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Finite-temperature mean-field theories, such as the Hartree–Fock (HF) and Hartree–Fock–Bogoliubov (HFB)
theories, are formulated in the grand-canonical ensemble, and their applications to the calculation of statistical
properties of nuclei such as level densities require a reduction to the canonical ensemble. In a previous publication
[Y. Alhassid et al., Phys. Rev. C 93, 044320 (2016)], it was found that ensemble-reduction methods based on the
saddle-point approximation are not reliable in cases in which rotational symmetry or particle-number conservation
is broken. In particular, the calculated HFB canonical entropy can be unphysical as a result of the inherent violation
of particle-number conservation. In this work, we derive a general formula for exact particle-number projection
after variation in the HFB approximation, assuming that the HFB Hamiltonian preserves time-reversal symmetry.
This formula reduces to simpler known expressions in the HF and Bardeen–Cooper–Schrieffer (BCS) limits of
the HFB. We apply this formula to calculate the thermodynamic quantities needed for level densities in the heavy
nuclei 162Dy, 148Sm, and 150Sm. We find that the exact particle-number projection gives better physical results
and is significantly more computationally efficient than the saddle-point methods. However, the fundamental
limitations caused by broken symmetries in the mean-field approximation are still present.
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I. INTRODUCTION

Finite-temperature mean-field approximations, in partic-
ular the finite-temperature Hartree–Fock (HF) and Hartree–
Fock–Bogoliubov (HFB) approximations [1,2], are commonly
used in the calculation of statistical properties of nuclei such as
level densities [3]. These approximations are computationally
efficient and therefore suitable for global studies of nuclear
properties.

The appropriate ensemble to describe the nucleus is
the canonical ensemble with fixed numbers of protons and
neutrons. However, the finite-temperature HF and HFB ap-
proximations are formulated in the grand-canonical ensem-
ble. It is therefore necessary to carry out a reduction to
the canonical ensemble to restore the correct proton and
neutron numbers. This reduction is usually carried out in
the continuous saddle-point approximation, which treats the
particle number as a continuous variable [4–6]. The accuracy
of finite-temperature mean-field approximations was recently
benchmarked [7] against shell-model Monte Carlo (SMMC)
[8–10] results, which are accurate up to statistical errors,
and significant problems were identified with this continuous
saddle-point approach. In particular, the continuous saddle-
point approximation breaks down when the particle-number
fluctuations are small. These problems were addressed in
Ref. [7] by the introduction of the discrete Gaussian (DG)
approximations. Specifically, in Ref. [7] two DG approxi-
mations were introduced, which we label DG1 and DG2
and discuss in detail in Sec. III. In these approximations,
the saddle-point correction to the grand-canonical partition
function is given by a sum over discrete Gaussians (in particle
number). This overcomes a divergence in the continuous
saddle-point approximation at low temperatures in the HF
approximation, but still gives an unphysical negative value
of the canonical entropy in the low-temperature limit of the
HFB.

Here, we study the restoration of particle-number con-
servation in the HFB by means of an exact particle-number
projection [11,12]. In particular, we use a projection after
variation (PAV) method, in which the projection operator is
applied to the grand-canonical mean-field solution. We refer
to this particle-number PAV method as the particle-number
projection (PNP). In this procedure, we determine the approx-
imate canonical partition function by taking a trace of the
grand-canonical mean-field density operator over a complete
basis of many-particle states with the correct particle number.
In contrast, in the DG approximations, the grand-canonical
partition function is multiplied by an approximate correction
factor. A general formalism for PNP was presented in Ref. [12],
and an alternate but equivalent formalism was derived in
Ref. [13]. However, in the HFB case the application of the
general formula is limited by a sign ambiguity. Moreover,
there has been no systematic assessment of the accuracy of
PNP in finite-temperature mean-field theories.

In this article, we derive a general expression for PNP
in the HFB approximation, assuming only that the HFB
Hamiltonian is invariant under time reversal. We then show
how this expression reduces to known formulas for the special
cases of the HF and the Bardeen–Cooper–Schrieffer (BCS)
approximations. We apply this method to three even-even
nuclei in the rare-earth region: (i) a strongly deformed nucleus
with weak pairing (162Dy), (ii) a spherical nucleus with strong
pairing (148Sm), and (iii) a transitional deformed nucleus with
non-negligible pairing (150Sm). The results from the PNP are
compared with results from the DG approximations and the
SMMC method.

The outline of this article is as follows: In Sec. II, we derive
a general expression for the particle-number projected HFB
partition function in the case where the HFB Hamiltonian
is time-reversal invariant and show how this expression
simplifies in the HF and BCS limits. In Sec. III, we discuss
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the DG approximations and describe how we calculate the
approximate canonical thermal energy, entropy, and state
density from the particle-number projected partition function.
In Sec. IV, we apply the PNP formula to three heavy nuclei and
compare the results with those from the DG approximations
and with SMMC results. Finally, in Sec. V, we summarize our
findings and provide an outlook for future work. The computer
codes for the canonical reductions and the data files to generate
the results described here are provided in the Supplemental
Material depository for this article [14].

II. PARTICLE-NUMBER PROJECTION IN
HARTREE–FOCK–BOGOLIUBOV APPROXIMATION

We assume a nuclear Hamiltonian in Fock space spanned by
a set of Ns single-particle orbitals k (k = 1, . . . ,Ns) with a one-
body part described by the matrix t and an antisymmetrized
two-body interaction v̄,

Ĥ =
∑
ij

tij a
†
i aj + 1

4

∑
ijkl

v̄ijkla
†
i a

†
j alak, (1)

where a
†
k and ak are, respectively, creation and annihilation

operators of the single-particle states k. For nuclei with strong
pairing condensates, the appropriate mean-field theory is the
HFB approximation. The HFB Hamiltonian can be written in
matrix notation as [11]

ĤHFB − μN̂ = 1

2
(a†a)

(
h − μ �
−�∗ −(h∗ − μ)

)( a

a†

)

+ 1

2
tr (h − μ), (2)

where μ is the chemical potential, h = t + v̄� is the
density-dependent single-particle Hamiltonian, and �ij =∑

ijkl v̄ijklκkl/2 is the pairing field, with � being the one-body
density and κ the pairing tensor. The 2Ns × 2Ns matrix in
Eq. (2) can be diagonalized by a unitary transformation to the
quasiparticle basis αk,α

†
k .

We assume that the HFB Hamiltonian in Eq. (2) is invariant
under time reversal, and thus its quasiparticle states come
in time-reversed pairs |k〉 and |k̄〉 with degenerate energies
Ek = Ek̄ .1 The Bogoliubov transformation that defines the
quasiparticle basis can then be fully expressed by(

αk

α
†
k̄

)
= W†

(
ak

a
†
k̄

)
, W =

(U −V
V U

)
, (3)

where k runs over half the number of single-particle states
from 1 to Ns/2. In the following, we denote these states by
k > 0. W is an Ns × Ns unitary matrix, in contrast with the
general Bogoliubov transformation matrix which is a 2Ns ×
2Ns-dimensional matrix [11].

1If the condensate is also axially symmetric, the angular mo-
mentum m about the symmetry axis is conserved. If this is the
case, we choose the k states to have positive signature, i.e., m =
1/2,−3/2,5/2,−7/2, . . ., and k̄ states have negative signature m =
−1/2,3/2,−5/2,7/2, . . ..

Using Ek = Ek̄ , the HFB Hamiltonian in Eq. (2) can be
rewritten as

ĤHFB − μN̂ =
∑
k>0

Ek(α†
kαk − αk̄α

†
k̄
) + 1

2
tr (h − μ). (4)

In a more compact notation

ĤHFB − μN̂ = ξ †Eξ + 1
2 tr (h − μ), (5)

where ξ † = (α†
k1

, . . . ,α
†
kNs /2

,αk̄1
, . . . ,αk̄Ns /2

) and

E =
(

E 0
0 −E

)
. (6)

The matrix E is the diagonal matrix of the HFB quasiparticle
energies Ek (k = 1, . . . ,Ns/2). Similarly, the number operator
N̂ can be written as

N̂ =
∑
k>0

(a†
kak + a

†
k̄
ak̄) =

∑
k>0

(a†
kak − ak̄a

†
k̄
) + Ns

2

= ξ †(W†NW)ξ + Ns

2
, (7)

where

N =
(

1 0
0 −1

)
, (8)

and where we have used the transformation in Eq. (3).
The particle-number-projected HFB partition function is

defined by ZHFB
N = Tr[P̂Ne−β(ĤHFB−〈V̂ 〉)], where P̂N is the

operator that projects any many-particle state in Fock space
onto the Hilbert space of N -particle states, and V̂ is the
two-body interaction of the Hamiltonian (1). For a finite
single-particle model space of dimension Ns , P̂N can be
expressed as a discrete Fourier sum over Ns quadrature angles
ϕn = 2πn/Ns

ZHFB
N = e−βμN

Ns

Ns∑
n=1

e−iϕnNζ HFB
n , (9)

where

ζ HFB
n = eβ〈V̂ 〉Tr[eiϕnN̂ e−β(ĤHFB−μN̂ )], (10)

and μ is the chemical potential determined in the grand-
canonical ensemble. The subtraction of 〈V̂ 〉 = tr (�v̄�)/2 +
tr (κ†v̄κ)/4 accounts for the double counting of the interaction
terms and ensures the thermodynamic consistency of the HFB
in the grand-canonical ensemble. Because of the nonzero
pairing gap � in Eq. (2), ĤHFB and N̂ do not commute.

Using Eqs. (5) and (7), we can rewrite (10) as

ζ HFB
n = e−βU0eiϕnNs/2Tr[eiϕnξ

†(W†NW)ξ e−βξ †Eξ ], (11)

where U0 = tr (h − μ)/2 − 〈V̂ 〉. To evaluate the trace in
Eq. (11), we use the group property of the exponentials of
one-body fermion operators written in quadratic form. This
property states that the product of two such group elements is
another group element

eξ †Aξ eξ †Bξ = eξ †Cξ , (12)
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where the matrix C is determined from the single-particle
representation of the group

eAeB = eC . (13)

Applying this property to Eq. (11), we can rewrite it in the
form

ζ HFB
n = (−)ne−βU0 Tr[eξ †Cn(β)ξ ], (14)

where the matrix Cn(β) is determined from

eCn(β) = eiϕnW†NWe−βE = W†eiϕnNWe−βE . (15)

Using the formula for the trace of the exponential of a one-body
fermionic operator (see Appendix A), we find

ζ HFB
n = (−)ne−βU0 det(1 + eCn(β)). (16)

Combining Eq. (16) with Eq. (15), we obtain the final
expression

ζ HFB
n = (−)ne−βU0 det(1 + W†eiϕnNWe−βE ), (17)

where the matrices W, E , and N are given, respectively, by
Eqs. (3), (6), and (8).

Equation (17) is a general formula that applies when the
HFB Hamiltonian is time-reversal invariant and thus the
quasiparticle energies come in degenerate time-reversed pairs
Ek = Ek̄ . A formula valid for the most general case can be
derived in a similar fashion by using ξ ′† = (α†

k αk α
†
k̄

αk̄)
(where k = 1, . . . ,Ns/2) and making the dimension of
the relevant matrices 2Ns × 2Ns [12]. However, the final
expression for ζ HFB

n , given in Eq. (3.46) of Ref. [12], involves
a square root of a determinant. This square root leads to a sign
ambiguity that is difficult to resolve. The method discussed
here eliminates this sign ambiguity completely for the case
in which the HFB Hamiltonian is time-reversal invariant by
working with matrices of reduced dimension Ns × Ns .

Equation (17) becomes numerically unstable at large β. The
reason for this instability can be seen in Eq. (15). At large β, the
diverging scales in the diagonal matrix e−βE will dominate the
smaller scales in the matrix product W†eiϕnNW . We stabilize
the calculation by the method discussed in Appendix B.

A. The Hartree–Fock limit

In the limit in which the pairing condensate vanishes,
i.e., � → 0, the HFB approximation reduces to the HF
approximation. The matrix in Eq. (2) becomes diagonal, and
the mean-field Hamiltonian can be rewritten as

ĤHF =
∑
ij

hij a
†
i aj . (18)

In this limit, the Bogoliubov transformation reduces to a
unitary transformation among the particle basis operators, and
V vanishes. Because the particle-number operator is diagonal
in a particle basis,W†eiϕnNW = eiϕnN . Equation (17) can then
be written as

ζ HF
n = eβ〈V̂ 〉 det[1 + e−βh+(βμ+iϕn)]

= eβ〈V̂ 〉
Ns∏
k=1

[1 + e−β(εk−μ)+iϕn ], (19)

where εk are the HF single-particle energies.

Equation (19) can be derived directly using [ĤHF,N̂ ] =
0 even when time-reversal symmetry is broken. A general
derivation is given in Ref. [12].

B. The Bardeen–Cooper–Schrieffer limit

Equation (17) also simplifies in the BCS limit, in which
the quasiparticle representation mixes particle state k with
only its time-reversed counterpart k̄. In this case, in the
Bogoliubov transformation matrix given in Eq. (3), U is
diagonal andV antidiagonal. Consequently, the transformation
can be decomposed into a set of Ns/2 transformations(

αk

α
†
k̄

)
=

(
uk −vk

vk uk

)(
ak

a
†
k̄

)
(20)

for each pair {k,k̄} of time-reversed states. Here, uk and vk are
real numbers satisfying u2

k + v2
k = 1. Equation (17) can then

be rewritten as a product of 2 × 2 block determinants. Using

eiϕnW†NW |k =
(

u2
ke

iϕn + v2
k e

−iϕn ukvk(eiϕn − e−iϕn )

ukvk(eiϕn − e−iϕn ) v2
ke

iϕn + u2
ke

−iϕn

)

(21)

for each block and
∏

k>0 e−iϕn = eiϕnNs/2 = (−)n, we find the
final expression

ζ BCS
n = e−βU0

∏
k>0

eβEk
[
u2

k + e2iϕnv2
k + 2e−βEk+iϕn

+ e−2βEk
(
v2

k + e2iϕnu2
k

)]
. (22)

The result in Eq. (22) can also be derived by writing explic-
itly the matrix elements of eiϕnN̂ in the subspace spanned by the
four many-body states |〉k = (uk + vka

†
ka

†
k̄
)|〉, α†

k|〉k , α†
k̄
|〉k , and

α
†
kα

†
k̄
|〉k , and evaluating the traces of eiϕnN̂ e−β(ĤHFB−μN̂−〈V̂ 〉) in

each of these subspaces.
The result in Eq. (22) is given by Eqs. (24) and (25) of

Ref. [15] but is obtained here as the special limit of a more
general formula. A formula for the BCS limit as a product
of the corresponding 2 × 2 determinants is also presented in
Ref. [16].

An important case of the BCS limit is that of a spherical
condensate, in which the angular-momentum quantum number
j and the magnetic quantum number m are preserved by
the Bogoliubov transformation. In this case, the quasiparticle
energies for a given j are independent of m. If the single-
particle model space does not include more than one shell
with the same j , the Bogoliubov transformation is then of the
form (20), where |k〉 = |jm〉 and |k̄〉 = ±|j − m〉, with m =
1/2,−3/2,5/2,−7/2, . . . being the positive-signature states.
The parameters uk = uj , vk = vj are independent of m, and
Eq. (22) simplifies to

ζ HFB
n = e−βU0

∏
j

eβ(j+ 1
2 )Ej

[
u2

j + e2iϕnv2
j + 2e−βEj +iϕn

+ e−2βEj
(
v2

j + e2iϕnu2
j

)]j+ 1
2 . (23)
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III. DISCRETE GAUSSIAN APPROXIMATIONS
AND STATISTICAL QUANTITIES

A. Saddle-point and discrete Gaussian approximations

In this section, we describe briefly the discrete Gaussian
(DG) approximations introduced in Ref. [7]. For more details,
we refer the reader to Sec. II of Ref. [7]. The traditional method
for calculating level densities from a grand-canonical finite-
temperature mean-field theory is by a three-dimensional (3D)
saddle-point approximation. Specifically, the state density is
given by

ρ
(
E,Np,Nn

) ≈ 1

(2π )3/2

∣∣∣∣∂(E,Np,Nn)

∂(β,αp,αn)

∣∣∣∣
−1/2

eSgc , (24)

where Sgc is the grand-canonical entropy calculated in the
mean-field approximation and the energy and particle numbers
are set equal to the derivatives of ln Zgc with respect to −β
and αp,n, respectively. Here αp,n = βμp,n, where μp,n are the
proton and neutron chemical potentials.

Two refinements to this standard procedure were introduced
in Ref. [7]. The first refinement is to separate the αp,n and
β integrations in the 3D saddle-point approximation. The
αp,n integrations are carried out first, giving the approximate
canonical partition function

ln Zc ≈ ln Zgc −
∑
i=p,n

αiNi − ln ζ, (25)

where the correction factor ζ (obtained in the two-dimensional
saddle-point approximation) is given by

ζ = 2π

∣∣∣∣∂(Np,Nn)

∂(αp,αn)

∣∣∣∣
1/2

. (26)

In a second step, the state density is obtained from the ap-
proximate canonical partition function in Eq. (25) by carrying
out the β integration in the saddle-point approximation. The
canonical entropy obtained in this procedure differs from Sgc

not only through the inclusion of ζ but also through the
dependence of ζ on β. It is given by

Sc ≈ Sgc − ln ζ − βδE, (27)

where δE = −d ln ζ/dE. The approximate state density is
given by an expression similar to the one given in Eq. (29)
below. Equation (26) is derived by treating the particle numbers
as continuous variables, and we therefore refer to this method
as the continuous saddle-point approximation.

The next refinement to the standard 3D saddle-point
approximation originates from the observation that Np and
Nn are discrete integers and should not be treated as con-
tinuous variables when the particle-number fluctuation is
small. Specifically, the continuous saddle-point approximation
breaks down when 2π〈(�Ni)2〉 � 1 for i = p, n. This prob-
lem is dealt with in Ref. [7] by the introduction of the discrete
Gaussian (DG) approximation, in which the correction factor
ζ is not given by Eq. (26) but instead by

ζ =
∑
N ′

i ,N
′
j

exp

⎛
⎝−1

2

∑
i,j

∂N

∂α

∣∣∣∣
−1

ij

(N ′
i − Ni)(N

′
j − Nj )

⎞
⎠,

(28)

where i, j = p, n. In the DG approximation, ζ is guaranteed
to be at least unity, so this approximation will not break
down when the particle-number fluctuation is small. When the
particle-number fluctuation is large, the DG correction factor
in Eq. (28) agrees with the continuous saddle-point correction
factor in Eq. (26).

In Ref. [7], two versions of the DG approximation were
introduced. In the first, which we call DG1, the matrix ∂N/∂α
is determined numerically. In the second, which we call DG2,
the matrix ∂N/∂α is replaced by a diagonal matrix whose
diagonal elements are given by the particle-number variances
〈(�Ni)2〉 calculated in the grand-canonical mean-field theory.
Because it neglects the potentially nonzero off-diagonal terms,
DG2 is expected to be less accurate than DG1 at low
temperatures.

B. Canonical energy, entropy, and state density

We summarize here the formulas used to find the statistical
quantities calculated in Sec. IV. Given the canonical partition
function Zc, the average state density ρ(E) at energy E is eval-
uated by a one-dimensional (1D) saddle-point approximation
as

ρ(E) ≈
(

2π

∣∣∣∣∂E

∂β

∣∣∣∣
)−1/2

eSc(β), (29)

where β is determined as a function of the energy E by
the saddle-point condition E = −∂ ln Zc/∂β = Ec and Sc is
the canonical entropy Sc = ln Zc + βEc. When Zc(β) is the
exact canonical partition function Zc(β) = Tr (P̂Ne−βĤ ) (here
P̂N = P̂Np

P̂Nn
, with Np and Nn being the numbers of protons

and neutrons, respectively), Ec = Tr (P̂Ne−βĤ Ĥ )/Zc(β) and
Sc = −Tr (D̂N ln D̂N ) are, respectively, the exact canonical
energy and entropy of the correlated density matrix D̂N =
P̂Ne−βĤ /Zc(β).

In the particle-number-projected HFB approximation,
ZHFB

c = ZHFB
Np

ZHFB
Nn

, where ZHFB
Np(n)

is given by Eqs. (9) and (17).

The approximate canonical HFB energy EHFB
c is determined

by the saddle-point condition

E = −∂ ln ZHFB
c

∂β
= EHFB

c , (30)

and the approximate canonical HFB entropy is

SHFB
c = ln ZHFB

c + βEHFB
c . (31)

The average state density in the HFB approximation is then
given by Eq. (29) with the canonical energy and entropy
replaced by the their HFB expressions (30) and (31).

We note that the above EHFB
c differs from the expectation

value of Ĥ in the particle-number projected HFB density op-
erator D̂HFB

N = P̂Ne−β(ĤHFB−〈V̂ 〉)/ZHFB
N , and similarly SHFB

c �=
−Tr (D̂HFB

N ln D̂HFB
N ). The reason for these differences is the

explicit dependence of ĤHFB on the grand-canonical one-body
density and pairing tensor.

In the DG approximations, ln Zc is given by Eq. (25), where
ζ is given by Eq. (28). The energy is given by the saddle-point
condition (30), and the entropy by Eq. (31), where ZHFB

c is
replaced by the DG1 or DG2 partition function.
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IV. RESULTS

Here we present results for the particle-number-projected
finite-temperature mean-field theories in three heavy nuclei.
In this section, we refer to the particle-number projection as
the PNP method. First, we discuss 162Dy, a typical strongly
deformed nucleus for which the appropriate mean-field theory
is the HF approximation. Next, we present results for 148Sm,
a typical spherical nucleus with a strong pairing condensate
for which the BCS limit of the HFB is appropriate. Finally,
we discuss a transitional nucleus 150Sm, in which the pairing
condensate is deformed and the general projection formula
(17) is required. The results from the PNP are compared with
the discrete Gaussian approximations of Ref. [7] and with the
SMMC results [17,18].

The Hamiltonian for these calculations is taken from
Refs. [17,18], where the original calculations of the SMMC
level density were carried out. It is given in a shell-model basis
having Ns = 40 proton orbitals and Ns = 66 neutron orbitals.

A. Particle-number-projected Hartree–Fock for strongly
deformed nucleus: 162Dy

We applied the particle-number-projected HF approxima-
tion to the strongly deformed nucleus 162Dy, in which the
pairing is weak, by using Eqs. (9) and (19) to calculate
the particle-number-projected partition function. In Fig. 1,
we compare the approximate canonical entropy (31) from
the PNP with those from the DG approximations and with
the SMMC entropy. The kink at β ≈ 0.83 MeV−1 in the HF
results is due to the sharp shape transition that occurs in the
grand-canonical HF approximation. At β values below the
shape transition (i.e., in the spherical phase), the HF results
are in good agreement with those from the SMMC. However,
at β values above the shape transition, the entropies from the
PNP and the DG approximations are noticeably lower than the
SMMC entropy. The reason for this discrepancy is that the HF
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FIG. 1. Canonical entropy of 162Dy vs β in the HF approximation.
The approximate PNP canonical entropy (31) (solid black line) is
compared with the approximate canonical entropy from DG1 (dashed
red line) and from DG2 (dashed-dotted blue line). The open circles
represent the SMMC entropy. The inset shows the various entropies
at higher β values.

approximation accounts only for the intrinsic K states and not
for the rotational bands that are built on top of these intrinsic
states.

The PNP, DG1, and DG2 give nearly identical results for
β < 4 MeV−1. In DG1 and DG2, however, the entropy exhibits
unphysical oscillatory behavior for 4 � β � 10 MeV−1. In
contrast, the entropy asymptotes monotonically to zero at large
β in the PNP, as would be physically expected.

The PNP canonical excitation energy and state density
closely resemble the corresponding results for the DG ap-
proximations, which are shown in Figs. 6 and 10 of Ref. [7].
The deviation between the PNP entropy and the DG entropy
observed at low temperatures does not lead to any significant
difference in the state densities. Figures showing these observ-
ables are included in the Supplemental Material [14].

B. Particle-number-projected Hartree–Fock–Bogoliubov
for spherical condensate: 148Sm

To test our formulas for the particle-number-projected HFB
partition function in the BCS limit, given by Eqs. (9) and (23),
we apply the particle-number-projected HFB approximation
to 148Sm, for which the pairing condensate is spherical. The
canonical entropies for the PNP, the DG approximations, and
the SMMC are shown in Fig. 2. The kinks in the HFB results
in the region 2 � β � 3 MeV−1 are due to the proton and
neutron pairing transitions. For β values below the first pairing
transition, there is good agreement between the HFB results
and the SMMC results. The kinks that indicate the pairing
transitions are more pronounced in the PNP and DG2 than in
DG1.

In the paired phase, the approximate canonical entropies
for the PNP and the DG approximations decrease rapidly,
dropping below zero around β ≈ 4 MeV−1. A negative entropy
is unphysical because the entropy of a nondegenerate ground
state is zero. This negative entropy originates in the intrinsic vi-
olation of particle-number conservation in the grand-canonical
HFB approximation and will be explained for the PNP in
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FIG. 2. Canonical entropies of 148Sm vs β in the BCS limit of the
HFB approximation. Lines and symbols are as in Fig. 1. The inset
shows the entropies for higher β values.
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Sec. IV D. An explanation for the DG approximations was
given in Ref. [7].

However, for large β values, the PNP exhibits qualitative
and quantitative improvements over the DG approximations.
The entropy from the PNP asymptotes smoothly to a value
of Sc ≈ −2.30. The entropy from DG1 reaches a minimum
around β ≈ 8 MeV−1 and subsequently increases with increas-
ing β. Such an increase is unphysical because, for these values
of β, the system is already in its ground state. The entropy from
DG2 asymptotes smoothly to a negative value of Sc ≈ −3.68.
The absolute error in the estimate for the ground-state entropy
is thus larger in DG2 than in the PNP by more than a unit.

At small and intermediate values of β, the PNP excitation
energy for 148Sm closely resembles the DG1 excitation energy
shown in Fig. 13 of Ref. [7]. The PNP state density is similar
to the DG2 state density shown by the dotted line in Fig. 16
of Ref. [7] while the DG1 state density is somewhat enhanced
at low excitation energies. Figures showing these observables
are included in the Supplemental Material [14].

C. Particle-number-projected Hartree–Fock–Bogoliubov
for deformed condensate: 150Sm

To calculate the particle-number-projected HFB partition
function for 150Sm, which has a deformed pairing condensate,
we must use the general PNP HFB formalism of Sec. II, i.e.,
Eqs. (9) and (17). In this case, the advantages of the PNP
over the DG approximations are significant for the excitation
energy, canonical entropy, and state density. In particular, DG1,
the more accurate of the two DG methods used in Ref. [7],
becomes numerically unstable for temperatures below the
shape transition. Because of this instability, we omit DG1
from the figures in this section. In contrast, the PNP remains
stable for all temperatures.

1. Excitation energy

In Fig. 3, we show the excitation energy as a function
of β for the PNP and DG2 in comparison with the SMMC
energy. The kink at β ≈ 1.5 MeV−1 is the shape transition,
and the kinks at β ≈ 3 MeV−1 and β ≈ 6 MeV−1 are the
proton and neutron pairing transitions, respectively. Except
around the phase transitions, there is good agreement between
the PNP and DG2 results and the SMMC results. The DG2
approximation shows a larger discrepancy from the SMMC
around the pairing transitions than does the PNP.

2. Canonical entropy

The canonical entropies from the PNP, DG2 and SMMC are
shown in Fig. 4. At β values below the shape transition, there
is close agreement between the SMMC and the HFB results.
Between the shape transition at β ≈ 1.5 MeV−1 and the proton
pairing transition at β ≈ 3 MeV−1, the PNP and DG2 entropies
are lower than the SMMC entropy because of the contributions
of rotational bands to the SMMC. For β values above the
proton pairing transition, the HFB entropies are reduced even
further, falling below zero above β ≈ 4 MeV−1. As in the case
of 148Sm, this negative entropy originates in the violation of
particle-number conservation in the HFB approximation.
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FIG. 3. Excitation energy of 150Sm vs β in the HFB approxi-
mation. The approximate canonical energy calculated from the PNP
(solid black line) is compared with the approximate canonical energy
from DG2 (dashed-dotted blue line). DG1 becomes unstable for this
nucleus and is not shown. The open circles are the SMMC excitation
energies. The inset shows higher β values.

The entropy from the PNP is very close to that from DG2 in
the unpaired phase but shows a quantitative improvement over
DG2 in the paired phase. The entropy from the PNP asymptotes
to Sc ≈ −1.20, while the entropy from DG2 asymptotes to
Sc ≈ −2.52. As with 148Sm, the absolute error of the ground-
state entropy in the PNP is lower by more than a unit of entropy
than the error in DG2. Furthermore, DG2 shows a large spike
near the neutron pairing transition, which is not present in the
PNP.

3. State density

The behavior of the state density, which is shown for the
PNP, DG2 and SMMC in Fig. 5, closely resembles that of the
canonical entropy. At energies above the shape transition, the
PNP and DG2 results agree well with the SMMC results. The
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FIG. 4. Canonical entropy of 150Sm vs β in the HFB approxi-
mation. Lines and symbols for the PNP, DG2, and SMMC are as in
Fig. 3. The inset shows an expanded scale at large values of β.

014305-6



PARTICLE-NUMBER PROJECTION IN THE FINITE- . . . PHYSICAL REVIEW C 96, 014305 (2017)

100

104

108

1012

1016

1020

 0  5  10  15  20  25  30  35  40

ρ 
(M

eV
-1

)

Ex (MeV)

100
104
108

 0  4  8
ρ 

(M
eV

-1
)

Ex (MeV)

FIG. 5. State density of 150Sm vs excitation energy Ex in the HFB
approximation. Lines and symbols are as in Fig. 3. The inset shows
the low-excitation-energy results.

HFB results are reduced at energies below the shape transition
and reduced further at energies below the pairing transitions.
The discontinuities in both the PNP and in DG2 around Ex ≈
10 MeV are due to the sharp kink in the excitation energy at
the shape transition. The discrepancy between the PNP and
DG2 entropies in the high-β limit is not noticeable in the state
density because this discrepancy becomes significant only for
very low excitation energies.

D. Approximate canonical Hartree–Fock–Bogoliubov
entropy in limit T → 0

We found in Secs. IV B and IV C that the approximate
canonical entropy of 148Sm and 150Sm asymptotes at low
temperatures to a negative number. Here, we show how
this unphysical result arises from the inherent violation of
particle-number conservation in the grand-canonical HFB
approximation. We consider the limit of sufficiently large β,
in which we can neglect the contribution of excited states to
the partition function. Assuming for simplicity one type of
particle, we have in this limit

ZHFB
N → e−βE0〈�|P̂N |�〉, (32)

where E0 is the ground-state energy and |�〉 is the HFB ground
state. This state can be written as a linear superposition of
states with even particle numbers, |�〉 = ∑

N=0,2,4,... αN |ψ〉N ,
where |ψ〉N is an N -particle state. Equation (32) can then be
expressed as

ZHFB
N → e−βE0 |αN |2. (33)

where |αN |2 is the probability that the HFB ground-state con-
densate contains N particles. Using Eq. (31) and generalizing
to the case of both protons and neutrons, we find in the limit
of zero temperature

SHFB
c → ln |αNp

|2 + ln |αNn
|2, (34)

where Np and Nn are the numbers of protons and neu-
trons, respectively. Because particle-number is not conserved,
|αNp

|2, |αNn
|2 < 1, and the entropy (34) is negative. A closely

related explanation for the DG approximations is given in
Ref. [7]. This negative entropy is an inherent limitation of
the particle-number projection after variation method in the
grand-canonical HFB theory.

E. Computational efficiency

An important advantage of the PNP over all saddle-
point methods in which the partial derivatives are calculated
explicitly is computational efficiency. Both the PNP and
these saddle-point methods require finding the self-consistent
mean-field solutions for a set of β values. The additional cost
of the PNP HF approximation scales as N2

s , since calculating
ζ HF
n in Eq. (19) takes Ns operations and must be done for each

of the Ns quadrature points in the Fourier sum. The PNP HFB
approximation scales as N4

s because the matrix decomposition
in the stabilization method (discussed in Appendix B) requires
N3

s operations for each of the Ns quadrature points.
In DG1 it is necessary to calculate numerically the

derivatives of the proton and neutron numbers with respect
to the chemical potentials, which requires finding additional
mean-field solutions. The cost of calculating these derivatives
accurately can be very large, especially in the vicinity of
the phase transitions where the mean-field solution can take
many iterations to converge. These timing considerations do
not apply to DG2, since in that approximation the relevant
derivatives are replaced by the particle-number variances
calculated as mean-field observables. However, as discussed
in Ref. [7], DG2 is significantly less accurate than DG1 in
the paired phase. In contrast, the PNP is as accurate or more
accurate than DG1 in each of the nuclei considered here.

In the Supplemental Material [14], we include timing data
comparing the efficiency of the PNP to that of the DG1
approximation for the spherical nucleus 148Sm.

V. CONCLUSION AND OUTLOOK

We have derived a general formula for exact particle-
number projection after variation in the finite-temperature
HFB approximation, assuming only that the HFB Hamiltonian
is invariant under time reversal. This general formula reduces
to simpler known expressions in the HF and BCS limits.

We have assessed the accuracy of the PNP, using the
SMMC as a benchmark. In addition, we have compared
the performance of this method to the DG approximations
formulated in Ref. [7], which were introduced to improve on
the saddle-point approximation. Our results show that, like
the DG approximations, the PNP is in agreement with the
SMMC for temperatures above the shape or pairing phase
transitions. In general, we find that the PNP provides both
quantitative and qualitative improvements over the DG and
saddle-point approximations at low temperatures. In the HF
case, the PNP suppresses an instability that develops in the
canonical entropy calculated by the DG approximations at
large β. In the paired phase of the HFB, the PNP entropy
shows the correct qualitative behavior, i.e., it is monotonically
decreasing with increasing β, unlike the DG1 approximation.
Furthermore, in the paired phase, the PNP reduces the error
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in the DG2 approximation by more than a unit of entropy.
This reduction is significant, since the errors in both cases
are of order unity. Finally, the PNP is significantly more
computationally efficient than saddle-point methods in which
derivatives have to be calculated explicitly, such as the DG1
approximation.

However, the PAV method is inherently limited by the
broken symmetries in the grand-canonical mean-field theory
to which it is applied. In a deformed nucleus, the projected
mean-field theory cannot describe the rotational enhancement
that is observed in the SMMC below the shape transition
temperature. In a nucleus with a strong pairing condensate,
the intrinsic violation of particle-number conservation below
the pairing transition temperature leads to negative values of
the PNP canonical entropy. It is therefore desirable to explore
improvements to finite-temperature mean-field theories that
can address these issues.

One avenue for improvement is the variation after projec-
tion (VAP) method. VAP conserves particle number during
the variation to determine the mean-field solution and is
therefore expected to smooth the sharp phase transitions
of the grand-canonical mean-field approximations and cor-
rect the unphysical negative entropy in the paired phase.
This method has been formulated for the zero-temperature
HFB approximation [19] and applied to even-even nuclei
[20,21]. VAP has also been formulated at finite temperature
in the BCS approximation to calculate the pairing gaps
in small model spaces [22,23]. However, a general VAP
method for finite-temperature calculations in large model
spaces would involve a considerable computational cost.
In particular, the entropy of the projected HFB density
SN = −Tr (D̂N ln D̂N ), which is required for the calculation
of the free energy at finite temperature, is difficult to calculate
in the paired phase because the HFB Hamiltonian does not
commute with the particle-number operator. Nevertheless,
given the potential advantages of this method, it would be
worth investigating the possibility of developing a general VAP
method for the finite-temperature HF and HFB approximations
in large model spaces.

Another direction, perhaps more tractable, would be to use
the PNP in the static-path approximation (SPA) [24–27]. The
SPA takes into account the static fluctuations of the mean field
beyond its self-consistent solution. As with the mean-field
approximation, the particle-number projection can be carried
out either before or after the SPA integration. It would be useful
to conduct a systematic assessment of the particle-number-
projected SPA.

Finally, the formula derived here for the particle-number
projected HFB partition function assumes that the HFB
Hamiltonian is time-reversal invariant and therefore is not
completely general. A general formula for the projected HFB
partition function was derived in Ref. [12], but its application
is limited by a sign ambiguity. For the grand-canonical traces
of statistical density operators, a similar sign ambiguity was
resolved by relating the trace over Fock space to a Pfaffian
[28]. An extension of the Pfaffian approach to symmetry
restoration projection at finite temperature for a general HFB
Hamiltonian, and specifically for particle-number projection,
will be presented in Ref. [29].
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APPENDIX A: TRACE OF EXPONENTIAL OF
FERMIONIC ONE-BODY OPERATOR

Here, we derive the formula for the grand-canonical trace of
the exponential of a quadratic fermionic operator of the form
of Eq. (6). Assuming a diagonalizable Ns × Ns matrix C,

Tr eξ †Cξ = det(1 + eC), (A1)

where ξ is defined in Sec. II.
Since C is diagonalizable, there is a similarity transforma-

tion S that brings C to a diagonal form,

SCS−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λk1

. . .
λkNs/2

λk̄1

. . .
λk̄Ns /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

If S is unitary, it can be used to transform αk and α
†
k to new

fermionic operators dk and d
†
k such that

Tr eξ †Cξ = Tr e
∑

k>0(λkd
†
k dk+λk̄dk̄d

†
k̄
)

= Tr e
∑

k>0(λkd
†
k dk−λk̄d

†
k̄
dk̄+λk̄ ). (A3)

Since dk are fermionic operators, the grand-canonical trace in
Eq. (A3) can be evaluated as usual to give

Tr eξ †Cξ =
∏
k>0

[(1 + eλk )(1 + e−λk̄ )eλk̄ ]

=
∏
k>0

[(1 + eλk )(1 + eλk̄ )] = det(1 + eC). (A4)

However, in general, S is not unitary. In this case, we make use
of a nonunitary Bogoliubov transformation [30]. We define the
operators {d,d̃} by the canonical transformation

η = Sξ, η̃ = ξ †S−1, (A5)

where η = (dk1 , . . . ,dkNs /2 ,d̃k̄1
, . . . ,d̃k̄Ns /2

)T and η̃ =
(d̃k1 , . . . ,d̃kNs /2 ,dk̄1

, . . . ,dk̄Ns /2
). It can be shown that {d,d̃} have

the same anticommutation relations as {α,α†} [30]. However,
this transformation does not preserve the Hermiticity relation
of the operators. Therefore we must treat the kets and
bras related to these operators differently. Because the
anticommutation relations are preserved, the usual creation
and annihilation formulas apply to the left and right bases
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separately. We define the left and right vacuums by

|0〉d =
∏
k>0

dkdk̄|0〉, d〈0̄| = 〈0|
∏
k>0

d̃kd̃k̄, (A6)

and left and right states by

|φ〉 =
∏
k>0

(d̃k)nk (d̃k̄)nk̄ |0〉d ,

〈φ̄| = d〈0̄|
∏
k>0

(dk)nk (dk̄)nk̄ . (A7)

The anticommutation relations ensure that

〈φ̄|φ′〉 = δφ,φ′ , 〈φ̄|d̃kdk|φ〉 = nk, (A8)

where nk is the occupation number of state k. Furthermore,
as discussed in Ref. [30], these left and right states form a
bi-orthogonal basis for the Fock space and therefore satisfy
the completeness relation,∑

φ

|φ〉〈φ̄| = 1. (A9)

We can rewrite ξ †Cξ in this bi-orthogonal basis,

ξ †Cξ = η̃SCS−1η =
∑
k>0

λkd̃kdk − λk̄d̃k̄dk̄ + λk̄. (A10)

We can now compute the trace as follows (|ψ〉 below is an
arbitrary state in the α, α† basis):

Tr eξ †Cξ =
∑
ψ

〈ψ |eξ †Cξ |ψ〉

=
∑

ψ,φ,φ′
〈ψ |φ〉〈φ̄|e

∑
k>0(λkd̃kdk−λk̄ d̃k̄dk̄+λk̄)|φ′〉〈φ̄′|ψ〉

=
∑

φ

〈φ̄|
∏
k>0

e(λkd̃kdk−λk̄ d̃k̄dk̄+λk̄ )|φ〉

=
∏
k>0

∑
nk=0,1
nk̄=0,1

eλknk+λk̄(1−nk̄ )

=
∏
k>0

(1 + eλk )(1 + eλk̄ ) = det(1 + eC). (A11)

This completes the proof of Eq. (A1).

APPENDIX B: STABILIZATION OF
HARTREE–FOCK–BOGOLIUBOV

PARTICLE-NUMBER PROJECTION

Equation (17) becomes numerically unstable at large values
of β. We rewrite

det(1 + W†eiϕnNWe−βE )

= det(W†) det(eiϕnN ) det(W) det(W†e−iϕnNW + e−βE ).

(B1)

Using det(eiϕnN ) = 1 and detW† = [detW]−1, we find

det(1 + W†eiϕnNWe−βE ) = det(W†e−iϕnNW + e−βE ).
(B2)

The determinant on the right-hand side can be computed stably
[31] by decomposing the matrix An ≡ W†e−iϕnNW + e−βE in
the form

An = QnDnRn, (B3)

where Qn is an orthogonal matrix, Rn is an upper triangular
matrix in which each diagonal entry is 1, and Dn is a
diagonal matrix. Qn and Rn are well-conditioned matrices,
while Dn contains the scales of the problem. Consequently,
the eigenvalues of Qn and Rn can be computed stably. We use
these eigenvalues, together with the diagonal entries of Dn,
to find det An. In practice, to avoid numerical overflow, we
compute the quantity

ln det An = ln det Qn + ln det Dn + ln det Rn. (B4)
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