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New quasibound states of the compound nucleus in α-particle capture by the nucleus
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We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier
and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes
distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states
(called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus.
With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross
sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution
of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1)
a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN,
(3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4)
high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture
reaction of α + 44Ca. We predict quasibound energy levels and determine fusion probabilities for this reaction.
The difference between our approach and theory of quasistationary states with complex energies applied for the α

capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture
(according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches
describe different states of the α capture (for the same α-nucleus potential).
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I. INTRODUCTION

A traditional way in understanding of capture of α particles
by nuclei is based on the idea of tunneling through a potential
barrier [1] (see improved formalism in Ref. [2]). Evalua-
tions of the α-particle capture rates indicate an important
role of such reactions in stars [3–5]. There are intensive
investigations [1,6–8] providing the most accurate potential
of interactions between the α particles and nuclei basing on
existed experimental information of α decay and α capture.
Although approaches in determination of penetrabilities of
the barrier are highly developed, there is no a generally
accepted method to describe a fusion in this reaction. In
heavy-ion collisions and scattering with fragments heavier
than the α particle, an essential attention has been focused on
understanding the mechanisms of the fusion (the current status
in the experimental and theoretical investigations on this topic
can be seen in the recent review [9], also in Refs. [10–24]). In
the case of α capture, the model descriptions of the fusion of
the α particle by the target nucleus inside a nuclear region are
very simplified. The approach of sharp angular-momentum
cutoff was proposed by Glas and Mosel [25,26]. Eberhard
et al. proposed a relation that gives information about fusion
in the α capture of the 40Ca and 44Ca nuclei. They compared
calculated cross sections with experimental data at selected
energies [27]. Recently, a more precise way to study the
α-capture problem is proposed in Ref. [28]. In that paper we
investigated a high-precision method (called the method of
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multiple internal reflections, MIR) to determine fusion in the
capture of α particles by nuclei. With this method, we found
new parametrization of the α-nucleus potential and fusion
probabilities (see Fig. 6, Tables 2 and B.3 in Ref. [28]). Error
in description of experimental data is decreased by 41.72 times
for α + 40Ca and 34.06 times for α + 44Ca in comparison with
previous results (see Fig. 5 and Table 1 in Ref. [28], for details).
To date, this is the most accurate and successful approach
in describing experimental data for α capture. Based on our
fusion probability formula (see Eqs. (21)–(27) and Figs. 8 and
9 in Ref. [28]), we predicted cross sections for the α capture
by the nucleus 46Ca for future experimental tests.1

In frameworks of existing models of α capture, it is assumed
that a complete fusion of the α particle and nucleus takes place
after tunneling. Cross sections of the fusion are determined
by the penetrabilities. The dependence of the penetrability
on energy of the incident α particle is monotonic (without
any minima and maxima) at each allowed orbital momentum
(see Figs. 2 and 3 in Ref. [28] for the capture α + 44Ca). This
explains the absence of peaks in the calculated cross sections of
the α capture and has been confirmed by existing experimental
information, because we have the cross sections for capture of
the α particles by the nuclei 40Ca, 44Ca [27], 59Co [30], 208Pb
[31], and 209Be [31]. This is why people assume there is no any

1This nucleus 46Ca is of research interest connected with discovery
of new neutron magic numbers at N = 16 and N = 26 (see review
[29] of this topic; here the standard theory gives us only seven
experimentally known neutron numbers at 2, 8, 20, 28, 50, 82, 126). In
this regard, it could be interesting for experimentalists to investigate
the fusion process at the capture of the α particle by this nucleus
based on our predictions.
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state of possible formation of the compound-nuclear system
when nucleons of the α particle and nucleus-target form the
most stable bound nuclear system at some fixed energies.

Nowadays, two approximated approaches are very popular
to determine the penetrability: (1) the Wentzel–Kramers–
Brillouin (WKB) approximation and (2) replacing the original
barrier by the inverse oscillator potential, which has solutions
for the wave function (see the Hill–Wheeler approach [32]
and Wong’s formula [33] for calculating cross sections).
Such approaches have been widely used in the basis of
modern coupled-channel calculations for the study of fusion
[9,20]. However, note that the region of applicability of
both approaches is only near the barrier maximum. Both
approaches completely ignore the shape of the internal nuclear
region and the external tail of the potential. The WKB
approximation cannot be applied for the main region of
under-barrier energies, and the oscillator potential used in
the second approach is completely different from the original
barrier. In the framework of the WKB approach, a reflection
from the barrier is not defined, so we cannot apply the test of
quantum mechanics to check the results obtained. As a result,
an essential part of under-barrier and above-barrier energy
regions for the original barrier looks like black box and cannot
be correctly studied by means of the two above approaches, and
consequently the proposed result for the penetrability cannot
be tested.

By such a motivation, we approximate the original potential
barrier by a number of rectangular steps, for which there are
exact analytical solutions for wave functions at any energy
[28,34]. It turns out that approximation of this approach
can be reduced up to zero by increasing the number of
steps, all solutions for the wave function are convergent and
fully satisfy all known tests of quantum mechanics (with
an accuracy up to the first 15 digits). We study quantum
processes both for deep under-barrier energies, and energies
highly above the barrier maximum (that is a problem for
both approaches mentioned above). This approach has been
successfully applied for different tasks of quantum physics
[35] with the barriers of very specific shape (note that the
two approximate approaches mentioned above cannot be even
applied for the proper determination of the penetrabilities
of these barriers). It allows us to study the influence of the
shapes of potential outside the tunneling region on the obtained
penetrability. The analysis in Refs. [28,34] shows that such
an influence is not small, and in some cases can change
the penetrability more then 100%.2 In the framework of our
approach, we find that the penetrability depends on some new
parameters. They could actually be more important than the
nuclear deformations. However, these parameters are missed
in the two approximate approaches above.

2In Fig. 1 of Ref. [28] (and in Fig. 1 of Ref. [34]) we shown
variations of the penetrability of more than four times in dependence
of the localization of the capture point (this is the internal boundary
of the potential region with the barrier, for which we calculate the
penetrability) at the same incident energy of 2 MeV of the α particle
for the capture α + 44Ca at l = 0.

According to quantum mechanics, consideration of evolu-
tion of the system up to the moment of propagation of the α
particle through the barrier is not complete (that was analyzed
in Refs. [28,34]). Conservation of a flux of wave function
requires us to take a further evolution of this system into
account. Our research in this paper starts from an analysis of
this evolution of the compound system in that stage. It turns out
that such a consideration leads to the appearance of oscillations
of this system and its disintegration (and allows us to include
mechanisms of fusion). In frameworks of unified formalism we
join the tunneling processes and oscillations inside the internal
nuclear region the first time. Note that the idea introduced by
Gamow in 1928 applied to describe α decay [36], where these
two processes were considered separately (and there is no
approach combining these two processes) for determination
of half-lives of decay. Until now, half-lives of the α decay
of nuclei are determined on such a basis with inclusion of
spectroscopic factors (see, for example, Refs. [37–50]).

Another implication of our method shown in this paper
is the appearance of the maximally stable states of the
compound system at some energies of the incident α particle (at
monotonic penetrabilities of the barrier). The existence of such
maximally stable states (we call them as quasibound) reflects
the quantum nature of collisions of nuclei; however, it cannot
be explained by traditional methods (see, for example, methods
based on Ref. [27] for comparison). In this regard, new
questions will appear. By how much do oscillations prevail,
how fast does the fusion takes place, and in which space
region does the fusion dominate? To clarify these questions,
in this paper we improve the method proposed in Ref. [28]
by including a new formalism of evolution of the compound
system (after tunneling) with possible fusion.

II. METHOD

To clearly understand how the quasibound states of the
compound-nuclear system appear with monotonic penetrabil-
ities, let us consider the simplest picture of scattering of an α
particle off a nucleus in a spherically symmetric scenario. It
turns out that the simplest potential applicable for this aim and
its corresponding general solution of the wave function (up to
normalization) are

V (r) =
{
V1 at rmin < r � r1 (region 1)
0 at r1 � r � rmax (region 2),

ψ(r,θ,ϕ) = χ (r)

r
Ylm(θ,ϕ),

χ (r) =
{
α1e

ik1r + β1e
−ik1r (region 1)

e−ik2r + AReik2r (region 2),
(1)

where V1 < 0, rmin � 0, α1, β1, and AR are unknown
amplitudes, Ylm(θ,ϕ) is the spherical function, and kj =
1
h̄

√
2m(E − Vj ) are complex wave numbers (j = 1,2, V2 =

0). We fix the normalization of the wave function so that the
modulus of the amplitude of the incident wave e−ik2r equals
unity.

According to the MIR method in Ref. [28] (see Refs. [51]
also, for details), the scattering of the particle on the potential
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is sequentially considered by steps of propagation of a wave
packet relative to each boundary. In the first step we consider
a wave e−ik2r in region 2, which is incident on the boundary at
point r1. This wave is transformed into a new wave β

(1)
1 e−ik1r

propagated to the center in region 1, and a new wave α
(1)
2 eik2r

reflected from the boundary and propagated into region 2. We
have such a wave function for this process:

χ (1)(r) =
{
β

(1)
1 e−ik1r at rmin < r � r1

e−ik2r + α
(1)
2 eik2r at r1 � r � rmax.

(2)

The transmitted wave is formed in the internal nuclear
region. Thus, it describes the formation of a compound
nucleus and its further evolution. The reflected wave de-
scribes reflection of the particle by Coulomb forces of the
nucleus. Therefore, in the framework of this extremely simple
scheme, we have separated the scattering of particle off the
nucleus into two physically different processes: (1) formation
of the compound nucleus and its possible disintegration
and (2) the potential scattering without compound-nucleus
formation.

In the second step we consider the wave β
(1)
1 e−ik1r in

region 1 formed in the previous step. This wave propagates
to center of the nucleus and is transformed into a new wave
α

(2)
1 eik1r . In the third step, we consider the wave α

(2)
1 eik1r

which is incident on the boundary at r1 and transformed into
a new wave in region 2 (describing transmission through the
boundary) which propagates outside, and another new wave
in region 1 (describing reflection from the boundary) which
propagates to center. One can describe these processes by wave
functions:

χ (2)(r) = β
(1)
1 e−ik1r + α

(2)
1 eik1r at rmin < r � r1,

χ (3)(r) =
{

α
(2)
1 eik1r + β

(3)
1 e−ik1r at rmin < r � r1

α
(3)
2 eik2r at r1 � r � rmax.

(3)

Here, α
(i)
j and β

(i)
j are unknown amplitudes (we add upper

index i denoting step number, and bottom index j denoting
region number). We find the following recurrent relations
from conditions of continuity of the full wave function and
its derivative:

α
(1)
2 = R−

1 , β
(1)
1 = T −

1 , α
(2)
1 = R0β

(1)
1 ,

α
(3)
2 = α

(2)
1 T +

1 , β
(3)
1 = α

(2)
1 R+

1 , R−
1 = k − k1

k + k1
e−2ikr1 ,

T −
1 = 2k

k + k1
e−i(k−k1)r1 , R0 = −e−2ik1rmin ,

T +
1 = 2k1

k + k1
ei(k1−k)r1 , R+

1 = k1 − k

k + k1
e2ik1r1 . (4)

Here, we introduce new amplitudes T −
1 and R+

1 , describing
transmission and reflection concerning the boundary (bottom
index “1” or “0” indicates the number of the boundary, upper
sign “−” or “+” indicates the negative or positive radial
direction, respectively, of the incident wave in determination
of the amplitude). Each next step in such a consideration for
propagation of waves is similar to one of these three steps.
With the above analysis we find recurrent relations for new

unknown amplitudes and calculate the following summations
of all waves:∑

i=1

β
(i)
1 = AoscT

−
1 ,

∑
i=1

α
(i)
1 = R0

∑
i=1

β
(i)
1 ,

∑
i=2

α
(i)
2 = AoscT

−
1 R0T

+
1 ,

Aosc =
(

1 +
∑
i=1

(R0R
+
1 )i

)
= 1

1 − R0R
+
1

. (5)

The factor Aosc describes oscillation of waves inside internal
region 1 (so we call it the amplitude of oscillations). At R0 =
−1 we obtain

∑
i=1

β
(i)
1 = −

∑
i=1

α
(i)
1 = Aosc

2ke−i(k−k1)r1

k + k1
,

∑
i=2

α
(i)
2 = −Aosc

4kk1e
2i(k1−k)r1

(k + k1)2 ,

Aosc = k + k1

(k + k1) + (k1 − k)ei2k1r1
. (6)

Note that full flux of all outgoing waves equals the flux of
incident waves (k and k1 are real): |α(1)

2 + ∑
i=2 α

(i)
2 |2 = 1.

Let us calculate integral of the square of the modulus of the
wave function over the region 1 (at R0 = −1):

Pcn =
∫ r1

0
|ϕ(r)|2 dr = PoscTbarPloc,

Posc = |Aosc|2, Tbar ≡ k1

k2
|T −

1 |2,

Ploc = 2
k2

k1

(
r1 − sin (2k1r1)

2k1

)
. (7)

This integral is interpreted as the probability of existence of the
compound nucleus formed (in space region up to r1) during
the scattering. One can see from Fig. 1 that this probability
depends on the energy of the α particle and it has maxima
and minima (for the same fixed normalization of the incident
wave). This is because Pcn is the explicit multiplication of
the penetrability Tbar, coefficient of oscillations Posc, and
one additional new factor Ploc. Thus, we have obtained a
generalization of Gamow’s idea in determination of half-life
of nuclear decay, that based on the penetrability of barrier
and internal oscillations inside the internal region. But here
we obtain also a new factor Ploc, which can be interpreted as
space distribution of the α particle inside the nuclear region
(at one oscillation) described via the wave function. We call it
the “coefficient of localization.”

Moreover, there is an interference term between the wave
reflected in the first step from the boundary r1 (describing the
potential scattering without compound-nucleus formation) and
summation of all other waves outgoing to region 2 (which are
formed in formation of the compound nucleus and its decay).
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FIG. 1. (a) Probability of existence of the compound nucleus Pcn defined by Eq. (7), (b) penetrability of the boundary Tbar (blue solid
line) defined by Eq. (7), modulus of the amplitude of oscillations Aosc (red dashed line) defined in Eq. (6), and interference term Pinterf (green
dash-dotted line) defined in Eq. (8) as a function of the energy of the incident α particle for the reaction α + 44Ca at l = 0 (parameters V1 and
r1 are used concerning the depth of the well and the coordinate of the maximum of the realistic radial barrier at parametrization [6] for this
reaction: we obtain V1 = −23.73 MeV and r1 = 8.935 fm; in all calculations presented the test is satisfied with the coincidence of the first 14
digits). One can see a clear presence of maxima of the probability of existence of the compound nucleus, the amplitude of oscillations, and
the interference term (energies of maxima of these functions are very close, but not coincident; these functions are principally different near
zero energy), whereas the penetrability is a smooth monotonic function. Without inclusion of the function describing the internal processes,
the cross section of fusion defined only on the basis of the penetrabilities of the barrier (for example, as in the approach used in Ref. [27])
cannot give information about these maximally stable states of compound nuclei. Factor Pcn has the same maxima, its oscillatory behavior is
explained mainly by the amplitude of oscillations Aosc.

We have (R0 = −1)

Pinterf ≡ 2

∣∣∣∣∣α(1)∗
2

∑
i=2

α
(i)
2

∣∣∣∣∣ = 4
√

2kk1|k − k1|
(k + k1)2

× 1√
k2[1 − cos (2k1r1)] + k2

1[1 + cos (2k1r1)]
.

(8)

For instance, in Fig. 1 we present the coefficients for the
reactions of α + 44Ca at l = 0.

The complete fusion could be described via a requirement:
the flux of each wave propagating inside the nuclear region is
suppressed up to zero. Mathematically, this condition can be
realized by

R0 → 0,
∑
i=1

β
(i)
1 = T −

1 ,
∑
i=1

α
(i)
1 = 0,

∑
i=2

α
(i)
2 = 0,

Aosc = 1, Pcn = k2r1

k1
Tbar. (9)

According to the amplitudes obtained, this fusion is fast and
complete. It takes place from the moment after waves tunneling
the barrier, and there are no further oscillations of waves inside
nuclear region. If we construct the compound nucleus without
fast complete fusion, we should partially suppress fluxes inside
the internal region, i.e., it needs to make condition (9) less
strict. Thus, we introduce a new coefficient p1 in region 1 and
redefine amplitude R0 as

R
(new)
0 ≡ R

(old)
0 (1 − p1), 0 � p1 � 1. (10)

At p1 = 1 Eq. (10) is transformed to Eq. (9) and fast complete
fusion is obtained, while at p1 = 0 we have the compound
nucleus without fusion.

Now we would like to generalize the idea presented
above for a realistic potential of α capture with barrier of
complicated shape, which has successfully been approximated
by a sufficiently large number N of rectangular steps in
Ref. [28] (see logic of this method, tests, details, and reference
therein). In addition to our previous study [28], in this paper
we consider that the capture of the α particle by the nucleus
takes place in a region with number Ncap after its tunneling
through the barrier from the right part of potential and next
propagations of all waves along the potential are possible,
which follows from conservation of full flux based on the full
wave function. A general solution of the radial wave function
(up to its normalization) for the above-barrier energies has
the form of Eqs. (6) and (7) from Ref. [28]. We have fixed a
normalization of the wave function so that the modulus of the
amplitude of the incident wave e−ikN r (in region with number
N ) equals unity. We shall search a solution of the unknown
amplitudes of the wave function by the MIR approach. Each
step in such a consideration of packet propagation is similar
to one of the first independent 2N − 1 steps. Amplitudes
T ±

1 , . . . ,T ±
N−1 and R±

1 , . . . ,R±
N−1 are expressed as

T +
j = 2kj

kj + kj+1
ei(kj −kj+1)rj , T −

j = 2kj+1

kj + kj+1
ei(kj −kj+1)rj ,

R+
j = kj − kj+1

kj + kj+1
e2ikj rj , R−

j = kj+1 − kj

kj + kj+1
e−2ikj+1rj . (11)

Now, let us find a wave propagating to the left in the region
with number j − 1, which is formed after transmission through
the boundary rj−1 of all possible incident waves, produced
as result of all possible reflections and transmissions of any
waves in the right part of the potential from this boundary. The
amplitude of this wave can be determined from a summation
of the amplitudes of all the waves incident on the boundary
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at point rj−1 multiplied by a factor T −
j−1. Note that any wave

incident on boundary at rj−1 can be further reflected from this
boundary, then can be reflected from the boundary at rj and is
incident on the boundary at rj−1 once again. We write

T̃ −
j−1 = T̃ −

j T −
j−1

[
1 +

+∞∑
m=1

(R−
j−1R̃

+
j )m

]
= T̃ −

j T −
j−1

1 − R−
j−1R̃

+
j

.

(12)

Here, we use a summarized reflection amplitude R̃+
j (which

takes into account transmission of waves through boundary at
rj , then after further reflections and transmissions they return
back to the region with number j ):

R̃+
j−1 = R+

j−1 + T +
j−1R̃

+
j T −

j−1

[
1 +

+∞∑
m=1

(R̃+
j R−

j−1)m
]

= R+
j−1 + T +

j−1R̃
+
j T −

j−1

1 − R̃+
j R−

j−1

. (13)

We choose R̃+
N−1 = R+

N−1 and T̃ −
N−1 = T −

N−1 and consequently
calculate all amplitudes R̃+

N−2, . . . ,R̃
+
Ncap

, and T̃ −
N−2, . . . ,T̃

−
Ncap

by using the recurrent relations above. We define the summa-
rized amplitude AT of the transition through the barrier via all
waves transmitted through the potential region with the barrier
from rcap to rN−1: AT,bar = T̃ −

Ncap
.

To sum all waves reflected from the boundary at point
rj+1 and propagating to the right, we calculate a summarized
amplitude of reflection as

R̃−
j+1 = R−

j+1 + T −
j+1R̃

−
j T +

j+1

[
1 +

+∞∑
m=1

(R+
j+1R̃

−
j )m

]

= R−
j+1 + T −

j+1R̃
−
j T +

j+1

1 − R+
j+1R̃

−
j

. (14)

On such a basis, we define the amplitude of reflection from
the potential region with the barrier from rcap to rN−1 as
AR,bar = R̃−

N−1, where R̃−
Ncap

= R−
Ncap

. We find a summarized
amplitude AR,ext of all waves reflected from the external barrier
region (from the external turning point rtp,ext to rN−1) and
propagated outside as AR,ext = R̃−

N−1 where R̃−
Ntp,ext

= R−
Ntp,ext

.
Moreover, we find another summarizing amplitude AR,tun

of all waves which are reflected just inside the potential
region from rcap to the external turning point rtp,ext (i.e., they
propagate through the external barrier region without any
reflection, tunnel under the barrier, and may propagate to the
boundary rcap and further be reflected back from this boundary)
as AR,tun = AR,bar − AR,ps. We estimate the amplitude of
oscillations Aosc in the region of capture with number Ncap

as Aosc(Ncap) = (1 − R̃−
Ncap−1R̃

+
Ncap

)−1.
In the framework of the MIR formalism, we define the

penetrability Tbar and the full reflection Rbar concerning the
barrier (i.e., the region from rcap to rN−1), the coefficient of
reflection Rext of the external part of the barrier (i.e., the region
from rtp,ext to rN−1), and the coefficient of reflection Rtun of
the barrier without the external part (i.e., the region from rcap

to rtp,ext) as

Tbar ≡ kcap

kN

|AT,bar|2, Rbar ≡ |AR,bar|2,

Rext ≡ |AR,ext|2, Rtun ≡ |AR,tun|2. (15)

We check the property Tbar + Rbar = 1, which indicates
whether the MIR method gives proper solutions for the wave
function. We calculate the summations of amplitudes α

(i)
j and

β
(i)
j for arbitrary region with number j :

βj ≡
∑
i=1

β
(i)
j = T̃ −

j

[
1 +

∑
i=1

(R̃j−1R̃
+
j )i

]
= T̃ −

j

1 − R̃j−1R̃
+
j

,

αj ≡
∑
i=1

α
(i)
j = R̃j−1

∑
i=1

β
(i)
j = R̃j−1T̃

−
j

1 − R̃j−1R̃
+
1

. (16)

We define the probability of existence of a compound nucleus
via integral over a space region between two internal turning
points rint,1 and rint,2, where point rint,2 is the middle turning
point concerning the barrier for under-barrier energy, or the
coordinate of the maximum of the barrier for above-barrier
energy:

Pcn ≡
∫ rint,2

rint,1

|R(r)|2 r2dr =
nint∑
j=1

{
(|αj |2 + |βj |2)�r

+ αjβ
∗
j

2ikj

e2ikj r
∣∣∣rj

rj−1

− α∗
j βj

2ikj

e−2ikj r
∣∣∣rj

rj−1

}
. (17)

There is a traditional definition for the cross section σ of
fusion in α capture that is based on the penetrabilities Tbar,l and
probabilities of fusion Pl . It is assumed that fusion takes place
completely after the α particle tunnels through the barrier; for
example, see Ref. [27]:

σfus(E) =
+∞∑
l=0

σl(E), σl(E) = πh̄2

2mE
(2l + 1)Tbar,l(E)Pl,

(18)

where σl is the partial cross section at l, and E is energy of the
relative motion of the α particle with respect to the nucleus. To
study the compound nucleus, we introduce a definition for the
partial cross section of fusion via the probability of existence
of the compound nucleus (17):

σl = πh̄2

2mE
(2l + 1)fl(E)Pcn(E),

f (E) = kcap

kN |rcap − rtp,in,1| . (19)

To study the compound nucleus living for some period, we
apply the idea (10) of coefficients of fusion in the internal
nuclear region:

T
±,(new)
j ≡ T

±,(old)
j (1 − pj ),

R
±,(new)
j ≡ R

±,(old)
j (1 − pj ), 0 � pj � 1. (20)

One can see that, with the simple potential (1) for fast complete
fusion (pj = 1), Eq. (20) is transformed to Eq. (18). A similar
result is obtained for a potential with a barrier of arbitrarily
complicated shape.
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FIG. 2. (a) Penetrability Tbar (dashed red line) and reflection Rbar (dash-dotted green line) of the barrier defined in Eqs. (15), modulus of the
amplitude of oscillations |Aosc| (solid blue line) as a function of the energy of the incident α particle for the reaction of α + 44Ca at l = 0 (test
of Tbar + Rbar = 1 is satisfied up to the first 14 digits for all energy levels considered and for all results in this paper). One can see maxima (the
first one is in the under-barrier-energy region) of the amplitude of oscillation. (b) Coefficients of reflection Rext and Rtun defined in Eqs. (15)
as a function of the energy Eα of the incident α particle for the reaction of α + 44Ca at l = 0. Here, the solid blue line is for the coefficient of
reflection Rext, the dashed red line is for the coefficient of reflection Rtun, and the dash-dotted brown line is for the full reflection Rbar. One can
see that, up to good accuracy, the full reflection is determined by waves propagating via the stage of the compound nucleus formation and its
disintegration (i.e., by Rtun). However, the potential scattering is not small and is close enough to full reflection inside the full analyzed energy
region. This result contradicts a popular point of view that the reflection (in capture and decay nuclear tasks) is formed just by the internal
tunneling processes inside the barrier. One can propose formula Pref,ps ≈ 0.75Pref at 1.5 MeV < Eα < 5 MeV for quick estimates.

III. ANALYSIS

For analysis we choose the 44Ca nucleus. As shown
in Ref. [28], the penetrability is essentially (for the same
fixed energy of the incident α particle) dependent on the
internal boundary (at rcap) of the potential barrier region in
calculations. Therefore, we should impose one additional
condition on the determination of the barrier penetrability.
In Ref. [28] we proposed a condition of minimal change
of the calculated barrier penetrability at arbitrarily small
variations of rcap. This condition requires that the minimum
of the internal potential well should be at this point (we obtain
rcap = 0.44 fm at l = 0 for this nucleus, in this paper we
use the parametrization given in Ref. [6] and parameters of
calculations are 10 000 intervals at rmax = 70 fm). Thus, we
use this definition of rcap for further calculations.

In Fig. 2(a) we show the penetrability, reflection, and
amplitude of oscillation as a function of the energy of the
incident α particle at l = 0. One can see that the modulus
of the amplitude of oscillations has sharp maxima while the
penetrability and reflections are monotonic functions. This
result is the first indication of the existence of maximally
stable states of the compound nucleus that live some periods at
definite energies of the incident α particle (where one level is
under the barrier energy). Note that the penetrability does not
provide any information about such states. For completeness,
we add our calculations of the coefficients of reflection Rext

and Rtun in Fig. 2(b).
In Fig. 3(a) we present our calculations for the probability

Pcn of the existence of the compound nucleus. One can see
the presence of clear maxima in that dependence of the
function Pcn on energy (here the first maximum of the function
Pcn is in the under-barrier-energy region). These maxima

should be interpreted as an indication of the most stable (i.e.,
lived for the longest time) states of the formed compound
nucleus. Note that there are no maxima as a function of
the penetrability Tbar on energy in this energy region (see
Fig. 2). These dependencies have been used in the basis of
the traditional calculations of the cross section of the capture
of the α particle by a nucleus (for example, see Eqs. (1)
and (2) in Ref. [27]). We call such states of the compound
nucleus (and the corresponding energy values) “quasibound
states.” A unified description of the presence of these states
of the compound nucleus, a prediction of the corresponding
energy values and monotonic penetrabilities are advances
of the method of multiple internal reflections. The clearest
understanding of the presence of these quasibound states
of the compound nucleus at monotonic penetrability of the
barrier can be obtained from the simplest α-capture picture
studied above. In particular, here one can see that the modulus
|Aosc| in Eq. (6) [and corresponding sums of amplitudes in
Eqs. (6)] has a clear maximum which can be larger unity. The
incident wave in the external region is normalized to unity,
and all these tests confirm this formalism and calculations
with high accuracy. Note that accurate information about
the quasibound states for above-barrier energies cannot be
extracted from the interference term (there is only one clear
maximum at Eα = 3.651 MeV in the interference term at l = 0
in Fig. 4 in comparison with five peaks of Pcn in Fig. 2(a), the
corresponding five energy values are shown in Table I).3

3We do not analyze possible very small variations of the interference
term (like small peak at Eα = 6.106 MeV in Fig. 4) in this paper;
these are caused by the numeric calculations and are not connected
with the quasibound states.
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FIG. 3. (a) The probability Pcn of existence of the compound nucleus defined in Eqs. (17) as a function of the energy of the incident α

particle for the reaction of α + 44Ca at l = 0. The function Pcn has an oscillator behavior, with the clear presence of five maxima (here the first
maximum is in the under-barrier-energy region). For under-barrier energies above this first quasibound energy level there is one minimum (at
Emin = 4.24 MeV, Pcn = 0.000 986), indicating that the nucleus becomes more transparent to penetration of the α particle. At energies closer
to zero, the probability of formation of the compound nucleus decreases quickly to zero. One can see a stable picture of Pcn near this first
quasibound energy level. Note that penetrability and reflection coefficients Tbar and Rbar have no picks near this energy (see Fig. 2). (b) Complete
cross section of fusion with the included probabilities of fusion as a function of the energy of the incident α particle for the reaction α + 44Ca
(parameters of calculations: 1000 intervals at rmax = 70 fm). Here, the data labeled 1 are the experimental data extracted from Ref. [27], the
solid blue line 2 is a cross section defined by Eqs. (19) and (20) with included probabilities of fusion their values are given in Table II, the
accuracy of agreement with experimental data is ε1 = 0.033 308, ε1 is defined in Ref. [28], the dash-dotted green line 3 is cross section in
the old definition (18), where penetrabilities are calculated by using the MIR approach, the dashed red line 4 is a cross section defined in
Eqs. (19) and (20) without the coefficients of fusion, the dash-double dotted brown line 5 is a cross section in the old definition (18), where the
penetrabilities are calculated by using the WKB approximation.

To estimate the fusion in the studied reaction, let us under-
stand how closely the formula (19) provides the cross section in
a comparison with the old definition (18). In this paper we use
the same fusion probabilities p

(int)
i inside the region from rint,1

to rcap, and the same fusion probabilities p
(ext)
i inside the region

from rcap to rint,2. For fast complete fusion we have p
(int)
i = 1

and p
(out)
i = 0. Such a calculated cross section and the old

result are presented in Fig. 3(b) (see dashed red line 4 line
and dash-dotted green line 3 line, respectively). One can see
that new calculations are close enough to the previous results

FIG. 4. Interference term Pinterf as a function of the energy of the
incident α particle for the reaction α + 44Ca at l = 0.

(they have similar shapes and have no resonances), so the new
definition (19) is applicable for analysis of the fusion in this
reaction. On such a basis, we now investigate the possibility
of evolution of the compound nucleus and its disintegration
(where the fusion probabilities are not equal to unity) and
estimate the fusion via variation of the fusion probabilities.

The result of such an analysis is presented in Fig. 3(b) by the
blue solid line 2. One can see that inclusion of the fusion prob-
abilities allows us to increase agreement between theory and
experimental data essentially. In Table II we present the fusion
probabilities. One can see that some fusion probabilities are
not equal to unity, which indicates that complete fusion in those
channels is not fast. Thus, in such channels further propagation
of waves without fusion (or with partial fusion) takes place
inside the internal nuclear region after tunneling, i.e., the com-
pound nucleus is formed and it evolves for some time. For such

TABLE I. Predicted energy values (in MeV) for the quasibound
states of the compound nucleus formed in the capture reaction of
α + 44Ca up to 50 MeV for the first l (parameters of calculations:
10000 intervals at rmax = 70 fm).

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 14

3.651 6.597 3.356 6.499 9.543 6.008 9.248 12.488 21.621
10.328 14.649 10.034 14.354 18.380 13.569 18.184 23.094 33.993
18.969 23.486 18.969 23.683 28.985 23.683 29.084 34.975
28.789 34.681 28.887 35.270 41.358 35.074 41.653 49.018
40.867 47.446 41.064 48.036 48.527
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TABLE II. Fusion probabilities for the cross section presented in Fig. 3(b) (see solid blue line 2 in that figure).

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14 l = 15 l = 16

p
(int)
l 0 0 0 0 0 1.00 1.00 0 1.00 1.00 0 0 1.00 0.125 1.00 0 0

p
(ext)
l 1.00 1.00 1.00 0 1.00 1.00 0 0.93 0 0 0.875 0.94 0 0.875 0 0.625 1.00

channels, we find energy values for quasibound states where
the compound nucleus is the most stable. In Table I we calcu-
late the quasibound energy values for the reaction α + 44Ca.

IV. COMPARISON WITH THEORY OF
QUASISTATIONARY STATES WITH COMPLEX ENERGIES

Today there is a theory of quasistationary states with
complex energies [52] which allows us to determine the
energies of quasistationary states in decay tasks. These
quasistationary states correspond to poles of the S matrix with
complex energies (for example, see Refs. [53,54]). This theory
is also applied to analyze resonant states in scattering and
could be used to calculate energies for the capture processes.
Our comparative analysis shows that this theory gives the
quasistationary states; however, these states are not the states
given by our approach.4 We choose the formalism in Ref. [53]
for analysis of the theory pointed out above. As we see, the
clear difference between the theory of quasistationary states
with complex energies and our approach can be obtained from
an analysis of two different aspects, such as the determination
of the cross sections of the α capture and the determination of
the states (and corresponding energy levels) for the α-nucleus
interactions.

A. Determination of cross sections of α capture

In the first aspect pointed out above, we analyze the
applicability of the compared approaches for the determination
of the cross sections of the α capture. According to the modern
models of α capture (see Refs. [1,6,28], also Refs. [25,26]),
the cross section of the α capture is determined on the basis
of the penetrability of the barrier. In particular, an accurate
determination of the penetrability is a crucial point for a
successful calculation of the cross section. Our approach
provides the unified formalism to calculate the penetrabilities
and probabilities of the formation of the compound nucleus.
However, the theory of quasistationary states with complex
energies (for example, see approach [53] for details) does
not determine these characteristics. Thus, without further

4The theory of quasistationary states with complex energies [52]
provides quasistationary states in order to describe nonstability (i.e.,
nonstationarity) of formed nuclear system in scattering, also to
describe nuclear system in decay, capture, etc. We introduce a new
term “quasibound” for the states of the most probable existence
of the compound nucleus because our approach is realized at real
energies of the incident α particle, as a formal middle case between
the bound and nonbound states in standard quantum mechanics (with
real energies).

modifications, it cannot be used to calculate the penetrabilities
and cross sections of α capture in frameworks of the modern
models of α capture.

The penetrability is changed varying the space localization
of the capture of the α particle by nucleus (see Ref. [28] for
details and demonstrations; also Refs. [51]). This property
follows directly from the definition of the penetrability in
quantum mechanics. Importantly, this change of the pene-
trability is not small for the majority of nuclear processes
(we estimate it could be up to four times for capture of
the α particle by the 40,44Ca nuclei; for the inverse nuclear
processes, such as α decays, this change is essentially larger).
However, the theory of quasistationary states with complex
energies ignores this point (so it is simpler and can be faster).
Our formalism resolves this problem with very good accuracy
(we demonstrated this point in Ref. [28] in detail with many
demonstrations).

B. Determination of quantum states of α-nucleus
elastic scattering

In the second aspect, we analyze the applicability of the
compared approaches to determine the quantum states in
α capture and scattering. As we can see, there is a clear
difference between the quantum states given by the theory of
quasistationary states with complex energy and our approach.
This is shown from the analysis of the elastic scattering of
α + 44Ca at l = 0 by both methods, if to use the simplest
potential of form (1). However, the formalism [53] cannot
directly describe such a reaction, because we should modify
the asymptotic boundary conditions (5) and (6) of that paper
in the form of Eqs. (1) (at r1 < r) and choose real values
of energy. After such a modification, unfortunately, analyzing
poles or zeros of the S matrix does not give anything, because
the modulus of the S matrix equals unity: |S| = 1 (i.e., there
is no zero or pole of the S matrix). One can see this from
the exact analytical S matrix, which is easily obtained by our
formalism (R0 = 1):

S = AR = α
(1)
2 +

∑
i=2

α
(i)
2 = R−

1 + AoscT
−

1 R0T
+

1 . (21)

In contrast, we present calculations of the probability of
existence of the compound nucleus in Fig. 1 by our approach,
where one can clearly see maxim. We calculate real energies
(and the wave functions) corresponding to the maximal
probabilities. Note that we use the same boundary conditions
imposed on the radial wave function at zero [χ (0) = 0]
and the same normalization of the incident wave in the
asymptotic [χinc(r) = e−ik2r ] in both approaches. Moreover,
the difference between the two approaches exists as well, if
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to use the realistic α-nucleus potential instead of the simple
potential (1).

More useful information could be obtained if we in-
clude resonant and potential terms of the S matrix in the
analysis of the elastic scattering above. The MIR approach
clearly determines these components. For the potential (1)
we have

Sres =
∑
i=2

α
(i)
2 = AoscT

−
1 R0T

+
1 , Spot = α

(1)
2 = R−

1 . (22)

The most probable formation of the compound nucleus can be
characterized by maxima of the resonant component. Thus, to
compare the S-matrix analysis (the formalism of Ref. [53]
is based on it) and the approaches MIR (in the study of
the compound nucleus), we have to compare maxima of the
resonant term Sres and the probability Pcn. We have

|Sres|2 = |Aosc|2
∣∣∣∣ 4kk1

(k + k1)2

∣∣∣∣
2

,

Pcn = |Aosc|2 4k

k + k1

(
r1 − sin 2k1r1

2k1

)

= |Aosc|2Ploc
2k1

k + k1
, (23)

or

Pcn = |Sres|2Ploc
(k + k1)3

8k1k2
. (24)

From these formulas, we obtain different maxima of the
existence probabilities of the our compound nucleus and the
resonant component of the S matrix. In Fig. 5(a) we present our
calculations with such characteristics for reaction α + 44Ca at
l = 0 for the simple potential (1). One can see that maxima

TABLE III. Energies for maxima of modulus of amplitude of
oscillations Aosc, probability of existence of compound nucleus Pcn,
interference term Pinterf , and modulus of resonant term of S matrix,
Sres, for reaction α + 44Ca at l = 0 for the simple potential (1). One
can see that these energies for Sres are coincident with energies for
maxima for Aosc but differ from energies for maxima for Pcn. It is
interesting to note that maximal probabilities at such energies are
almost the same: Pcn,max = 0.0901.

Aosc Pcn Pinterf Sres

Emax,1 (MeV) 0.934
Emax,2 (MeV) 6.775 6.942 6.608 6.775
Emax,3 (MeV) 16.955 17.122 16.622 16.955
Emax,4 (MeV) 28.638 28.805 28.137 28.638
Emax,5 (MeV) 41.655 41.822 40.987 41.655

for the resonant term Sres and the probability Pcn are close, but
different (see Table III). Thus, we conclude that the approach
based on analysis of the resonant component of the S matrix
and our approach determining the probability Pcn describe
different states of the compound nucleus. In particular, energy
shifts between maxima of Sres and Pcn can be determined by
the factor Ploc(k + k1)3/(8k1k

2). Note that the formalism of
Ref. [53] does not give any explanation of the relationship
between the resonant scattering and internal processes inside
the well, while we provide an accurate unified formalism
describing them. This is the advance of our approach, which
has no alternative methods in quantum physics, at present.

In Fig. 5(b) we present our calculations for the normalized
modulus of the resonant term of the S matrix, Sres, in
comparison with the probability of existence of the compound

FIG. 5. (a) Modulus of resonant term of the S matrix Sres (black dash-double dotted line) in comparison with the probability of existence
of the compound nucleus Pcn (blue solid line) defined by Eq. (7), modulus of the amplitude of oscillations Aosc (red dashed line) defined in
Eq. (6), and interference term Pinterf (green dash-dotted line) defined in Eq. (8) as a function of the energy of the incident α particle for the
reaction α + 44Ca at l = 0 for the simple potential (1) (parameters V1 and r1 are taken concerning the depth of well and coordinate of the
maximum of the realistic radial barrier at parametrization [6] for this reaction: we obtain V1 = −23.73 MeV and r1 = 8.935 fm). Values of
energies for the maxima for the analyzed coefficients are presented in Table III. (b) Normalized modulus of the resonant term of the S matrix
Sres (black dash-double dotted line) in comparison with the probability of existence of the compound nucleus Pcn (blue solid line) as a function
of the energy of the incident α particle for reaction α + 44Ca at l = 0 for the realistic potential. In calculations we define the resonant term
as Sres = αtp,out − AR,ext, αtp,out is the amplitude of the wave function close to the external turning point. One can see that the maxima for the
presented lines differ, which indicates different states characterized by the probability Pcn and resonant term Sres.
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FIG. 6. Renormalized modulus of the S matrix at complex energy
(brown dash-double dotted line) compared with the probability of
existence of the compound nucleus Pcn (blue solid line) presented in
Fig. (5), as a function of the real part of the energy of the incident α

particle for the reaction α + 44Ca at l = 0 for the simple potential (1)
(parameters V1 and r1 of the potential are taken as in the calculations of
Fig. 1). One can see that the modulus of the S matrix has no zero in the
studied energy region, which indicates on absence complete capture
in frameworks of the formalism [53]. Minima of the modulus of the
S matrix do not correspond to maxima of the probability Pcn. Thus,
we have the different resonating energies calculated by our approach
and generalization of the S-matrix approach describing states of the
most probable existence of the compound nucleus.

nucleus Pcn for the reaction α + 44Ca at l = 0 for the realistic
potential. Once again, we see that maxima are different. Note
that, in contrast with the WKB approach, in the fully quantum
analysis the potential and resonant scattering are already
dependent on an additional independent parameter defining
the external boundary of the potential region with barrier (we
chose it as the external turning point).

C. Determination of quantum states of α-nucleus inelastic
scattering and α capture

Inclusion of the complex energies in our analysis allows
us to add inelastic processes into our task. Here, the multiple

internal reflection method can be easily generalized to the
calculations with the complex energy of the incident α particle,
because the formalism uses complex values for wave numbers
ki , amplitudes of wave function αi and βi , amplitudes T ±

i and
R±

i , etc. in each potential region. However, direct application
of the formalism of Ref. [53] to the studied reaction with
the simplified potential (1) does not give any solution in the
real energy region up to 50 MeV, which means there is no
complete capture according to this approach. In Fig. 6 we
present our calculations of the modulus of the S matrix with
complex energy. Here, one can see that this function has no
zero in the studied energy region.5 One can generalize the
formalism [53] and supposing that minima of the modulus
of the S matrix correspond to states of the most probable
formation of the compound nucleus. But, as one can see from
this figure, these minima do not coincide with maxima of
the probability of existence of the compound nucleus Pcn,
calculated by our approach above. Such a picture clearly shows
that this modification of the formalism [53] and our approach
describe different states of the compound nucleus thus formed.

In Fig. 7 we present our calculations for the modulus of
the S matrix and the corresponding � width for the realistic
α-nucleus potential at complex energy of the incident α particle
(we chose the real energy region up to 7 MeV). One can see
that, inside the analyzed energy region the modulus of the
S matrix has 10 minima. According to logic and the main
positions of the theory of quasistationary states with complex
energies, these minima are very close to zero and correspond
to the most probable states of the possible α capture. Upon
comparing this result with results given in Fig. 3(a) for the
calculated probability of existence of the compound nucleus
Pcn (we have five maxima of that function in the energy
region up to 50 MeV, see Table I), we conclude that these
states calculated at minima (zero) of the S matrix at complex
energy of the incident α particle are essentially different from

5Zero of the S matrix corresponds to the boundary condition of zero
outgoing wave in the asymptotic limit. This is along the main idea of
he formalism of Ref. [53] adapted for the capture process.

FIG. 7. (a) Modulus of S matrix at complex energy as a function of the real part of the energy of the incident α particle for the reaction
α + 44Ca at l = 0 for the realistic potential. (b) � width as a function of the real part of the energy of the incident α particle corresponding to
the calculated S matrix shown in panel (a).
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states given by maxima of the probability of existence of the
compound nucleus calculated by our approach.

V. CONCLUSIONS

In this paper we study capture of the α particles with nuclei
by the improved MIR method. We discover new most stable
states (called as quasibound states) of a compound nucleus
formed in this reaction. With a simple example (see Fig. 1
and explanations in caption to that figure), we explain the
absence of these states in traditional calculations of α-capture
cross sections as follows: The barrier penetrabilities depend
monotonically on the energy of the α particle (see Fig. 2 in
Ref. [28] for details). Based on such monotonic penetrabilities,
full cross sections of the α capture have no peaks (see Fig. 3
in Ref. [28]). This is because traditional consideration of the
α capture does not take into account the behavior of the wave
function inside the internal nuclear region (the corresponding
flux is not conserved) which, however, should be defined
according to quantum mechanics. In terms of our analysis
with improved calculations, these quasibound states appear in
a complete description of evolution of the compound nucleus
by including the contribution from the internal nuclear region.
We describe this evolution in the internal region based on
the convergence of flux in the full region. To completely
describe the evolution of the compound-nuclear system, we
apply and improve our previous method of the multiple internal
reflections [28] (see also Ref. [51]). Advances of our method
are (1) a clear picture of formation of the compound nucleus
and its disintegration, (2) a detailed quantum description of
compound-nucleus evolution, (3) tests of quantum mechanics
(not realized in other approaches), and (4) a high accuracy
of calculations (not achieved in other approaches). Another
important issue of our method is that we generalize the idea
of Gamow, which has widely been applied for nuclear decay
and capture problems (based on tunneling through the barrier
and internal oscillations inside nucleus) to our formalism.
With this, we find an additional factor, which describes space
distribution of the α particle inside nuclear region. However,
we find no discussions of this in previous papers on the topic.

We demonstrate peculiarities of our method through the
capture reaction of α + 44Ca. In this reaction we predict
quasibound energy levels (see Table I), and show that inclusion
of evolution of the compound nucleus with possible fusion
allows us to essentially increase the agreement between theory
and experimental data. This can be seen from Fig. 3, which
shows that the calculated cross section for capture of the α
particles by 44Ca agrees very well with experimental data.
The updated data of fusion probabilities for this reaction are

shown in Table II), in comparison with our previous results in
Ref. [28] (see Tables 2, B.3, and F.9 in Ref. [28]).

We compared our formalism with the theory of quasistation-
ary states with complex energies in determination of resonant
states in scattering and quasistationary states in α capture (see,
for example, Refs. [52–54]). We found the following:

(1) The theory of quasistationary states with complex
energies could not provide calculations for the cross
section of α capture according to the modern models of
α capture (see Refs. [1,6,28]). Our approach provides
a unified formalism to calculate the penetrabilities
with the best accuracy (in order to estimate the cross
sections with the modern formalism of α capture), the
probabilities of existence of compound nucleus, and
to estimate probabilities of fusion (see discussions in
Sec. IV A).

(2) The quasistationary states (and corresponding en-
ergies) calculated for α capture by the theory of
quasistationary states at complex energies differ from
quasibound states given by our approach (see Fig. 7
and explanation in Sec. IV C). We add a compara-
tive analysis between these two approaches for the
α + 44Ca scattering in Sec. IV B.

The difference could be explained by the simplest ex-
ample in which a free particle moves inside the constant
potential; these two approaches describe two principally
different processes (for the same real energy, but nonzero �
width). However, calculations for more complicated realistic
potentials are based on such a point. The calculation time for
the two approaches is similar. For example, the calculation
time for the modulus of the S matrix (and the � width at
complex energies) is around 8 s (with N = 100, rmax = 70 fm,
500 intervals in real energy region, realistic barrier), and
the calculation time for the probability of existence of the
compound nucleus Pcn in our method is around 10 s (with the
same parameters).
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