changing interaction. The
deuteron states are both of positive parity and the low excitation
spectrum of 6Li only has positive parity states, so the dominant
character of the interaction potentials is of positive parity.
The results were obtained using V0 = −64.775, Vll = 0.93,
VlI = 1.97, and V +

II = −2.0 (all in MeV) with a geometry of
R0 = 2.3 and a0 = 0.43 fm. We also allowed the potential to
have a second-order deformation contribution with β2 = 0.22.
No negative parity interaction has been used, as no such states
are known.

6Li has a known low-energy spectrum containing six states:
a 1+; 0 ground state, followed by 3+; 0, 0+; 1, 2+; 0, 2+; 1
states, and finally a second 1+; 0 at 5.65 MeV. The next state

TABLE III. Spectra of 7Li and 7Be from a 4He coupled to 3H and 3He respectively. The energies are in MeV while the widths are in keV.
The experimental values are those listed in Ref. [18].

J π 7Li 7Be

Exp. Present Check Ref. [8] Exp. Present Check Ref. [8]

3
2

−
Spurious −31.1 −29.6 −29.4 Spurious −29.7 −27.8 −28.0

1
2

−
Spurious −29.6 −28.0 −27.8 Spurious −28.3 −26.3 −26.4

3
2

− −2.47 −2.49 −2.59 −2.47 −1.59 −1.55 −1.53 −1.53
1
2

− −1.99 −1.81 −1.87 −1.75 −1.16 −0.90 −0.85 −0.84
7
2

−
2.18(69) 2.23(83) 2.09(80) 2.12(83) 2.98(175) 3.19(180) 3.14(204) 3.07(180)

5
2

−
4.13(918) 4.16(717) 4.05(800) 4.12(834) 5.14(1200) 5.15(1040) 5.13(1250) 5.09(1194)
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is 17.98 MeV above the ground state. The 3+ state appears as
a clear resonance in the 2H + 4He cross section, 2.186 MeV
above the ground state (or 0.7117 MeV above the scattering
threshold, at Ed = 1.067 MeV or Eα = 2.135 MeV) [20–26].
Also evident is the 2+

1 resonance 4.31 MeV above the 6Li
ground state (or 2.8375 MeV above the scattering threshold,
at Ed = 4.253 MeV or Eα = 8.507 MeV) [21,27–29]. Present
but less pronounced is the 1+ resonance 5.65 MeV above
the 6Li ground state (or 4.1757 MeV above the scattering
threshold at Ed = 6.264 MeV or Eα = 12.527) [30,31]. It is
possible that Ref. [32] shows data for the 0+ resonance of 6Li
3.563 MeV above the ground state (or 2.0887 MeV above the
scattering threshold at Ed = 3.133 MeV or Eα = 6.266 MeV),
but the data points are sparse. The 2+

2 state of 6Li 4.31 MeV
above the ground state (or 2.8357 MeV above the scattering
threshold) does not appear in data. Data also exist for higher
energies [33–38].

Cross sections calculated at fixed scattering angles using
the associated S matrices of Eq. (3) angles are compared
to measured data in Figs. 2 and 3. The angles at which
calculations have been made are shown in each segment of
these figures. The data shown in these figures are taken from
Ref. [32] (filled circles) at 37.2◦, 50.0◦, 51.67◦, 90.0◦, and
120.0◦, from Ref. [22] (open circles) at 38.75◦, 48.9◦, 90.0◦,
and 125.0◦, from Ref. [27] (filled squares) at 51.9◦, 90.0◦,
125.3◦, and 139.1◦, from Ref. [30] (open squares) at 50.36◦,
87.23◦, 120.1◦, 137.5◦, 163.0◦, and 164.5◦, from Ref. [22]
(upside down triangles) at 38.75◦, 48.9◦, 90.0◦, and 125.0◦,
from Ref. [20] (filled triangles) at 90.0◦ and 120.0◦, and from
Ref. [21] (open triangles) at 90.1◦, 125.2◦, 140.7◦, and 167.7◦.
They are given in the segments in which they are closest to
the calculation angle. All cross sections are in center-of-mass
frame, and projectile energies are all in laboratory frame with
an α-particle target. While the calculation is defined with a
deuterium target, the appropriate change of frames has been
performed.

In both Figs. 2 and 3, two calculated resonance features are
evident. They coincide with the first excited, isoscalar, 3+, and
the isoscalar 2+ states of 10Be. In the middle panel of Fig. 2, the
locations of the experimentally known and calculated states of
10Be are shown. In Fig. 3, wherein our results are compared
with data taken at backward scattering angles, to more clearly
see the structures, the plots are fully logarithmic. Again the 3+
and 2+ resonances are most evident and the calculated results
for energies above ∼5 MeV are too small, not revealing any
resonance effect due to formation of the isoscalar 1+ and of
the isovector 2+ states. Also shown in the bottom panel is
a second calculated result taken from Ref. [4]. Their model
gives a better description of the data in the 4 to 8 MeV
region. More specifically, the shape of the 3+ resonance is
re-created well at most scattering angles, centroids, and widths
and with reasonable strengths. The exception is the result
for θcm = 125◦ where, while the resonance effect is noted
at the correct centroid energy, the magnitude is too low. Off
resonance, our calculated results agree by and large with the
available low energy data. For the higher energy region, the
resonance feature due to formation of the 2+ state is well
re-created at 50◦ and 164◦, and reasonably well at some of
the other angles. The nonresonant background calculated at

0

0.5

1

1.5

2

38.75o

37.2o

49.9o

(a)

Calculated at 38o

0

0.3

0.6

0.9

dσ
/d

Ω
 (b

/s
r)

3+

21
+, expt. & calc.

1+, expt.

1+, calc.

(b)

Calculated at 50o

011
Edeuteron (MeV)

0

0.1

0.2

0.3 (c)

Calculated at 90o

FIG. 2. Experimental elastic cross sections for 2H + 4He scatter-
ing compared with the calculations at fixed angles (a) 38◦, (b) 50◦,
and (c) 90◦. The data are from Refs. [20–22,27,30,32]. The 50◦ panel
shows energies where resonances are found in the spectrum, both
observed and calculated.

energies above this resonance usually is underestimated and
the 1+ resonance present in the data is not reflected in our
calculated results. This resonance was found by the six-body
calculation of 2H-2He scattering by Ref. [4], however, and so
is a distinctive difference in the results of a more sophisticated
calculation than ours.

Cross sections calculated at fixed energies are compared
to experiment in Figs. 4 and 5. The former shows differential
cross sections for eight deuteron energies, ranging from 0.88
to 6.3 MeV. For clarity, the results and data in the left hand
panel are depicted semilogarithmically, those in the right hand
panel are shown on linear scales. In Fig. 5 we examine five
data sets, four of which were also studied in Ref. [4], at 2.935,
6.695, 8.971 and 12 MeV, and the fifth that was studied in
Ref. [5]. The notation is as given for Figs. 2 and 3 with
additional data depicted as follows: Ref. [39] (filled inverted
triangles), Ref. [31] (open inverted triangles), Ref. [40] (left
filled triangles), Ref. [41] (open left triangles), and Ref. [42]
(filled diamonds).
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r) Calculated at 140o
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Calculated at 164o

Hupin ’15
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(f)

FIG. 3. Experimental elastic cross sections for 2H + 4He com-
pared with the calculations of this work and Ref. [4], at fixed
angles (d) 120◦ and 125◦, (e) 140◦, and (f) 164◦. The data are from
Refs. [20–22,27,30,32].

With some exceptions, this two-body calculation tends to
reproduce the small-angle scattering better than data at larger
angles, matching small-angle data slightly better than the
results given in Ref. [4]. However the results found in Ref. [4]
are superior to ours at the large scattering angles.

For the lower set of energies, as shown in Fig. 4, our
calculated results agree quite well with the data, especially
at the four lowest energy values that span the region of the
3+ resonance. The 4.6 MeV result, near the 2+ resonance,
is quite a good match to data. Above this energy, where the
1+ resonance is expected to influence results, our results are
poorer, as may be expected. In general, at deuteron energies
from 4.5 to 6.3 MeV, the calculated cross sections have shapes
more pronounced than in the data.

In Fig. 5 we compare a select set of data and our results with
the differential cross sections given in Refs. [4,5]. The latter
results, shown by the dashed curves, are in excellent agreement
with the data at all of the selected energies. Our results are not
in as good agreement, but the shapes and magnitudes of them
are acceptable in comparison with those revealed in the data.
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FIG. 4. Experimental elastic cross sections for 2H + 4He scatter-
ing, at fixed deuteron energies, compared with the calculations. The
data are taken from Refs. [27,31,39,40].

The same Sturmian approach to solving the Lippmann-
Schwinger equations also yields bound-state and resonance
energies for the compound nucleus. In Fig. 6 the experimen-
tally known spectrum is compared with that resulting from the
calculation. The calculation finds all six known low-energy
states of 6Li. Spurious minimal energy states were eliminated
when an OPP contribution of λ = 106 MeV was used to block
the 1s orbit from having more than the four allowed nucleons.
They can also simply be discarded, since they are orthogonal
to all others.

Owing to the absence of coupling between channel involv-
ing the 2H triplet and singlet states, the 0+

1 and 2+
1 states are

purely found from coupling of the 2H singlet state to the 4He
ground state partial waves. All other states are purely found
from coupling of the deuteron triplet state to the 4He ground
state. The first three excited states are found to within a few
tens of eV of data. The final T = 0 state, the 1+

2 , is too low in
energy by an MeV. The singlet state was assumed to be at the
2H breakup threshold, i.e., 2.224 MeV above the ground state.
As there is no mixing between the 6Li T = 0 and T = 1 states
in this calculation, the excitation energies of the two T = 1
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FIG. 5. Experimental elastic cross sections for 2H + 4He scatter-
ing, at fixed deuteron energies, compared with calculations of this
work and Refs. [4,5]. The data are from Refs. [32,41,42].

states depend linearly on the energy of the 2H singlet state,
though the gap between them is set by the interaction potential
parameters. This gap is too large by ∼1.1 MeV, and while the
energy of the 2+

2 state is re-created well, the calculated energy
of the 0+ state is too low. It is possible that the antibound
singlet state would have a different charge distribution and
a different nuclear interaction with the α particle than does
the triplet state. However, in this work we opt to use a single
interaction, as experimental data are not available to guide
selection of the relevant parameters.

While the above approach successfully calculates spectral
energies of 6Li, it has limitations with regard to other state
properties. The ground state quadrupole moment of 6Li
cannot be explained by cluster models such as that used
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FIG. 6. Experimental spectrum of 6Li compared with the present
calculation. In the calculation, solid lines are from coupling to the
deuteron 3S1 state, and dashed lines are from coupling to the 1S0 state.

here [43]. At minimum, consideration of tensor correlation
is required, and D-wave mixing must be considered in 2H,
in 4He, and between these two bodies. Identities in Ref. [44]
equate quadrupole deformation with quadrupole moment for
collective models such as that used here. Using the measured
quadrupole moment, −8.2 × 10−4 [45] yields a deformation
β2 = −0.0313. This is quite different from the value used
herein of +0.22, though the comparison is valid only to
the extent that the quadrupole deformation of the 2H-4He
interaction potential may be equated with the 6Li ground state
quadrupole deformation.

VI. CONCLUSION

The methodology we have used enables all low exci-
tation compound system properties, spin-parities, energies,
and widths, extractable from a specific Hamiltonian, to be
found. With it, allowance can be made for the effects of
the Pauli principle in regards to assumed occupancies of
nucleon orbits in the target states. For single-channel problems
such as those addressed herein, without such accounting (via
orthogonalizing pseudopotentials), spurious states are unique
and orthogonal to those that are not. Thus, they can simply be
discarded. With the cases studied, all spectral properties are
found by solving Lippmann-Schwinger equations. Resonance
properties are defined by the poles of the T -matrix associated
with the chosen Hamiltonian.

The first cases considered were 7Li and 7Be, formed as
the clusters of 4He with 3H and 3He respectively. As the
α breakup thresholds are 2.47 and 1.49 MeV respectively,
states above those energies were found that are resonances
in the cluster evaluations with widths that agree quite well
with observation. The widths of resonance states are reaction
specific, but as only the 4He breakup channels are relevant in
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the energy range considered (the next threshold is 7.25 MeV for
neutron emission from 7Li and 5.61 MeV for proton emission
from 7Be), those widths then are also the total widths. The
good agreement with experimental values is evidence of the
model’s utility.

The next study made was that of the spectrum for 8Be
formed as a cluster of two 4He; a process at the heart of
the so-called three α formation of the Hoyle state in 12C in
stellar environs. With our two-body approach, we find two
low-excitation resonance states in 8Be. They are the ground
state (0+) resonance having centroid and width energies of
0.092 MeV and 5 eV (cf. experimental values [18] 0.092 MeV
and 5.96 eV) and a first excited (2+) resonance state with
centroid and width energies of 3.16 and 1.11 MeV compared
with experimental values of 3.03 and 1.51 MeV respectively.
Starting with this, we plan full coupled-channel calculations
of the 4He + 8Be cluster leading to the Hoyle state.

We then considered 6Li as a 2H + 4He cluster. We consid-
ered the two states of the 2H, the ground 3S1 and the 1S0, as
uncoupled states and solved two single channel LS equations
to obtain estimates of the isoscalar and isovector states in the
low-excitation spectrum of 6Li. Four of the possible six states
were found to be in good agreement with the known values
[18], with only the two highest ones, the 2+

2 and 1+
1 , differing

by an MeV from the correct energies.
We have also made calculations of 2H + 4He scattering

at low energies, treating both as single bodies. It was found
that this approach re-creates many of the features observed
experimentally, though some require a more sophisticated
approach. The 4He ground state was coupled to the 2H ground
state treated as a pure 3S1 state, and separately to a 1S0

resonance, to calculate the spectrum of 6Li. Channels of the
3S1 and 1S0 states were not coupled. All six known low-energy
6Li states were re-created, with the first four very close to their
known energies and the two most energetic being found at
energies that deviate from the measured states by ∼1 MeV.
The 2H and 4He ground states were coupled to calculate elastic
scattering cross sections, and the match to data was overall
good. The observed 3+ and 2+ resonances were re-created,
and had the correct shapes and reasonable magnitudes at
most angles. The nonresonant cross section was also well
reproduced. The observed 1+ resonance, however, was not
evident in calculated cross sections, though the state is found
in the calculated spectrum. Cross sections at fixed angles were
good near the two observed resonance energies, though in
general results at low angles were a better match to data than
those at high angles.

A gauge invariant theory to evaluate capture cross sections
using the bound and continuum wave functions derivable
from solutions of the Lippmann-Schwinger equations has been
developed (and used) for 3H + 4He system [46]. Studies of the
other cases discussed herein, being important astrophysical
quantities, are planned for a future publication.
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