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We investigate correlations in the fragment momentum distribution owing to the propagation of fragments
under the influence of their mutual Coulomb field after the breakup of an excited nuclear source. The magnitude
of the effects on the nuclear temperatures obtained from such distributions is estimated with the help of a
simple approach in which a charged fragment interacts with a homogeneous charged sphere. The results are used
to correct the temperatures obtained from the asymptotic momentum distributions of fragments produced by a
Monte Carlo simulation in which the system’s configuration at breakup is provided by the canonical version of the
statistical multifragmentation model. In a separate calculation, the dynamics of this many-particle charged system
is followed in a molecular dynamics calculation until the fragments are far away from the breakup volume. The
results suggest that, although the magnitude of the corrections is similar in both models, many-particle correlations
present in the second approach are non-negligible and should be taken into account to minimize ambiguities in
such studies.
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I. INTRODUCTION

Under the assumption that a nuclear system which disas-
sembles into many fragments has reached thermal equilibrium
at the freeze-out configuration, the determination of its tem-
perature at this moment plays a central role in understanding
the system’s properties. Indeed, it is needed to construct the
basic thermodynamic quantities, such as the Helmholtz free
energy, from which one may obtain relevant information as,
for instance, the nuclear caloric curve and the nuclear equation
of state. It has, therefore, been studied both theoretically [1–11]
and experimentally [4–10,12–19] by many groups over the past
decades. Nevertheless, several difficulties have been found
in these studies (see Refs. [7–9,11] and references therein),
leading to ambiguities and conflicting conclusions.

Recently, a method to determine the nuclear temperature
T at the freeze-out configuration, based on the momentum
distribution of the fragments, has been proposed and used to
investigate the caloric curve obtained from fragments produced
in different reactions [19]. More specifically, it has been
demonstrated [19] that the variance σ 2 of the distribution of
q = p2

x − p2
y , where px and py are the x and y Cartesian

components of the fragment’s momentum �p, is related to T
through

σ 2 =
∫

d3 �p (
p2

x − p2
y

)2
f ( �p) = 4A2m2

nT
2, (1)

because 〈q〉 vanishes if f ( �p) symbolizes the fragment’s
momentum distribution in the source’s reference frame and
it is assumed that f ( �p) is given by the Boltzmann distribution.
(A quantum treatment has also been considered in Ref. [20].)
In this expression, A denotes the fragment’s mass number,
and mn is the nucleon mass. Thus, σ 2 may be obtained

experimentally for some selected species from the measured
fragments’ momenta. This allows one to determine T from
different thermometers.

However, when applied to actual data analysis [19], the
measured temperatures turned out to be much larger than those
obtained in previous studies using different methods. Because,
as mentioned above, the latter have their own limitations
and uncertainties, one may not, a priori, discard the present
method owing to this discrepancy. However, the elucidation
of the underlying mechanisms which lead to it is important
to improve our understanding of the multifragment emission
process.

Because the charged fragments produced at breakup prop-
agate under the influence of their mutual Coulomb field until
they reach the detectors, one should investigate the extent to
which the momentum distribution is affected by this process
and the magnitude of its effect to the measured temperatures.
This point has already been addressed in Refs. [21–23], where
corrections based on a picture similar to that assumed in our
deterministic model discussed below have been applied to their
model calculations. The corresponding corrections turned out
to be non-negligible.

In the present work we address this point using two different
approaches. In one of them, the canonical version of the
statistical multifragmentation model (SMM) [24–26] is used
to generate fragments, at a given temperature T [27,28], on an
event-by-event basis. These fragments are then placed inside
the breakup volume and allowed to propagate until they are
sufficiently separated from each other, so that the Coulomb
energy of the system is negligible. The second approach is
based on a simplified picture, in which a given fragment
is placed inside a homogeneous charged sphere and it is
then accelerated away from the breakup volume until it is
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infinitely far away from the sphere. This provides a simple
deterministic manner to calculate the fragment’s momentum
distribution and, from it, the nuclear temperature through
Eq. (1). The effects estimated from this simple model are then
used to correct the temperatures obtained from our Monte
Carlo simulation. It turns out that many-particle correlations
are non-negligible and, therefore, detailed treatments need to
be employed to obtain meaningful results from such analyses.

The remainder of the paper is organized as follows. The
models just mentioned are explained in Sec. II. They are used
to calculate the nuclear temperatures from the momentum
distributions in Sec. III. We conclude in Sec. IV with the main
findings of this work.

II. THE MODELS

In both treatments used in this work it is assumed that
a nuclear source with mass and atomic numbers A0 and Z0

has expanded to a breakup volume Vbk = (1 + χ )V0. The
parameter V0 is the volume of the source at normal nuclear
density, and χ > 0 is a model parameter, which is assumed
to be χ = 2 throughout this study, as it plays a minor role on
the investigated effects. We also use A0 = 95 and Z0 = 45,
which corresponds to 70% of the 58Ni + 78Kr system, studied
in Ref. [19]. The removal of 30% of the system aims at taking
into account particles that left the source region owing to the
pre-equilibrium emission.

Our Monte Carlo simulation uses the canonical imple-
mentation of SMM [27,28] to generate the M fragments,
whose multiplicity and composition of species vary for each
fragmentation mode f . The statistical weight of the latter is
given by

wf = exp[−Ff (T ,Vbk)/T ], (2)

where Ff (T ,Vbk) is the Helmholtz free energy associated
with the fragmentation mode [28]. For each event, the
fragments’ momenta are assigned according to the Metropolis
simulation method. More specifically, for each fragment i, a
partner j �= i is randomly selected and a random increment
�� = (�x,�y,�z) is sampled, where �x , �y , and �z are
independent random numbers. Then, the trial momenta �p t

i =
�pi + �� and �p t

j = �pj − �� are calculated. Because the system
is initialized with { �pi = 0}, this procedure ensures that the
center of mass of the source remains at rest. Then, the trial
momenta are accepted with probability

P = Min

(
1, exp

{
− 1

T

[(
pt

i

)2 − p2
i

2mnAi

+
(
pt

j

)2 − p2
j

2mnAj

]})
,

(3)

where Ai (Aj ) denotes the mass number of the ith (j th)
fragment. In the simulation, 105 of such steps per fragment
are carried out to generate the initial momentum distribution
for a given fragmentation mode. Although the constraint∑Mf

i=1 �pi = 0 slightly distorts the momentum distribution, the
Boltzmann expression

f ( �p) = C exp

(
− p2

2mnAT

)
, (4)
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FIG. 1. Density of particles with momentum between p and
p + �p, for T = 5 MeV. In panel (a) the Monte Carlo distribution
at breakup is displayed, whereas panel (b) exhibits the asymptotic
distributions for both treatments presented in this work. For details,
see the text.

where C is a normalization factor, remains an excellent
approximation to it, as is illustrated in Fig. 1(a), which displays
the density of particles N (p) with momentum between p and
p + �p, obtained with the above procedure, for protons and
4He’s at T = 5 MeV.

Next, the fragments are randomly placed inside the breakup
volume using a procedure similar to that employed above.
More precisely, we initially set the position of each fragment
�ri to zero, i.e., {�ri = 0}, and calculate a trial move for
two fragments i and j according to �r t

i = �ri + �� Aj

Ai+Aj
and

�r t
j = �rj − �� Ai

Ai+Aj
, where �� = (�x,�y,�z) are independent

random variables. The move is rejected if at least one of the
fragments steps outside the breakup volume. As previously,
this procedure is repeated 105 times for each fragment i.

Once the initial positions and momenta of the fragments
have been initialized, their trajectories are followed in time
using a standard classical molecular dynamics treatment, in
which the fragments interact with each other only through the
Coulomb force. To speed up the numerical calculations, we
adopt the Runge-Kutta-Cash-Karp method [29], which auto-
matically adjusts the time step to preserve a pre-established
accuracy. The fragments are then allowed to propagate away
from the breakup volume until the separation among them is
large enough to allow the Coulomb energy to be neglected.

This entire procedure is repeated for each event produced
by SMM, and the density of particles corresponding to the ith
species with asymptotic momentum pi between p and p + �p
is given by

N (p) = 1

�p

⎡
⎢⎢⎢⎣

∑
f

p � pi < p + �p

wf (i)

⎤
⎥⎥⎥⎦

/⎡
⎣∑

f

wf (i)

⎤
⎦, (5)
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where wf (i) represents the statistical weight associated with
the partition f containing the fragment. This Monte Carlo
method is used to generate many millions of partitions.

The asymptotic momentum distributions for protons and
4He are displayed in Fig. 1(b). It reveals that the distribution
is shifted to higher values, leaving a hole in the region of
small momentum values. This effect appreciably affects the
distribution of q and, consequently, the temperatures obtained
from it. We shall come back to this point in the next section.

We now consider a uniformly charged sphere of volume
Vbk = 4πR3

0/3 and charge (Z0 − Zi)e, where e stands for the
elementary charge. This sphere remains frozen in this config-
uration and is kept fixed at the origin of the coordinate frame.
If a particle of charge Zie and mass mi = mnAi is placed at
a distance r < R0 from its center, energy conservation allows
one to easily calculate the particle’s asymptotic momentum:
p2

i = p2
i,0 + δ2(1 − x2/3), where pi,0 is the thermal momen-

tum at breakup, δ2 = 3miZi(Z0 − Zi)e2/R0, and x ≡ r/R.
Obviously, some of the assumptions made in this model are

very unrealistic. Nevertheless, it is intended to provide a rough
estimate of the Coulomb distortions considered in this work.
However, the results presented below reveal that, in spite of
this, the model gives quite reasonable results.

Upon assuming that the particle may be found with equal
probability anywhere within the breakup volume, the density
of particles with asymptotic momentum between p and p +
�p is given by

N (p) = C ′
∫ 1

x0

dxx2u(p,x) exp

[
− u(p,x)

2mnAT

]
, (6)

where u(p,x) ≡ p2 − δ2(1 − x2/3), C ′ is a normalization
factor and x0 = Min{1,

√
Max(0,3[1 − p2/δ2])}. The above

integral may be carried out analytically and the result reads

N (p) = C ′[G(p,1) − G(p,x0)], (7)

where

G(p,x) =
{

exp

(
− δ2x2

6mnAT

)
2xδ

√
mnAT [−3(p2 − δ2) − x2δ2 − 9mnAT ]

+ erf

(
xδ√

6mnAT

)
3
√

6πmnAT [p2 − δ2 + 3mnAT ]

}
exp

(
−p2 − δ2

2mnAT

)
mnAT

2δ3
. (8)

The distribution N (p) predicted by this model is also
displayed in Fig. 1(b). Comparison of these results with those
obtained with the Monte Carlo treatment just presented shows
that, although there are noticeable differences between them,
this simple model reproduces the main qualitative features,
such as the suppression of particles in the small momentum
region. Furthermore, because the width and position of the
maximum of the distributions given by the two models do
not differ by a large factor, one should expect them to predict
temperatures of the same magnitude. Therefore, this simple
model may provide useful estimates, although discrepancies
should be expected as the distributions differ.

It is easy to understand the reasons for the observed
differences. In the Monte Carlo treatment, the fragments
interact with each other as they travel away from the breakup
region. Therefore, the assumption that a fragment interacts
with a static homogeneous sphere, made in our deterministic
model, is a crude representation of the actual scenario. For
instance, a fragment may eventually be left behind by all the
others if its initial velocity is much smaller than theirs. In this
case, it would feel a very weak Coulomb force, leading to the
appearance of a smooth tail in the region of small momentum.
However, in the deterministic model, no particle may have
energy smaller than that corresponding to the Coulomb energy
at the surface of the breakup volume, which leads to the steep
falloff observed in Fig. 1(b).

III. RESULTS

We now turn to the distribution of q and to the temper-
ature determination. We construct the distribution Nq , in the

following manner. First, the q axis is divided into bins of width
�q. Then, for each particle of the selected species i, found in
one event of the Monte Carlo model, the statistical weight wf

of the partition is added to Nq , so that

Nq = 1

�q

⎡
⎢⎢⎢⎣

∑
f

q � qi < q + �q

wf (i)

⎤
⎥⎥⎥⎦

/⎡
⎣∑

f

wf (i)

⎤
⎦, (9)

where qi ≡ p2
i,x − p2

i,y .
The model predictions are exhibited in Fig. 2(a), for the

4He nucleus, at breakup (solid lines) and at the asymptotic
configuration (dashed lines). The breakup temperature is
T = 5 MeV. These results clearly reveal that the Coulomb
interaction in the late stages of the process leads to an important
broadening of the initial q distribution, which should result in
larger reconstructed temperatures, as we show below.

To calculate the distribution Nq with the deterministic
model, the x and y momentum axes are discretized, so that

pi,j =
√

p2
xi

+ p2
yj

+ p2
z , where pxi

and pyj
are the discrete

components of the momentum vector. In this way, Nq reads

Nq = 1

�q

⎡
⎢⎢⎢⎣

∑
i,j

q � qi,j < q + �q

Ni,j (pi,j )

⎤
⎥⎥⎥⎦

/⎡
⎣∑

i,j

Ni,j (pi,j )

⎤
⎦,

(10)
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where

N (pi,j ) =
∫ +∞

−∞
dpz[H (pi,j ,1) − H (pi,j ,x0)], (11)

H (pi,j ,x) =
∫ 1

x0

dxx2 exp

[
−u(pi,j ,x)

2mnAT

]

= 3mnAT

2δ3
exp

(
−p2

i,j − δ2

2mnAT

){
−2xδ exp

(
− δ2x2

6mnAT

)
+

√
6πmnAT erf

(
xδ√

6mnAT

)}
, (12)

and qi,j = p2
xi

− p2
yj

.
Figure 2 shows the comparison between the asymptotic

q distribution calculated with the two models, for proton
and 4He, produced at the break temperature T = 5 MeV.
As anticipated, the models make similar predictions, despite
being based on different scenarios for the propagation in
the Coulomb field. However, non-negligible discrepancies
are observed, which must lead to different reconstructed
temperatures.

The variance of the distribution is calculated through

σ 2 =

⎡
⎢⎢⎢⎣

∑
f

q � qi < q + �q

q2
i wf (i)

⎤
⎥⎥⎥⎦

/⎡
⎣∑

f

wf (i)

⎤
⎦ (13)
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FIG. 2. Distribution of q for T = 5 MeV. (a) Results predicted by
the Monte Carlo model at the breakup stage (solid line) and after the
propagation in the Coulomb field (dashed line). The selected species
is the 4He nucleus. (b) Asymptotic q distributions for proton and
4He. The solid lines correspond to the results obtained with the Monte
Carlo model, whereas the dashed lines represent the predictions made
with the deterministic model. For details, see the text.

in the case of the Monte Carlo model. In the deterministic
treatment, it is given by

σ 2 =

⎡
⎢⎢⎢⎣

∑
i,j

q � qi,j < q + �q

q2
i,jNi,j (pi,j )

⎤
⎥⎥⎥⎦

/⎡
⎣∑

i,j

Ni,j (pi,j )

⎤
⎦.

(14)
From the above expressions and Eq. (1), the temperature may
be calculated for each species.

To construct the caloric curve, the excitation energy of
the source at a given breakup temperature T is provided
by SMM, as well as the corresponding width. The caloric
curves predicted by the two models are displayed in Fig. 3 for
temperatures obtained with different species. Panel (a) shows
the results calculated with the Monte Carlo model, whereas
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FIG. 3. Caloric curves constructed from temperatures associated
with different species. The predictions of the Monte Carlo model
are displayed in panel (a), whereas those from the deterministic
model are exhibited in panel (b). The dashed lines represent the
input temperatures used in the SMM calculations, which also provide
both the average excitation energy and its width. The open symbols
represent the calculations at breakup, and the solid ones correspond
to the asymptotic values. For details, see the text.
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FIG. 4. Caloric curves constructed using temperatures given by
the Monte Carlo treatment, corrected by the deterministic model.
The dashed lines represent the input temperatures used in the SMM
calculations. For details, see the text.

those predicted by the deterministic model are shown in panel
(b). The open symbols correspond to the temperatures at
breakup. By construction, the predictions of both models agree
with the input temperatures, represented by the horizontal
dashed lines. This scenario is completely changed when
the asymptotic distributions are used. Indeed, in agreement
with the results obtained in Ref. [21], the reconstructed
temperatures are substantially larger than the input ones. In
both treatments, the fragments with larger charges are more
strongly affected owing to the larger Coulomb forces that act
upon them.

As expected from the above results, the temperatures
predicted by our two models are of the same magnitude, in
spite of some qualitative differences. First, one may note a
weak A dependence of the temperatures reconstructed from
the Monte Carlo treatment, whereas this effect is negligible in
our deterministic model. This A dependence is attributable
to distortions of the momentum distribution owing to the
center-of-mass constraints. The most noticeable difference is
observed in the behavior of T as a function of the excitation
energy E∗. The deterministic model exhibits a monotonous
increase as a function of E∗, whereas the Monte Carlo model
predicts that T first decreases at low excitation energies and
then increases for E � 6 MeV. By discarding half of the
events and recalculating the temperatures, we have checked
that this unexpected behavior is not attributable to the statistics.
The changes turned out to be smaller than the symbols’
sizes. The explanation must be related to the low fragment
multiplicity values at low input temperatures. This leads to
strong correlations between the fragments’ momenta owing to
the constraint

∑
i �pi = 0. The average multiplicities are 2 ± 1,

5.5 ± 1.8, 10.5 ± 2.1, 13.5 ± 2.1, and 15.4 ± 2.1 for T = 4, 5,
6, 7, and 8 MeV, respectively. As the multiplicity increases, the
effect on the individual fragments’ momenta becomes weaker.

The systematic enhancement of the temperatures owing to
the Coulomb boost is tentatively removed from the Monte
Carlo results by subtracting from them the difference between
the asymptotic and the breakup temperatures given by the
deterministic model. The results are exhibited in Fig. 4.
Although the disagreement with the input values (dashed

lines) is substantially reduced, the results clearly show that the
method should not be applied at low excitation energies. They
also reveal that the discrepancies are larger for fragments with
larger atomic number. Furthermore, the observed dispersion of
the values obtained with different species suggests that their
use may lead to ambiguities in determining the nuclear caloric
curve. Our results seem to indicate that detailed Monte Carlo
treatments should be used in data analysis to minimize the
difficulties just mentioned.

Obviously, the magnitude of the reported changes will be
weakened if the source’s charge is reduced. We have checked,
using the deterministic model, that the effects are slightly
reduced if we assume that 50%, instead of 30%, of the mass and
charge are emitted in the pre-equilibrium emission. However,
the changes are not large enough to modify our conclusions.
Finally, we have not varied the breakup volume as its influence
should be very small, as long as reasonable values are used,
because the initial Coulomb energy is proportional to the
radius, which varies very slowly with the volume.

In Ref. [23], corrections, based on a modification of the
particle distribution owing to the Coulomb field of the source
acting on the emitted fragments, have been developed. When
applied to the predictions made by the constrained molecular
dynamics [30], they show that the corrections are very similar
to those given by our deterministic model.

As a final remark, the deexcitation of the primary excited
fragments has been entirely disregarded in our calculations,
although its contribution to the final yields is important at the
temperatures considered in this work [6,10]. Nevertheless, the
consideration of this aspect will not affect our conclusions and,
therefore, for the sake of simplicity, it has been not included
in our treatments, although it should be taken into account in
actual data analysis.

IV. CONCLUDING REMARKS

We have investigated the influence of many-particle corre-
lations and of the Coulomb interaction in the late stages of the
dynamics on the fragments’ momentum distribution, which
are used to reconstruct the temperatures at breakup. Using
a Monte Carlo treatment, in which the partition mode and
the system’s temperature are provided by SMM, and another
model in which a fragment interacts with a static homogeneous
charged sphere, we calculated the fragments’ momenta when
they are very far away from the breakup volume. In agreement
with previous results [21], we have found that the Coulomb
repulsion leads to important distortions on the fragments’
momentum distribution. It leads to an appreciable enhance-
ment of the reconstructed temperatures. By correcting the
temperatures predicted by our Monte Carlo model, subtracting
from them the enhancement observed in the deterministic
model, the agreement with the input temperatures has been
significantly improved. However, many-particle effects turn
out to be important and may lead to conflicting conclusions
if the method is applied to low excitation-energy values or
if different species are used as thermometers. We therefore
suggest that a detailed Monte Carlo treatment to eliminate
these effects should be developed to reliably obtain breakup
temperatures from such measurements.

014616-5



S. R. SOUZA, M. B. TSANG, AND R. DONANGELO PHYSICAL REVIEW C 96, 014616 (2017)

ACKNOWLEDGMENTS

We would like to thank Dr. A. McIntosh for fruitful
discussions. This work was supported in part by the Brazilian
agencies Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de
Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ),

a BBP grant from the latter, and the U.S. National Science
Foundation under Grant No. PHY-1565546. We also thank the
Programa de Desarrollo de las Ciencias Básicas (PEDECIBA)
and the Agencia Nacional de Investigación e Innovación
(ANII) for partial financial support.

[1] H. Barz, J. Bondorf, R. Donangelo, H. Schulz, and K. Sneppen,
Phys. Lett. B 228, 453 (1989).

[2] H. Barz, H. Schulz, and G. Bertsch, Phys. Lett. B 217, 397
(1989).

[3] S. Shlomo and V. M. Kolomietz, Rep. Prog. Phys. 68, 1 (2005).
[4] C. Gelbke and D. H. Boal, Prog. Part. Nucl. Phys. 19, 33 (1987).
[5] J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997).
[6] S. R. Souza, W. P. Tan, R. Donangelo, C. K. Gelbke, W. G.

Lynch, and M. B. Tsang, Phys. Rev. C 62, 064607 (2000).
[7] W. Trautmann et al. (ALADIN Collaboration), Phys. Rev. C 76,

064606 (2007).
[8] D. J. Morrissey, W. Benenson, and W. A. Friedman, Annu. Rev.

Nucl. Part. Phys. 44, 27 (1994).
[9] B. Borderie and M. F. Rivet, Prog. Part. Nucl. Phys. 61, 551

(2008).
[10] W. P. Tan, S. R. Souza, R. J. Charity, R. Donangelo, W. G.

Lynch, and M. B. Tsang, Phys. Rev. C 68, 034609 (2003).
[11] S. R. Souza, B. V. Carlson, R. Donangelo, W. G. Lynch, and

M. B. Tsang, Phys. Rev. C 92, 024612 (2015).
[12] S. Das Gupta, A. Z. Mekjian, and M. B. Tsang, Adv. Nucl. Phys.

26, 89 (2001).
[13] E. Vient, Methodology of hot nucleus calorimetry and ther-

mometry produced by nuclear reactions around Fermi energies,
Habilitation à diriger des recherches, Université de Caen, 2006,
http://tel.archives-ouvertes.fr/tel-00141924.
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