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Operator form of the three-nucleon scattering amplitude
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To extend the applications of the so-called “three-dimensional” formalism to the description of three-nucleon
scattering within the Faddeev formalism, we develop a general form of the three-nucleon scattering amplitude.
This form significantly decreases the numerical complexity of the “three-dimensional” calculations by reducing
the scattering amplitude to a linear combination of momentum-dependent spin operators and scalar functions of
momenta. The number and structure of the spin operators is fixed and the scalar functions can be represented
numerically using standard methods such as multidimensional arrays. In this paper, we show that all orders
of the iterated Faddeev equation can be written in this general form. We argue that calculations utilizing the
three-nucleon force will also conform to the same general form. Additionally, we show how the general form
of the scattering amplitude can be used to transform the Faddeev equation to make it suitable for numerical
calculations using iterative methods.
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I. INTRODUCTION

The “three-dimensional” (3D) formalism is a framework
for performing quantum mechanical calculations related to
few-nucleon systems without resorting to partial wave de-
composition. This approach uses the 3D vector degrees of
freedom of the nucleons directly and was applied, in particular,
to calculate the two-nucleon (2N) bound state and transition
operator [1,2] and the 3H bound state [3]. An introduction to the
“three-dimensional” formalism can be found in Refs. [1–7].
Also, the Tehran group published a series of papers (see, e.g.,
Refs. [8–17]), where many investigations within the “three-
dimensional” formalism, especially regarding three-body and
four-body bound states are discussed in detail. For recent
investigations on the “three-dimensional” approach using the
low-momentum interaction or the relativistic interaction, see
Refs. [15] and [16,17], respectively. The 3D approach is
characterized by flexibility because it provides an easy way
to exchange models of nuclear interactions since the potential
does not need to undergo the partial wave decomposition
procedure. The precision of these computations was compared
to partial wave calculations in our recent paper [18], where
we calculated observables related to neutron-deuteron (Nd)
scattering in the first order of the iterated Faddeev equation.
In spite of the fact that our results in this paper were
obtained using the first-order terms only, they demonstrated
the usefulness of the 3D approach for certain kinematical
configurations of the breakup reaction where the convergence
for partial wave results is slow.

Our motivation for the present work is the extension of the
three-nucleon (3N) 3D scattering calculations [18] to all orders
of the Faddeev equation. The hope is that avoiding partial
wave expansion will facilitate the applicability of three- and
many-body nuclear forces derived from chiral effective field
theory [19–25].

Our framework to study the Nd scattering process is based
on the Faddeev formalism [26]. The central element of this
description is the Faddeev equation for the 3N transition
operator Ť :

Ť |φ〉 = ť P̌ |φ〉 + ť Ǧ0P̌ Ť |φ〉, (1)

where P̌ = P̌12P̌23 + P̌13P̌23 is an operator built from particle
transpositions P̌ij , Ǧ0 is the free propagator, ť is the 2N tran-
sition operator satisfying the Lippmann-Schwinger equation,
and |φ〉 is the initial product state composed from a deuteron
and a free nucleon with momentum q0 in the 3N center of mass
frame. Nd scattering observables can be calculated using two
types of matrix elements. For the breakup channel observables
can be calculated from

〈φ0|(1̌ + P̌ )Ť |φ〉, (2)

while for the elastic scattering channel from

〈φ′|P̌ Ǧ−1
0 + P̌ Ť |φ〉. (3)

In Eq. (2), 〈φ0| is a final state containing three free nucleons
and in (3) 〈φ′| is a final product state composed from a deuteron
and a free nucleon with momentum q ′

0.
Our attempt to use the 3D formalism to solve Eq. (1) begins

with considerations related to numerical complexity. Since we
do not use partial wave decomposition and work instead with
the 3D degrees of freedom of the nucleons directly, we will
focus on the matrix element 〈 p′q ′|Ť | pq〉, where p′,q ′, p,q
are Jacobi momenta in the final and initial states. This matrix
element is an operator in the isospin-spin space of the 3N
system and can be represented using a 8 × 8 = 64 by 64 matrix
(there are 8 possible spin states and 8 possible isospin states
for the 3N system) for every momentum combination. Each
element of this matrix is a complex-valued function of the
4 × 3 = 12 components of the four Jacobi momenta. It follows
that our calculations would involve 64 × 64 = 4,096 complex-
valued functions of 12 arguments. If each argument of these
functions were discretized over a lattice of 32 points, then our
code would have to handle arrays of 4,096 × 3212 ≈ 4.7 ×
1021 complex numbers to represent 〈 p′q ′|Ť | pq〉 numerically.
This is equivalent to approximately 7.5 × 1013 GB of data for
double precision numbers and is clearly not practical or even
possible using modern computing resources.

Fortunately, from the form of Eq. (1) and the matrix
elements Eqs. (2) and (3), it is clear that we only need to
calculate the state Ť |φ〉. This state can be projected onto a
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Jacobi momentum eigenstate 〈 pq|Ť |φ〉 and represented by
8 × 8 = 64 functions for each momentum combination, thus
significantly reducing the numerical complexity of the prob-
lem. We expect each of these functions to have nine arguments
coming from the components of the Jacobi momenta p,q
and the free nucleon momentum q0 in the initial state |φ〉.
Overall, if each argument of these functions were discretized
over a lattice of 32 points, our code would have to handle
arrays containing 64 × 329 ≈ 2.3 × 1015 complex numbers to
represent 〈 pq|Ť |φ〉. This is still a very large number and if we
hope to create a practical numerical implementation of 3D Nd
scattering calculations, we need to further reduce this figure.

In the following sections, we show how this large number
can be additionally reduced to approximately 64 × 8 × 326 ≈
5.5 × 1011 by using spatial rotation symmetry. Once this
symmetry is taken into account, the 3N scattering amplitude
〈 pq|Ť |φ〉 can be represented by 64 × 8 (64 functions for
each of the 8 possible isospin cases) complex-valued scalar
functions of p,q,q0. The scalar nature of these functions
means that each will only have six real arguments (number
of vectors × number of components for each vector − number
of dimensions: 3 × 3 − 3 = 6), and thus the size of arrays
representing these functions in numerical implementations is
decreased by a couple orders of magnitude.

The paper is organized as follows. In Sec. II, we make a
general argument about the form of the 3N scattering ampli-
tude in the Faddeev equations. This argument is applicable
not only to Eq. (1) but also to the Faddeev equation with
the 3N force included (see, e.g., Ref. [26]). In Sec. III, we
discuss the arguments of the scalar functions that determine
the scattering amplitude, and in Sec. IV, we show how, using
the general form, the Faddeev Eq. (1) can be transformed
into an operator equation that can be solved iteratively
using Krylov subspace methods. Finally, in Sec. IV C we
discuss the singularities of the 3N scattering amplitude
resulting from the 2N transition operator, and in Sec. V
we summarize. Additionally Appendices A and B contain
the most important result of this work, a set of operators
and scalar functions necessary to represent the Nd scattering
amplitude.

II. THE 3N SCATTERING AMPLITUDE

To make a general argument about the form of the 3N
scattering amplitude 〈 pq|Ť |φ〉, we will express it more
explicitly. In the first step, we insert the identity operator
between the 3N transition operator Ť and |φ〉, and use the
Dirac δ function δ3(q ′ − q0) arising from the momentum state
|q0〉 of the free nucleon in |φ〉:

〈 pq|Ť |φ〉 =
∫

d3 p′d3q ′〈 pq|Ť | p′q ′〉〈 p′q ′|φ〉

=
∫

d3 p′〈 pq|Ť | p′q0〉〈 p′q0|φ〉. (4)

We can further rewrite Eq. (4) using the operator form of the
deuteron bound state [1]:

〈 p|φd〉 =
2∑

l=1

φl(p)b̌l( p)|1md〉, (5)

where |1md〉 is the deuteron spin state, b̌l( p) are spin operators
given in Ref. [1] and the bound state is determined by two
scalar functions φl(p) of the 2N relative momentum that
are directly related to the s- and d-wave components of the
deuteron as given explicitly in Ref. [1]. The two operators
b̌l=1,2( p) that make up the deuteron bound state in Ref. [1]
will be capitalized in the following B̌l( p′) to mark that they
act in the isospin-spin space of three particles. This results in

〈 pq|Ť |φ〉

=
∫

d3 p′
2∑

l=1

φl(p
′)[〈 pq|Ť | p′q0〉][B̌l( p′)]|s〉, (6)

where we use square brackets to denote operators in the
isospin-spin space and

|s〉 = (∣∣ 1
2 ± 1

2

〉 ⊗ |00〉)3N isospin ⊗ (|SN 〉 ⊗ |1md〉)3N spin

(7)

is a 3N isospin-spin state made up from the free neutron
(proton) isospin | 1

2 − 1
2 〉 (| 1

2 + 1
2 〉), the deuteron isospin |00〉,

the free nucleon spin |SN 〉, and the deuteron spin |1md〉 states.
Overall, apart from the implicit energy dependence, the

right-hand side of Eq. (6) depends on the Jacobi momenta in
the final state p, q and on the momentum of the free nucleon q0,
which is related to the 3N system energy E3N = 3

4m
q2

0 + Ed ,
the deuteron bound state energy Ed , and the nucleon mass m.
The isospin-spin operators, marked in Eq. (6) by using square
brackets can be constructed from combinations of p,q,q0,
and pure spin and isospin operators. Examples of pure isospin
and pure spin operators might include the three isospin vector
operators τ̌ (i) and the three spin vector operators σ̌ (i) for each
of the three nucleons i = 1,2,3 whose matrix representations
are given in terms of the Pauli matrices.

Using these observations we deduce that 〈 pq|Ť |φ〉 must
have the following general form:

〈 pq|Ť |φ〉 = [X̌( p,q,q0)]|s〉, (8)

where X̌( p,q,q0) is an operator acting in the isospin - spin
space of the 3N system. Furthermore, symmetry consider-
ations lead us to expect the X̌( p,q,q0) operator to have
rotational symmetry, i.e.,

[R][X̌( p,q,q0)] = [X̌(R( p),R(q),R(q0))][R],

where R is a spatial rotation and [R] is the matrix representa-
tion of the rotation in isospin-spin space. We can therefore use
the algorithm from Sec. 2 of Ref. [27], with minor adjustments,
to find its general, rotation invariant, form. To do this we
consider the spin and isospin parts of Eq. (8) separately,

X̌( p,q,q0) = X̌isospin ⊗ X̌spin( p,q,q0),

and focus on the spin part since the isospin operator has no
momentum dependence and does not change under spatial
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rotations. X̌spin( p,q,q0) can be constructed from scalar com-
binations of the following set of vectors:

{σ̌ (1),σ̌ (2),σ̌ (3), p,q,q0}, (9)

and this set needs to be substituted for T in the procedure from
Ref. [27].

The final result of using the modified procedure [27] is the
operator form,

X̌spin( p,q,q0) =
64∑

r=1

τr ( p,q,q0)Ǒr ( p,q,q0), (10)

where the 3N spin operators Ǒr ( p,q,q0) are listed in Ap-
pendix A and τr ( p,q,q0) are some scalar functions. The
algorithm guarantees that any rotation invariant operator
constructed from elements of Eq. (9) can be written in this
form.

Using Eq. (10) we can finally write the general form of the
scattering amplitude,

〈 pq|Ť |φ〉

=
∑
γ 3N

64∑
r=1

τ γ 3N

r ( p,q,q0)|γ 3N 〉 ⊗ (Ǒr ( p,q,q0)|α〉), (11)

where the first sum is over the eight possible isospin states
|γ 3N 〉 of the 3N system and |α〉 is a 3N spin state that, in
principle, does not have to be equal to the spin part of |s〉 from
Eq. (7), making Eq. (11) more general than Eq. (6). In Eq. (11),
the 3N scattering amplitude is fully determined by the 64 × 8

complex-valued scalar functions τ
γ 3N

r ( p,q,q0) of momenta. It
follows from the scalar nature of these functions that they have
only six independent real arguments. This leads to a significant
reduction of numerical complexity and makes 3D calculations
of Nd scattering observables, which incorporate all orders of
the Faddeev equation, feasible. There are multiple choices for
the six arguments and the next section discusses two possible
options. Since this section does not make direct references to
the two- or three-nucleon potential, Eq. (11) can also be used
in the version of the Faddeev equation that utilizes the three
nucleon force.

III. SCALAR FUNCTION ARGUMENTS

We begin with a flawed example to demonstrate the
importance of a proper choice for the arguments of the scalar
functions. Let us assume that the scalar functions have the
following arguments:

τ γ 3N

r ( p,q,q0) ≡ τ γ 3N

r

(
p2,q2,q2

0, p · q,q · q0,q0 · p
)
.

Using this choice and trying to compute the value of p × q ·
q0, we encounter two possible answers:

±
√

−( p · q)2q2
0 − ( p · q0)2q2 + 2( p · q)( p · q0)(q · q0) + p2

(
q2

0q2 − (q · q0
)
.

This ambiguity is unacceptable, since we want to uniquely fix
the angles between p,q and q0.

There are many possible proper choices for the arguments
that uniquely fix all the angles in the set of three vectors p,q,q0.
One such choice is given in Ref. [29],

τ γ 3N

r ( p,q,q0) ≡ τ γ 3N

r

(
p2,q2,q2

0,
̂(q0 × q)

· ̂(q0 × p),q · q0,q0 · p
)
, (12)

and we refer the reader to this paper where all relevant angles
are worked out in terms of the scalar function arguments from
Eq. (12).

IV. REMOVING SPIN AND ISOSPIN DEPENDENCIES

The 3N Faddeev Eq. (1) can now be rewritten using Eq. (11).
After removing the spin and isospin dependencies, Eq. (1) will
be transformed into a set of coupled equations for the scalar

functions τ
γ 3N

r ( p,q,q0). In the following subsections, we will
consider each term of the Faddeev equation separately and
form a simple linear equation with operators acting on the
scalar functions τ (of vectors p, q, q0 and integer arguments
r , γ 3N ):

τ = τ̃ + Q̌τ. (13)

The two terms ť P̌ |φ〉 and ť Ǧ0P̌ Ť |φ〉 on the right-hand side of
Eq. (1) will be transformed into τ̃ (a scalar function of p, q,
q0 and integer arguments r , γ 3N ) and the operator Q̌ acting
on τ , respectively. The left-hand side will be transformed into
an identity operator acting on τ .

Equation (13) can be rearranged by moving the unknown
function τ to the left-hand side,

(1̌ − Q̌)τ = τ̃ , (14)

to form a more explicit linear equation for τ . The transfor-
mation of Eq. (1) into Eq. (14) makes it possible to apply
iterative Krylov subspace methods, for example, the Arnoldi
algorithm [28], to find the solution—the scalar functions τ that
define Ť |φ〉 in Eq. (11). Scalar functions τ , τ̃ in Eq. (14) can
be represented as multidimensional complex arrays and the
iterations can be constructed around the (1̌ − Q̌) operator to
produce its representation as a matrix with a relatively small
size. Using this, Eq. (14) can be transformed to a small system
of linear equations and solved using popular linear solvers
(e.g., LAPACK).

A. Operator form of 〈 pq| ť P̌|φ〉
Arguments similar to those that led to Ť |φ〉 having the

general form of Eq. (11) also lead to the conclusion that
ť P̌ |φ〉 and ť Ǧ0P̌ Ť |φ〉 can be written in the same way. Writing
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〈 pq|ť P̌ |φ〉 in the general form of Eq. (11),

〈 pq|ť P̌ |φ〉 =
∑
γ 3N

64∑
r=1

τ̃ γ 3N

r ( p,q,q0)|γ 3N 〉

⊗ (Ǒr ( p,q,q0)|α〉), (15)

and removing the spin and isospin dependencies will result
in a set of coupled linear equations for the scalar functions

τ̃
γ 3N

r ( p,q,q0). To show this, we begin by inserting the
identity operator between the 2N transition operator ť and the
permutation operator P̌ , and between the permutation operator
and the initial state |φ〉:

〈 pq|ť P̌ |φ〉 =
∫

d3 p′d3q ′
∫

d3 p′′d3q ′′〈 pq|ť | p′q ′〉

× 〈 p′q ′|P̌ | p′′q ′′〉〈 p′′q ′′|φ〉. (16)

The three matrix elements in Eq. (16) will introduce four
Dirac δ functions into the integrations, thus eliminating them
completely.

Namely, the 2N transition operator ť acts in a two-particle
subsystem with the relative momenta of the two nucleons
p, p′ and cannot change the Jacobi momenta q,q ′ between
the initial and final state. This results in the first element
〈 pq|ť | p′q ′〉 introducing δ3(q − q ′). The initial state |φ〉 is
a product of |q0〉 and the deuteron wave function therefore
the third element 〈 p′′q ′′|φ〉 introduces δ3(q ′′ − q0). Using
both these observations, the q ′ and q ′′ integrations can be
eliminated and these vectors replaced by q and q0, respectively.
The remaining matrix element 〈 p′q ′|P̌ | p′′q ′′〉 introduces two
Dirac δ functions, and there are two cases to consider. Each
case corresponds to one of the two terms in the permutation
operator P̌ = P̌12P̌23 + P̌13P̌23. This leads to two different
sets of momentum vectors that will be substituted for p and
p′′ after carrying out the integrations in Eq. (16). The first
term, 〈 p′q ′ = q|P̌1 = P̌12P̌23| p′′q ′′ = q0〉, results in

p′ = p′
1 ≡ 1

2 q + q0,
(17)

p′′ = p′′
1 ≡ − 1

2 q0 − q,

and the second term, 〈 p′q ′ = q|P̌2 = P̌13P̌23| p′′q ′′ = q0〉,
results in

p′ = p′
2 ≡ − 1

2 q − q0,

p′′ = p′′
2 ≡ 1

2 q0 + q. (18)

Using relation Eqs. (17) and (18) together with the operator
forms of the 2N transition operator 〈 pq|ť | p′

uq〉 from Ref. [1]
and initial state 〈 p′′

uq0|φ〉 from Eq. (5), we can rewrite Eq. (16)
as

〈 pq|ť P̌ |φ〉 =
2∑

u=1

∑
γ 2N

2∑
l=1

6∑
i=1

× t
γ 2N

i

(
E3N − 3

4m
q2,p,p′

u, p̂ · p̂′
u

)
φl(p

′′
u)

× [1̌ ⊗ |γ 2N 〉〈γ 2N |] ⊗ [1̌ ⊗ w̌i( p, p′
u)]

× [
P̌ is

u

] ⊗ [
P̌ s

u

]
× [1̌] ⊗ [1̌ ⊗ b̌l( p′′

u)]|s〉, (19)

where m is the nucleon mass and the sum over u is related
to the two terms in the permutation operator. The last three
lines of Eq. (19) have the isospin and spin parts of operators
separated. Square brackets on the left and right side of ⊗
are used to mark the isospin and spin components with 8 × 8
matrix representations. These two separate components are
additionally divided in line three and five to separate operators
acting in the space of particles 2 and 3 (on the right-hand side of
⊗ in [. . .]) from operators acting in the space of particle 1 (on
the left-hand side of ⊗ in [. . .]). Since the matrix representation
of the permutation in the 3N isospin space [P̌ is

u ] and the 3N
spin space [P̌ s

u ] is the same, in the following we will use
[P̌u] ≡ [P̌ is

u ] = [P̌ s
u ]. The deuteron bound state |φd〉 in |φ〉

has the form of Eq. (5), and in Eq. (19) the two capitalized
(acting in the space of particles 2 and 3) spin operators from
Eq. (6), B̌l( p) = 1̌ ⊗ b̌l( p), are written explicitly. The six spin
operators w̌i( p, p′

u) in Eq. (19) are part of the 2N transition
operator,

〈 p′γ ′2N |ť | pγ 2N 〉

= δγ ′2N γ 2N

6∑
i=1

t
γ 2N

i (E2N,p′,p, p̂′ · p̂)w̌i( p′, p), (20)

and are defined in Ref. [1]. In Eqs. (19) and (20), we write
the energy argument E explicitly and mark the difference
between the 3N and 2N energy E2N = E3N − 3

4m
q2. The

transition operator is determined by the scalar functions

t
γ 2N

i (E2N,p′,p, p̂′ · p̂) and the sum over γ 2N in Eq. (19) is over
the four possible 2N isospin states. Since the 2N transition
operator does not mix isospin states in the 2N subsystem
[1], the isospin component in line three of Eq. (19) contains
the |γ 2N 〉〈γ 2N | operator acting in the subspace of particles 2
and 3.

Using the general form of Eq. (15) and splitting Eq. (7) into
the isospin and spin components |s〉 = |γ 〉 ⊗ |α〉, Eq. (19) can
be written as

∑
γ 3N

64∑
r=1

τ̃ γ 3N

r ( p,q,q0)|γ 3N 〉 ⊗ (Ǒr ( p,q,q0)|α〉)

=
2∑

u=1

∑
γ 2N

2∑
l=1

6∑
i=1

t
γ 2N

i

(
E3N − 3

4m
q2,p,p′

u, p̂ · p̂′
u

)

×φl(p
′′
u)[1̌ ⊗ |γ 2N 〉〈γ 2N |]

⊗ [1̌ ⊗ w̌i( p, p′
u)][P̌u] ⊗ [P̌u][1̌]

⊗ [1̌ ⊗ b̌l( p′′
u)](|γ 〉 ⊗ |α〉). (21)

This equation holds for all spin states |α〉, not only for the
deuteron spin part of Eq. (7). The spin dependencies can,
therefore, be removed by acting from the left, on both sides of
Eq. (21), with

〈γ ′3N | ⊗ 〈α|Ǒw( p,q,q0) (22)
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FIG. 1. Distribution of nonzero elements in the Arw matrix.
The nonzero elements of this sparse matrix are marked using
black squares. Each row and column of squares corresponds to the
appropriate row and column of Arw.

and summing over all possible 3N spin states |α〉. This
procedure transforms the left-hand side of Eq. (21) into

64∑
r=1

Awr ( p,q,q0)τ̃ γ ′3N

r ( p,q,q0)

≡
64∑

r=1

∑
α

〈α|Ǒw( p,q,q0)Ǒr ( p,q,q0)|α〉τ̃ γ ′3N

r ( p,q,q0),

(23)

where we introduced the 64 × 64 = 4 096 element Arw matrix
containing scalar coefficients. This matrix is symmetric,
Aij = Aji , and the distribution of its nonzero elements is
illustrated in Fig. 1. Appendix B contains a complete list of
expressions for the nonzero elements of this matrix on and
above the diagonal.

The right-hand side of Eq. (21) is more complicated.
Applying Eq. (22) and summing over the spin states |α〉 results
in

2∑
u=1

2∑
l=1

6∑
i=1

×
∑
γ 2N

t
γ 2N

i

(
E3N − 3

4m
q2,p,p′

u, p̂ · p̂′
u

)

×φl(p
′′
u)〈γ ′3N |[1̌ ⊗ |γ 2N 〉〈γ 2N |][P̌u]|γ 〉

×
∑

α

〈α|[Ǒw( p,q,q0)][1̌ ⊗ w̌i( p, p′
u)]

× [P̌u][1̌ ⊗ b̌l( p′′
u)]|α〉. (24)

Lines two and three of Eq. (24) constitute new scalar functions,

f
γ ′3N

uil ( p,q,q0) ≡
∑
γ 2N

t
γ 2N

i

(
E3N − 3

4m
q2,p,p′

u, p̂ · p̂′
u

)
φl(p

′′
u)

×〈γ ′3N |[1̌ ⊗ |γ 2N 〉〈γ 2N |][P̌u]|γ 〉, (25)

of momenta and indexes u,i,l,γ ′3N that are related to the per-
mutation, the transition operator scalar function, the deuteron
scalar function, and the 3N isospin, respectively. Lines four
and five of Eq. (24) define new coefficients that can be easily
calculated using software for symbolic algebra [30]:

Bwiul( p,q,q0) ≡
∑

α

〈α|[Ǒw( p,q,q0)][1̌ ⊗ w̌i( p, p′
u)][P̌u]

× [1̌ ⊗ b̌l( p′′
u)]|α〉. (26)

Using Eqs. (25) and (26) the right-hand side of Eq. (21) can
be transformed to

2∑
u=1

2∑
l=1

6∑
i=1

f
γ ′3N

uil ( p,q,q0)Bwiul( p,q,q0). (27)

Collecting the left- and right-hand sides from Eqs. (23) and
(27), we get a simple matrix equation for the values of the

scalar functions τ̃
γ ′3N

r ( p,q,q0):

64∑
r=1

Awr ( p,q,q0)τ̃ γ ′3N

r ( p,q,q0)

=
2∑

u=1

2∑
l=1

6∑
i=1

f
γ ′3N

uil ( p,q,q0)Bwiul( p,q,q0). (28)

Finding the solution requires the inversion of the Arw matrix:

τ̃ γ ′3N

r ( p,q,q0) =
2∑

u=1

2∑
l=1

6∑
i=1

f
γ ′3N

uil ( p,q,q0)

×
64∑

w=1

A−1
rw ( p,q,q0)Bwiul( p,q,q0). (29)

Equation (29) allows the first part ť P̌ |φ〉 of the Faddeev Eq. (1)
to be written in the general operator form of Eq. (11). It is
also a recipe for the τ̃ function from Eq. (13). The successful
application of this formula depends on the numerical properties
of A; these should be carefully investigated during the
numerical realization.

B. Operator form of 〈 pq| ť Ǧ0 P̌ Ť |φ〉
Writing 〈 pq|ť Ǧ0P̌ Ť |φ〉 in the general form of Eq. (11),

〈 pq|ť Ǧ0P̌ Ť |φ〉

=
∑
γ 3N

64∑
r=1

τ̄ γ 3N

r ( p,q,q0)|γ 3N 〉 ⊗ (Ǒr ( p,q,q0)|α〉),

(30)

with new scalar functions τ̄
γ 3N

r ( p,q,q0) and removing the spin
and isospin dependencies will complete the reformulation of
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the Faddeev Eq. (1) into Eq. (14). We begin by inserting two
identity operators between Ǧ0 and P̌ and between P̌ and Ť :

〈 pq|ť Ǧ0P̌ Ť |φ〉
=

∫
d3 p′d3q ′

∫
d3 p′′d3q ′′〈 pq|ť Ǧ0| p′q ′〉

× 〈 p′q ′|P̌ | p′′q ′′〉〈 p′′q ′′|Ť |φ〉. (31)

The first matrix element 〈 pq|ť Ǧ0| p′q ′〉 will introduce
δ3(q − q ′) into the integrand. The second matrix element
〈 p′q ′|P̌ | p′′q ′′〉 will introduce two Dirac δ functions into the
integrations and, in analogy to the previous subsection, we will
have to consider two cases corresponding to the two terms in
P̌ = P̌12P̌23 + P̌13P̌23. The third matrix element 〈 p′′q ′′|Ť |φ〉
can be written in the general operator form of Eq. (11) but does
not explicitly introduce any Dirac delta functions. Altogether,
this results in one integration remaining in Eq. (31), and it is
important to choose this integration smartly due to the singular
nature of the integrand.

We expect Ť to have at least one singularity coming from
the 2N transition operator ť . The explicit energy dependence
of ť in Eq. (31) is E3N − 3

4m
q2 and the singularity will occur

when this value approaches the deuteron-bound state energy.
This directly translates to a singularity of 〈 p′′q ′′|Ť |φ〉 in q ′′.
Using this observation and following Ref. [29], we eliminate
three integrals and leave only the q ′′ integration in Eq. (31).

After eliminating the integrals, the first term in the permu-
tation operator 〈 p′q ′ = q|P̌1 = P̌12P̌23| p′′q ′′〉 results in

p′ = k′
1 ≡ 1

2 q + q ′′,
(32)

p′′ = k′′
1 ≡ − 1

2 q ′′ − q,

and the second part 〈 p′q ′ = q|P̌2 = P̌13P̌23| p′′q ′′〉 results in

p′ = k′
1 ≡ − 1

2 q − q ′′,

p′′ = k′′
1 ≡ 1

2 q ′′ + q. (33)

With this, Eq. (31) can be written using the general form of
Eq. (30):

∑
γ 3N

64∑
r=1

τ̄r
γ 3N

( p,q,q0)|γ 3N 〉 ⊗ (Ǒr ( p,q,q0)|α〉)

=
2∑

u=1

∫
d3q ′′[〈 pq|ť |k′

uq〉] [P̌u] ⊗ [P̌u]

E + iε − 3
4m

q2 − 1
m

k′
u

2

×
∑
γ 3N

64∑
r=1

τ γ 3N

r (k′′
u,q

′′,q0)|γ 3N 〉 ⊗ (Ǒr (k′′
u,q

′′,q0)|α〉),

(34)

with the scalar function τ̄ determining Ť after the application
of ť Ǧ0P̌ and |α〉 being a 3N spin state.

Removing the spin and isospin dependencies from Eq. (34)
follows the same procedure as in Sec. IV A. For this reason,
we will not delve into details and only write the final result:

τ̄ γ ′3N

r ( p,q,q0)

=
∫

d3q ′′
2∑

u=1

6∑
i=1

64∑
w=1

64∑
s=1

A−1
rw ( p,q,q0)Cwsiu

× ( p,q,q0,q ′′)gγ ′3N

sui ( p,q,q0,q ′′). (35)

In Eq. (35), Cwsiu( p,q,q0,q ′′) are new functions that can be
easily calculated using software for symbolic algebra,

Cwsiu( p,q,q0,q ′′) ≡
∑

α

〈α|[Ǒw( p,q,q0)][1̌ ⊗ w̌i( p,k′
u)]

× [P̌u][Ǒs(k′′
u,q

′′,q0)]|α〉, (36)

and the sum is over all possible spin states. The functions

g
γ ′3N

sui ( p,q,q0,q ′′) are related to the scalar functions τ via

gγ ′3N

sui ( p,q,q0,q ′′)

≡
∑
γ 2N

∑
γ 3N

t
γ 2N

i

(
E3N − 3

4m
q2,p,k′

u, p̂ · k̂
′
u

)

×
(

E + iε − 3

4m
q2 − 1

m
k′

u
2
)−1

τ γ 3N

s (k′′
u,q

′′,q0)

×〈γ ′3N |[1̌ ⊗ |γ 2N 〉〈γ 2N |][P̌u]|γ 3N 〉. (37)

With this we have a complete set of definitions that can be
used to solve Eq. (1) using iterative Krylov subspace methods.

C. Collecting all terms

We mentioned above that a smart choice of integration
variable is important due to the singular behavior of the 2N
transition operator around the deuteron-bound state energy.
The form of this singularity is well known and can be used in
Eqs. (29) and (35) by explicitly writing the scalar functions
that define the 2N transition operator in Eq. (20) as

t
γ 2N

i (E2N,p′,p, p̂′ · p̂) = t
s γ 2N

i (E2N,p′,p, p̂′ · p̂)

E2N − Ed

. (38)

This substitution is only necessary for the case of the deuteron
isospin |γ 2N 〉 = |00〉 and results in nonsingular scalar func-
tions t s . In addition to the deuteron, also the free propagator
contributes to the singular behavior of the integral form of
the Faddeev equation; this results in the so-called “moving
singularities.” In our scheme, these poles will be treated
numerically as described in Refs. [6,29], where equations
very similar to the ones presented in the current paper are
considered. Additional information on the treatment of the
deuteron pole can be found in Ref. [26].

With this in mind, all ingredients are in place to implement
Eq. (14),

(1̌ − Q̌)τ = τ̃ ,
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numerically. Equation (29) together with Eqs. (25) and (26)
can be used to construct τ̃ ,

τ̃ γ ′3N

r ( p,q,q0) =
2∑

u=1

2∑
l=1

6∑
i=1

f
γ ′3N

uil ( p,q,q0)

×
64∑

w=1

A−1
rw ( p,q,q0)Bwiul( p,q,q0),

while Eq. (35) together with Eqs. (36) and (37) define the Q̌
operator:

(Q̌τ )γ
′3N

r ( p,q,q0) = τ̄ γ ′3N

r ( p,q,q0)

=
∫

d3q ′′
2∑

u=1

6∑
i=1

64∑
w,s=1

A−1
rw ( p,q,q0)

×Cwsiu( p,q,q0,q ′′)gγ ′3N

sui ( p,q,q0,q ′′).

We managed to significantly reduce the numerical complexity
of the problem by utilizing rotational symmetry; however, the
numerical size of the problem is still significant. This poses
a serious challenge for the future implementation, which we,
nonetheless, regard to be feasible since even more simpli-
fications are immediately apparent. For instance, looking at
the final expressions, each free nucleon relative momentum
magnitude q0 case produces an independent equation and
can be treated separately, thus further reducing the numerical
complexity of the calculations.

V. SUMMARY

In Sec. II, we showed that the 3N scattering amplitude can
be written in a general form,

〈 pq|Ť |φ〉

=
∑
γ 3N

64∑
r=1

τ γ 3N

r ( p,q,q0)|γ 3N 〉 ⊗ (Ǒr ( p,q,q0)|α〉),

and the arguments we presented are applicable also in the case
when a 3N force is taken into consideration. Next, we used
this general form to rewrite the Faddeev equation as

(1̌ − Q̌)τ = τ̃ ,

where Q̌ is a linear operator acting on the scalar functions τ
(depending on momenta p,q,q0 and integer arguments r and
γ 3N ) that define the scattering amplitude and τ̃ is a given set
of scalar functions calculated using the 2N transition operator.
This simple linear equation can be solved iteratively for τ .
These scalar functions can be represented numerically using
only approximately 5.5 × 1011 complex numbers if they are
discretized over a lattice of 32 points for each momentum
magnitude and angular argument.

This is a significant reduction of numerical complexity with
respect to approaches that do not utilize rotational symmetry,
and we hope that it will allow us to construct a numerical
scheme that accounts for all orders of the iterated Faddeev
equation. We also hope that using the general form of the
scattering amplitude will make it possible to include 3N forces

into the description of three nucleon scattering without using
partial waves. However, to achieve this goal we will have to
work out the general operator form of the 3N force. For first
steps in this direction by H. Krebs et al., see Ref. [25].

It should be mentioned that a further reduction of numerical
complexity can be achieved by utilizing discrete symmetries.
Utilizing symmetry properties under parity, time reversal and
particle exchange might reduce the total number of scalar
functions. We estimate that this is a much smaller gain than the
one obtained by utilizing rotation symmetry; however, every
simplification of the problem should be considered.
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APPENDIX A: SPIN OPERATORS IN THE GENERAL
FORM OF THE 3N SCATTERING AMPLITUDE

Ǒ1( p,q,q0) = 1

Ǒ2( p,q,q0) = p · σ̌ (1)

Ǒ3( p,q,q0) = p · σ̌ (2)

Ǒ4( p,q,q0) = p · σ̌ (3)

Ǒ5( p,q,q0) = q · σ̌ (1)

Ǒ6( p,q,q0) = q · σ̌ (2)

Ǒ7( p,q,q0) = q · σ̌ (3)

Ǒ8( p,q,q0) = q0 · σ̌ (1)

Ǒ9( p,q,q0) = q0 · σ̌ (2)

Ǒ10( p,q,q0) = q0 · σ̌ (3)

Ǒ11( p,q,q0) = σ̌ (1) · σ̌ (2)

Ǒ12( p,q,q0) = σ̌ (1) · σ̌ (3)

Ǒ13( p,q,q0) = σ̌ (2) · σ̌ (3)

Ǒ14( p,q,q0) = p × σ̌ (1) · σ̌ (2)

Ǒ15( p,q,q0) = p × σ̌ (1) · σ̌ (3)

Ǒ16( p,q,q0) = p × σ̌ (2) · σ̌ (3)

Ǒ17( p,q,q0) = q × σ̌ (1) · σ̌ (2)

Ǒ18( p,q,q0) = q × σ̌ (1) · σ̌ (3)

Ǒ19( p,q,q0) = q × σ̌ (2) · σ̌ (3)

Ǒ20( p,q,q0) = q0 × σ̌ (1) · σ̌ (2)

Ǒ21( p,q,q0) = q0 × σ̌ (1) · σ̌ (3)

Ǒ22( p,q,q0) = q0 × σ̌ (2) · σ̌ (3)
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Ǒ23( p,q,q0) = σ̌ (1) × σ̌ (2) · σ̌ (3)

Ǒ24( p,q,q0) = p · σ̌ (1) p · σ̌ (2)

Ǒ25( p,q,q0) = p · σ̌ (1) p · σ̌ (3)

Ǒ26( p,q,q0) = p · σ̌ (1) q · σ̌ (2)

Ǒ27( p,q,q0) = p · σ̌ (1) q · σ̌ (3)

Ǒ28( p,q,q0) = p · σ̌ (1) q0 · σ̌ (2)

Ǒ29( p,q,q0) = p · σ̌ (1) q0 · σ̌ (3)

Ǒ30( p,q,q0) = p · σ̌ (1) σ̌ (2) · σ̌ (3)

Ǒ31( p,q,q0) = p · σ̌ (1) p × σ̌ (2) · σ̌ (3)

Ǒ32( p,q,q0) = p · σ̌ (1) q × σ̌ (2) · σ̌ (3)

Ǒ33( p,q,q0) = p · σ̌ (1) q0 × σ̌ (2) · σ̌ (3)

Ǒ34( p,q,q0) = p · σ̌ (1) σ̌ (1) × σ̌ (2) · σ̌ (3)

Ǒ35( p,q,q0) = p · σ̌ (2) p · σ̌ (3)

Ǒ36( p,q,q0) = p · σ̌ (2) q · σ̌ (3)

Ǒ37( p,q,q0) = p · σ̌ (2) q0 · σ̌ (3)

Ǒ38( p,q,q0) = p · σ̌ (2) σ̌ (1) · σ̌ (3)

Ǒ39( p,q,q0) = p · σ̌ (2) p × σ̌ (1) · σ̌ (3)

Ǒ40( p,q,q0) = p · σ̌ (2) q × σ̌ (1) · σ̌ (3)

Ǒ41( p,q,q0) = p · σ̌ (2) q0 × σ̌ (1) · σ̌ (3)

Ǒ42( p,q,q0) = q · σ̌ (1) q · σ̌ (2)

Ǒ43( p,q,q0) = q · σ̌ (1) q · σ̌ (3)

Ǒ44( p,q,q0) = q · σ̌ (1) q0 · σ̌ (2)

Ǒ45( p,q,q0) = q · σ̌ (1) q0 · σ̌ (3)

Ǒ46( p,q,q0) = q · σ̌ (1) σ̌ (2) · σ̌ (3)

Ǒ47( p,q,q0) = q · σ̌ (1) p × σ̌ (2) · σ̌ (3)

Ǒ48( p,q,q0) = q · σ̌ (1) q × σ̌ (2) · σ̌ (3)

Ǒ49( p,q,q0) = q · σ̌ (1) q0 × σ̌ (2) · σ̌ (3)

Ǒ50( p,q,q0) = q · σ̌ (1) σ̌ (1) × σ̌ (2) · σ̌ (3)

Ǒ51( p,q,q0) = q · σ̌ (2) q · σ̌ (3)

Ǒ52( p,q,q0) = q · σ̌ (2) q0 · σ̌ (3)

Ǒ53( p,q,q0) = q · σ̌ (2) σ̌ (1) · σ̌ (3)

Ǒ54( p,q,q0) = q · σ̌ (2) p × σ̌ (1) · σ̌ (3)

Ǒ55( p,q,q0) = q · σ̌ (2) q × σ̌ (1) · σ̌ (3)

Ǒ56( p,q,q0) = q · σ̌ (2) q0 × σ̌ (1) · σ̌ (3)

Ǒ57( p,q,q0) = q0 · σ̌ (1) σ̌ (2) · σ̌ (3)

Ǒ58( p,q,q0) = p · σ̌ (1) p · σ̌ (2) p · σ̌ (3)

Ǒ59( p,q,q0) = p · σ̌ (1) p · σ̌ (2) q · σ̌ (3)

Ǒ60( p,q,q0) = p · σ̌ (1) p · σ̌ (2) q0 · σ̌ (3)

Ǒ61( p,q,q0) = p · σ̌ (1) q · σ̌ (2) q · σ̌ (3)

Ǒ62( p,q,q0) = p · σ̌ (1) q · σ̌ (2) q0 · σ̌ (3)

Ǒ63( p,q,q0) = q · σ̌ (1) q · σ̌ (2) q · σ̌ (3)

Ǒ64( p,q,q0) = q · σ̌ (1) q · σ̌ (2) q0 · σ̌ (3)

APPENDIX B: NONZERO COEFFICIENTS
FOR THE Arw MATRIX

A1 1 = 8

A11 11 = A12 12 = A13 13 = 24

A23 23 = 48

A41 50 = 8i( p × q) · q0

A33 50 = 16i( p × q) · q0

A14 44 = A15 45 = A16 52 = A20 26 = A21 27 = A22 36

= A23 62 = A30 56 = A34 52 = A38 49 = A40 57

= 8( p × q) · q0

A34 56 = 8i( p × q0) · q

A34 49 = 16i( p × q0) · q

A17 28 = A18 29 = A19 37 = A33 53 = A37 50 = A41 46

= A54 57 = 8( p × q0) · q

A31 55 = A39 48 = −8( p × q) · ( p × q)

A50 59 = 8i( p × q) · ( p × q)

A32 40 = A47 54 = 8( p × q) · ( p × q)

A39 49 = −8( p × q) · ( p × q0)

A50 60 = 8i( p × q) · ( p × q0)

A47 56 = A49 54 = −8( p × q) · (q × q0)

A50 62 = 8i( p × q) · (q × q0)

A41 48 = 8( p × q) · (q × q0)

A31 56 = −8( p × q0) · ( p × q)

A32 41 = A33 40 = 8( p × q0) · ( p × q)

A33 41 = 8( p × q0) · ( p × q0)

A41 49 = 8( p × q0) · (q × q0)

A34 64 = −8i(q × q0) · ( p × q)

A33 55 = 8(q × q0) · ( p × q)

A33 56 = 8(q × q0) · ( p × q0)

A49 56 = 8(q × q0) · (q × q0)

A23 39 = A34 34 = −16 p · p

A34 38 = −16i p · p

A2 2 = A3 3 = A4 4 = A11 24 = A12 25 = A13 35

= A30 38 = 8 p · p
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A14 14 = A15 15 = A16 16 = A16 34 = A23 31 = 16 p · p

A30 30 = A38 38 = 24 p · p

A32 60 = A40 60 = −8 p · p( p × q) · q0

A31 62 = A33 59 = A41 59 = 8 p · p( p × q) · q0

A24 24 = A25 25 = A30 58 = A35 35 = A38 58 = 8( p · p)2

A31 31 = A39 39 = 16( p · p)2

A58 58 = 8( p · p)3

A23 40 = A23 54 = A34 50 = −16 p · q

A34 53 = A38 50 = −16i p · q

A2 5 = A3 6 = A4 7 = A11 26 = A12 27 = A13 36 = A30 53

= A38 46 = 8 p · q

A14 17 = A15 18 = A16 19 = A16 50 = A19 34 = A23 32

= A23 47 = 16 p · q

A30 46 = A38 53 = 24 p · q

A40 62 = A48 60 = A55 60 = −8 p · q( p × q) · q0

A31 64 = A39 64 = A41 61 = A47 62 = A49 59 = A56 59

= 8 p · q( p × q) · q0

A24 26 = A25 27 = A30 59 = A35 36 = A38 59 = A46 58

= A53 58 = 8 p · p p · q

A31 32 = A31 47 = A39 40 = A39 54 = 16 p · p p · q

A58 59 = 8( p · p)2 p · q

A24 42 = A25 43 = A35 51 = A38 61

= A46 59 = A53 59 = 8( p · q)2

A31 48 = A32 47 = A39 55 = A40 54 = 16( p · q)2

A58 61 = 8 p · p( p · q)2

A58 63 = 8( p · q)3

A23 41 = −16 p · q0

A2 8 = A3 9 = A4 10 = A11 28 = A12 29 = A13 37

= A38 57 = 8 p · q0

A14 20 = A15 21 = A16 22 = A22 34 = A23 33 = 16 p · q0

A30 57 = 24 p · q0

A24 28 = A25 29 = A30 60 = A35 37 = A38 60 = A57 58

= 8 p · p p · q0

A31 33 = A39 41 = 16 p · p p · q0

A58 60 = 8( p · p)2 p · q0

A24 44 = A25 45 = A35 52 = A38 62 = A46 60

= A53 60 = A57 59 = 8 p · q p · q0

A31 49 = A33 47 = A39 56 = A41 54 = 16 p · q p · q0

A58 62 = 8 p · p p · q p · q0

A58 64 = 8( p · q)2 p · q0

A57 60 = 8( p · q0)2

A23 55 = A50 50 = −16q · q

A50 53 = −16iq · q

A5 5 = A6 6 = A7 7 = A11 42 = A12 43 = A13 51

= A46 53 = 8q · q

A17 17 = A18 18 = A19 19 = A19 50 = A23 48 = 16q · q

A46 46 = A53 53 = 24q · q

A55 62 = −8q · q( p × q) · q0

A47 64 = A54 64 = A56 61 = 8q · q( p × q) · q0

A26 26 = A27 27 = A30 61 = A36 36 = 8 p · pq · q

A32 32 = A40 40 = A47 47 = A54 54 = 16 p · pq · q

A59 59 = 8( p · p)2q · q

A26 42 = A27 43 = A30 63 = A36 51 = A38 63 = A46 61

= A53 61 = 8 p · qq · q

A32 48 = A40 55 = A47 48 = A54 55 = 16 p · qq · q

A59 61 = 8 p · p p · qq · q

A59 63 = 8( p · q)2q · q

A53 62 = A57 61 = 8 p · q0q · q

A47 49 = A54 56 = 16 p · q0q · q

A42 42 = A43 43 = A46 63 = A51 51 = A53 63 = 8(q · q)2

A48 48 = A55 55 = 16(q · q)2

A61 61 = 8 p · p(q · q)2

A61 63 = 8 p · q(q · q)2

A63 63 = 8(q · q)3

A23 56 = −16q · q0

A5 8 = A6 9 = A7 10 = A11 44 = A12 45

= A13 52 = A53 57 = 8q · q0

A17 20 = A18 21 = A19 22 = A22 50 = A23 49 = 16q · q0

A46 57 = 24q · q0

A26 28 = A27 29 = A30 62 = A36 37 = 8 p · pq · q0

A32 33 = A40 41 = 16 p · pq · q0

A59 60 = 8( p · p)2q · q0

A26 44 = A27 45 = A28 42 = A29 43 = A30 64 = A36 52

= A37 51 = A38 64 = A46 62 = 8 p · qq · q0

A32 49 = A33 48 = A40 56 = A41 55 = 16 p · qq · q0

A59 62 = A60 61 = 8 p · p p · qq · q0

A59 64 = A60 63 = 8( p · q)2q · q0

A57 62 = 8 p · q0q · q0

A42 44 = A43 45 = A46 64 = A51 52 = A53 64

= A57 63 = 8q · qq · q0

A48 49 = A55 56 = 16q · qq · q0

A61 62 = 8 p · pq · qq · q0
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A61 64 = A62 63 = 8 p · qq · qq · q0

A63 64 = 8(q · q)2q · q0

A57 64 = 8(q · q0)2

A8 8 = A9 9 = A10 10 = 8q0 · q0

A20 20 = A21 21 = A22 22 = 16q0 · q0

A57 57 = 24q0 · q0

A28 28 = A29 29 = A37 37 = 8 p · pq0 · q0

A33 33 = A41 41 = 16 p · pq0 · q0

A60 60 = 8( p · p)2q0 · q0

A28 44 = A29 45 = A37 52 = 8 p · qq0 · q0

A33 49 = A41 56 = 16 p · qq0 · q0

A60 62 = 8 p · p p · qq0 · q0

A60 64 = 8( p · q)2q0 · q0

A44 44 = A45 45 = A52 52 = 8q · qq0 · q0

A49 49 = A56 56 = 16q · qq0 · q0

A62 62 = 8 p · pq · qq0 · q0

A62 64 = 8 p · qq · qq0 · q0

A64 64 = 8(q · q)2q0 · q0
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