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Saturation with chiral interactions and consequences for finite nuclei
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We explore the impact of nuclear matter saturation on the properties and systematics of finite nuclei across
the nuclear chart. By using the ab initio in-medium similarity renormalization group (IM-SRG), we study
ground-state energies and charge radii of closed-shell nuclei from 4He to 78Ni based on a set of low-resolution
two- and three-nucleon interactions that predict realistic saturation properties. We first investigate in detail
the convergence properties of these Hamiltonians with respect to model-space truncations for both two- and
three-body interactions. We find one particular interaction that reproduces well the ground-state energies of
all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other
Hamiltonians underbind nuclei but lead to a remarkably similar systematics of ground-state energies. Extending
our calculations to complete isotopic chains in the sd and pf shells with the valence-space IM-SRG, the same
interaction reproduces not only experimental ground states but two-neutron-separation energies and first-excited
2+ states. We also extend the valence-space IM-SRG to calculate radii. Since this particular interaction saturates
at too high density, charge radii are still too small compared with experiment. Except for this underprediction, the
radius systematics is, however, well reproduced. Our results highlight the renewed importance of nuclear matter
as a theoretical benchmark for the development of next-generation chiral interactions.
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I. INTRODUCTION

A central goal of nuclear theory is an accurate ab initio
description of nuclei from the valley of stability to the limits
of existence based on a common Hamiltonian including
theoretical uncertainties. Recent progress in chiral effective
field theory (EFT) [1,2] and renormalization-group methods
[3,4] provide a framework for addressing this goal. The
enhanced convergence properties of the resulting interactions
and methodological advances in many-body theory, e.g., with
coupled-cluster (CC) theory [5], self-consistent Green’s func-
tion methods [6], or the in-medium similarity renormalization
group (IM-SRG) [7], which exhibit a polynomial scaling in
mass number, have increased the reach of ab initio calculations
to the medium-mass region or beyond. While these large-space
methods are still limited to closed-shell and neighboring
nuclei, or to singly open-shell systems, doubly open-shell
nuclei can be accessed by ab initio valence-space methods
[8–12].

These developments have enabled a clear demonstration of
the importance of three-nucleon (3N ) forces for understanding
the structure of medium-mass nuclei [13,14] and for realistic
saturation properties of nuclear matter [15–19]. Indeed, the
role of 3N forces in saturation was suggested long ago [20,21],
but difficulties in formulating consistent 3N forces and solving
the resulting many-body problem hindered progress. More
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recently, the difficulty has been in constructing a chiral
interaction which simultaneously reproduces saturation, few-
body observables, and spectroscopy. In Ref. [22], a good
description of ground-state energies in the region of 16O was
obtained by using a chiral two- and three-nucleon interaction.
However, this interaction yields radii which are too small
[23] and increasingly severe overbinding for heavier nuclei
[24]. An alternative approach [25], fitting directly to some
medium-mass nuclei, successfully reproduced saturation, but
two-nucleon (NN ) scattering data were only fit up to 35 MeV.

In this work, we investigate ground-state energies and
charge radii of finite nuclei based on chiral low-resolution
NN and 3N interactions with realistic saturation properties,
which also reproduce scattering data with high precision.
We use the closed-shell and valence-space formulation of
the IM-SRG. This enables a unique and broad access across
the nuclear chart. In Sec. I A, we describe the Hamiltonians
used in this work, while Sec. I B gives a short overview
of the IM-SRG formalism for closed-shell nuclei and the
decoupling of valence-space interactions for open-shell nuclei.
The model-space convergence of ground-state energies and
charge radii for different resolution scales and low-energy
couplings is studied in detail in Sec. II. Finally, Sec. III presents
valence-space results for different sd- and pf -shell isotopic
chains, including first results for radii in the valence-space
IM-SRG.

A. Chiral interactions and saturation

At the NN level, we start from the next-to-next-to-
next-to-leading order (N3LO) 500 MeV potential of En-
tem and Machleidt (EM) [26]. We then use the similarity
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renormalization group (SRG) [3,27] to evolve this interaction
to a series of low-resolution scales λNN = 1.8, 2.0, 2.2 fm−1.
Taking chiral EFT as a general low-momentum basis and
assuming the long-range couplings ci to be invariant under the
SRG transformation, we combine each SRG-evolved NN in-
teraction with the leading N2LO 3N forces [28,29], where the
ci couplings in the two-pion-exchange 3N interaction are taken
consistently with the NN interaction: c1 = −0.81 GeV−1,
c3 = −3.2 GeV−1, c4 = 5.4 GeV−1. In addition, to probe
uncertainties in the ci couplings, we use 3N forces with
the ci values obtained from the Nijmegen NN partial-wave
analysis (PWA): c1 = −0.76 GeV−1, c3 = −4.78 GeV−1,
c4 = 3.96 GeV−1 [30] for the λNN = 2.0 fm−1 interaction.
For all Hamiltonians, the low-energy couplings cD , cE in the
3N one-pion-exchange and 3N contact interaction have been
fit to the 3H binding energy and 4He charge radius by using
Faddeev and Faddeev–Yakubovsky calculations [16] with a
nonlocal 3N regulator and cutoff �3N = 2.0 fm−1.

These chiral NN + 3N Hamiltonians were first employed
to study symmetric [16] and, more recently, also asymmetric
nuclear matter [31,32]. The first application to finite nuclei
was in a valence-space study of sd-shell isotopes [33] and
in coupled-cluster calculations of selected Ca [34,35] and
Ni isotopes [36]. Of particular importance to this work is
that, in symmetric nuclear matter, the λNN/�3N = 1.8/2.0
(EM) interaction yields an energy per particle in good
agreement with the empirical value (at saturation density with
a Hartree–Fock spectrum slightly too bound [32]), although at
a somewhat too high density. The other interactions 2.0/2.0
(EM), 2.2/2.0 (EM), 2.0/2.0 (PWA) saturate at decreasingly
smaller energy and density [32]. Note that the nuclear-matter
calculations of Ref. [32] are performed at an incomplete third
order in many-body perturbation theory omitting third-order
particle-hole contributions. Due to this inconsistency and
the unknown many-body convergence beyond third order,
we restrict our comparison of infinite nuclear matter and
finite-nuclei results to a qualitative level.

B. In-medium similarity renormalization group

In the IM-SRG approach [7], starting from the full NN +
3N Hamiltonian, we first solve the Hartree–Fock equations
to obtain a suitable reference state. We then rewrite the
Hamiltonian in normal-ordered form:

H = E0 +
∑
ij

fij {a†
i aj } + 1

4

∑
ijkl

�ijkl{a†
i a

†
j alak}

+ 1

36

∑
ijklmn

Wijklmn{a†
i a

†
j a

†
kanamal}, (1)

where the braces denote a string of creation and annihilation
operators normal ordered with respect to the reference state,
and the resulting in-medium zero-, one-, and two-body opera-
tors E0, f , and �, respectively, represent the starting values for
the IM-SRG flow equations. In the normal-ordered two-body
approximation, in which we work, the residual three-body term
W is discarded. We use the Magnus formulation presented
in Ref. [37] to generate an explicit unitary transformation
that decouples the reference state from excitations. This

transformation can subsequently be applied to any operator, in
particular the radius operator discussed below. For calculations
of open-shell nuclei, we use the valence-space formulation of
the IM-SRG (VS-IM-SRG) [8,11,38] based on the ensemble
normal-ordering discussed in Ref. [12], which captures the
bulk effects of residual 3N forces among valence nucleons.
A valence-space Hamiltonian is then produced specifically
for each nucleus, which is diagonalized with the NuShellX
shell-model code [39] to obtain ground- and excited-state
energies in the valence space.

II. CLOSED-SHELL NUCLEI

In this section, we analyze the model-space convergence
of closed-shell nuclei based on the four chiral low-resolution
NN + 3N interactions introduced in Sec. I A. In the calcu-
lations we employ an angular-momentum-coupled basis built
from single-particle spherical harmonic-oscillator (HO) states
with quantum numbers e = 2n + l � eMax. We employ partial-
wave decomposed 3N matrix elements in a Jacobi-momentum
basis and include partial waves up to the total three-body
angular momentumJ � 9/2. Furthermore, in order to manage
computational storage requirements, we introduce an addi-
tional cut e1 + e2 + e3 � E3Max < 3eMax for 3N matrix ele-
ments. For the analysis of the convergence behavior presented
below, we study eMax/E3Max = 10/14, 12/14, 14/14, 14/16,
and 14/18.

In addition to ground-state energies, we also investigate
the convergence behavior of charge radii. These results are
obtained by normal-ordering and evolving the intrinsic proton
mean-square radius operator (see, e.g., Ref. [41]),

R2
p = 1

Z

Z∑
i

(�ri − �R)2, (2)

where i runs over the proton coordinates, and �R is the
center-of-mass coordinate. Note that the proton mean-square
radius-operator is not free-space SRG evolved, consistent with
the determination of the 3N couplings to the charge radius
of 4He. We obtain charge radii by applying the corrections
arising from the mean-square charge radii of the proton and the
neutron as well as the relativistic Darwin–Foldy and spin-orbit
corrections:

Rch =
√

R2
p + 〈

r2
p

〉 + N

Z

〈
r2
n

〉 + 3

4M2
pc4

+ 〈r2〉so, (3)

with values of 〈r2
p〉 and 〈r2

n〉 taken from Ref. [42]. The spin-
orbit correction [43] is calculated from

〈r2〉so = 1

Z

A∑
i=1

〈
r2
i

〉
so = − 1

Z

∑
i

μi

M2
(κi + 1), (4)

with the magnetic moments of the proton, μp = 2.793μN , and
the neutron, μn = −1.913μN , and the definition

κ =
{

l, j = l − 1
2

−(l + 1), j = l + 1
2 .

(5)
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FIG. 1. Convergence of ground-state energies for 40Ca (top panels) and 54Ca (bottom panels) calculated with the closed-shell IM-SRG. The
column heading specifies the input Hamiltonian: λNN/�3N = 1.8/2.0 (EM) (left), 2.0/2.0 (EM) (middle-left), 2.2/2.0 (EM) (middle-right),
and 2.0/2.0 (PWA) (right). In each panel, we show results obtained for harmonic-oscillator frequencies h̄� = (12–28) MeV and different
truncations of the single-particle basis eMax/E3Max = 10/14 (filled circles), 12/14 (filled squares), 14/14 (filled triangles), 14/16 (empty
circles), and 14/18 (empty squares). The experimental ground-state energies from the atomic mass evaluation (AME) 2012 [40] are given by
the dashed lines.

Additionally, two-body currents, which are due to the coupling
of the photon to pions and to two nucleons, contribute to the
charge radius, but this correction is neglected here.

In Fig. 1, we show the model-space convergence for
ground-state energies of 40Ca and 54Ca. The energy minima
are almost independent of the four different NN + 3N
interactions, typically located near h̄� = 16 MeV. While the
ground-state energy of 40Ca is well converged for the different
Hamiltonians, in 54Ca convergence from eMax/E3Max = 10/14
to 14/14 is only obtained for the interactions with lower
resolution scales λNN = 1.8 and 2.0 fm−1. In Table I, we
list the change in the ground-state energy with increasing
eMax/E3Max. We clearly see that the 1.8/2.0 (EM) interaction
is better converged from eMax/E3Max = 12/14 to 14/14,
where the energy decreases by only 0.6 MeV total, com-
pared with the 2.2/2.0 (EM) interaction, where this decrease
is 2.2 MeV.

In addition, we investigate the impact of increasing the 3N
cut E3Max = 14 → 18 for eMax = 14 both in Fig. 1 and Table I.
In the case of the 1.8/2.0 (EM) interaction, the ground-state
energy of 54Ca decreases by 0.4 MeV for E3Max = 16 → 18,
while this decrease of 0.7 MeV is only slightly larger

for the 2.2/2.0 (EM) interaction, indicating that both are
relatively well converged in terms of E3Max. The largest
impact is seen with the 2.0/2.0 (PWA) interaction, where
the difference amounts to 1.1 MeV. While the ground-state
energies calculated with the 1.8/2.0 (EM) interaction agree
with experiment to ≈1%, the other three Hamiltonians predict
energies that are significantly underbound.

In Fig. 2, we show the model-space convergence of the
charge radii for 40Ca and 54Ca. Although the ground-state
energy of 40Ca calculated from the 1.8/2.0 (EM) interaction is
in remarkable agreement with experiment, the corresponding
charge radius, shown in the left column of Fig. 2, is
significantly smaller than experiment. With increasing SRG
resolution scale λNN , the charge radii increase but are still too
small compared with experiment, while for the 2.0/2.0 (PWA)
Hamiltonian, the calculated charge radius is instead somewhat
too large. It will be very interesting to compare the charge-radii
calculations for 54Ca, shown in the lower panels of Fig. 2 with
future experimental results. Even the recent measurement of
the charge radius of 52Ca [35], manifesting a strong increase
from 48Ca onward, could not be explained fully by ab initio
coupled-cluster calculations.

TABLE I. Convergence of ground-state energies of 54Ca and 78Ni for the four Hamiltonians considered. The table lists the change in
the ground-state energy when increasing eMax → eMax + 2 (E3Max → E3Max + 2) at fixed E3Max (eMax) for harmonic-oscillator frequency
h̄� = 16 MeV.

Hamiltonian 54Ca 78Ni

(10 → 12)/14 (12 → 14)/14 14/(14 → 16) 14/(16 → 18) (10 → 12)/14 (12 → 14)/14 14/(14 → 16) 14/(16 → 18)

1.8/2.0 (EM) 1.8 0.6 1.4 0.4 3.3 0.9 4.4 2.0
2.0/2.0 (EM) 3.5 1.1 1.9 0.6 7.4 2.1 5.7 2.8
2.2/2.0 (EM) 7.0 2.2 2.3 0.7 14.7 5.0 6.6 3.4
2.0/2.0 (PWA) 4.4 1.5 3.1 1.1 9.2 3.0 9.6 5.0
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FIG. 2. Convergence of charge radii for 40Ca (top panels) and 54Ca (bottom panels) calculated with the closed-shell IM-SRG. The legend
is as in Fig. 1. The experimental charge radius for 40Ca [44] is given by the dashed line.

In Fig. 3, we show the model-space convergence for
ground-state energies of 56Ni and 78Ni. Similar to the calcium
isotopes (see Fig. 1) the minima in the ground-state energies
are near h̄� = 16 MeV. The energies obtained from the
1.8/2.0 (EM) Hamiltonian are again in very good agreement
with experiment, while the other three Hamiltonians give
results that are underbound to different degrees. The increase
in particle number from calcium to nickel clearly results in
slower model-space convergence. As seen in Table I, enlarging
the single-particle basis from eMax = 12 → 14 changes the
ground-state energy of 78Ni by 0.9 MeV for the 1.8/2.0
(EM) interaction at h̄� = 16 MeV, compared with 5.0 MeV
for the 2.2/2.0 (EM) interaction. The change in energy
when increasing the cut in the 3N matrix elements from
E3Max = 16 → 18 is 2.0 MeV for 1.8/2.0 (EM), already not
completely converged. This effect is even larger for 2.0/2.0
(EM) and 2.2/2.0 (EM) and maximal for 2.0/2.0 (PWA),
where the change is 5.0 MeV. Again, for the 1.8/2.0 (EM)

interaction, the agreement with experiment is good in both
cases, but it is clear that the model space must be increased
beyond eMax/E3Max = 14/18 to claim fully converged results
in this region, and likely for any nucleus with N,Z � 50.
We also note the unusual behavior of the 78Ni results for
eMax/E3Max = 14/14 at h̄� = 28 MeV in Fig. 3 is probably
caused by truncation artifacts due to the E3Max cut.

In Fig. 4, we show the model-space convergence of the
charge radii for 56Ni and 78Ni. Similar to the calcium isotopes
discussed above, we see a gradual increase with increasing
SRG resolution scale and a larger value for the 2.0/2.0 (PWA)
interaction. While the results for 56Ni appear well converged
for all starting Hamiltonians, this is less the case for 78Ni
either with respect to eMax or E3Max, and especially for the
larger cutoffs and the 2.0/2.0 (PWA) interaction.

Finally, before studying the systematics of the ground-state
energies and charge radii of closed-shell nuclei, we compare
our results with the coupled-cluster calculations of Hagen
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FIG. 3. Convergence of ground-state energies for 56Ni (top panels) and 78Ni (bottom panels) calculated with the closed-shell IM-SRG. The
legend is as in Fig. 1. Note that the experimental ground-state energy for 78Ni is extrapolated within the atomic mass evaluation.

014303-4



SATURATION WITH CHIRAL INTERACTIONS AND . . . PHYSICAL REVIEW C 96, 014303 (2017)

3.4

3.5

3.6

3.7

3.8

R
ch

 (f
m

)

1.8/2.0 (EM)

3.4

3.5

3.6

3.7

3.8 10/14
12/14
14/14
14/16
14/18

2.0/2.0 (EM)

3.4

3.5

3.6

3.7

3.8

2.2/2.0 (EM)

3.4

3.5

3.6

3.7

3.8

2.0/2.0 (PWA)

12 16 20 24 283.5
3.6
3.7
3.8
3.9

4

12 16 20 24 283.5
3.6
3.7
3.8
3.9

4

12 16 20 24 28

h_ Ω (MeV)

3.5
3.6
3.7
3.8
3.9

4

12 16 20 24 283.5
3.6
3.7
3.8
3.9

4

56Ni

78Ni

FIG. 4. Convergence of charge radii for 56Ni (top panels) and 78Ni (bottom panels) calculated with the closed-shell IM-SRG. The legend
is as in Fig. 1.

et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄� = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
vs −128 MeV [�-CCSD(T)]; for 40Ca: −344.5 MeV vs
−348 MeV; for 48Ca: −416.1 MeV vs −419 MeV; and for
78Ni: −633.6 MeV vs −637 MeV, while there is a difference
of more than 3% for 4He (−29.2 MeV vs −28.2 MeV).

Finally, in Figs. 5 and 6 we show ground-state energies
and charge radii, respectively, for selected closed-shell nuclei
from 4He to 78Ni. Except for the neutron-rich oxygen isotopes
22,24O all calculated ground-state energies from the 1.8/2.0
(EM) interaction are in very good agreement with experiment.
Interestingly the other three interactions follow the same
pattern but are shifted by as much as 1.5 MeV/A in the case of
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FIG. 5. Systematics of the energy per nucleon E/A of closed-
shell nuclei from 4He to 78Ni calculated with the IM-SRG for the four
Hamiltonians considered. The results are compared against experi-
mental ground-state energies from the AME 2012 [40] (extrapolated
for 48,78Ni).

the 2.0/2.0 (PWA) interaction. The experimental charge radii
are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
reminiscent of the Coester-like line for the saturation points of
the four Hamiltonians considered [32].

III. OPEN-SHELL ISOTOPIC CHAINS

In this section, we move beyond closed-shell systems to
explore ground- and excited-state systematics throughout a
selection of isotopic chains in the sd and pf shells, namely
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FIG. 6. Systematics of charge radii of closed-shell nuclei from
4He to 78Ni calculated with the IM-SRG for the four Hamiltonians
considered. The results are compared against experimental charge
radii [44] where available.
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sodium, sulfur, calcium, manganese, and nickel. The VS-IM-
SRG method used here was shown to agree with large-space
methods to better than 1% for ground-state energies [12].

We also calculate charge radii, less studied within the
context of ab initio approaches [23,25,34,35,45], with the
VS-IM-SRG for the first time, where the proton mean-square
radius operator of Eq. (2) is transformed via the same unitary
transformation as the Hamiltonian. This gives a valence-space
radius operator to be used with valence-space wave functions,
after which the core point-proton radius and corrections of
Eq. (3) are applied to obtain the absolute charge radius. We
note that induced two-body corrections to the radius operator
are included naturally in the VS-IM-SRG formalism.

A. Ground-state energies and radii

Given the remarkable agreement with experimental ground-
state energies for closed-shell systems from the 1.8/2.0 (EM)
interaction discussed in Sec. II, we compare the systematics
of ground-state energies calculated with this interaction with
experimental data where they exist in the isotopic chains
mentioned above. For sodium, sulfur, and calcium we take
eMax/E3Max = 12/16, while for manganese and nickel we use
eMax/E3Max = 14/16. In all cases h̄� = 16 MeV is taken for
the harmonic-oscillator frequency. In addition, we directly
compare single-reference IM-SRG and valence-space results
in calcium and nickel for the closed-shell cases. The valence
space is defined to be one major harmonic-oscillator shell
for protons and neutrons. For example, for the sulfur chain
we take a proton and neutron sd valence space above an
16O core for N < 20, a proton sd valence space above a
28O core for N = 20, and a proton sd neutron pf valence
space above a 28O core for N > 20. It should be noted that,
at oscillator shell closures for neutrons, no explicit neutron
excitations are allowed in the valence space. In particular
for systems near the transition from one valence space to
another, contributions from cross-shell excitations will be
important. These excitations are incorporated approximately
by the IM-SRG decoupling, and our truncation to two-body
operators is insufficient for these isotopes. We mark these
oscillator closures as a vertical dotted line in all figures. While
preliminary efforts indicate that the VS-IM-SRG approach is
capable of decoupling the relevant mixed valence spaces, and
thus treating these excitations explicitly, we will address this
issue in a future work.

Beginning in the sd region, we show in Figs. 7 and 8,
ground-state energies and two-neutron separation energies S2n

for sodium and sulfur isotopes, respectively. In both cases we
find good agreement with absolute experimental ground-state
energies, outside of 31,32Na, which are somewhat underbound.
The ground states of 30–32Na are dominated by deformed
configurations [46,47], not captured in neutron sd or pf
valence-space calculations. These island-of-inversion isotopes
will be investigated further in the context of decoupling
neutron sd–pf cross-shell valence spaces. Likewise, the S2n

results are in remarkable agreement with data, except in the
region near N = 20. In Ref. [12], sodium isotopes were also
investigated with the VS-IM-SRG approach, but instead by us-
ing the EM 500 MeV potential with local N2LO 3N forces [48]
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FIG. 7. Ground-state energies (top) and two-neutron separation
energies (bottom) of sodium isotopes for the 1.8/2.0 (EM) Hamilto-
nian (circles) compared with experiment (AME 2012, bars) [40]. See
text for details of the valence spaces used. The vertical dotted line
marks the end of the sd shell at N = 20.

consistently SRG evolved to λ = 1.88 fm−1. For this choice of
Hamiltonian the isotopes 22Na up to 32Na are overbound, while
the rest of the chain is in good agreement with experiment.
With three protons above the closed Z = 8 proton shell, no
other ab initio method is currently able to calculate sodium
isotopes. Except for the single-reference and VS-IM-SRG
calculations of 32,36S with the SRG-evolved NN + 3N forces
mentioned above [12], which display significant overbinding
not seen with the 1.8/2.0 (EM) interaction used here, there are
no other ab initio calculations available for these open-shell
sulfur isotopes.

In the pf shell, the agreement with experimental data
remains good as well, as shown in Figs. 9–11 for calcium, man-
ganese, and nickel isotopic chains, respectively. In calcium, we
also compare with the corresponding single-reference results
for 40,48,52,54Ca, where, as noted in Ref. [12], the VS-IM-SRG
results agree with the single-reference calculations to better
than 1%. We also reproduce well the sharp decreases in
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FIG. 8. Ground-state energies (top) and two-neutron separation
energies (bottom) of sulfur isotopes compared with experiment, with
the same legend and details as in Fig. 7.

S2n values after N = 28 and N = 32, in good agreement
with recent precision experiments [49,50], indicating that the
shell closures at N = 28 and N = 32 are well reproduced
with the 1.8/2.0 (EM) interaction. We therefore also expect
predictions of S2n values past N = 34 to be reliable, at
least qualitatively, when the data become available. Similar
good agreement is seen for all trends in the manganese
isotopes, which, with five protons above the Z = 20 proton
shell closure, are currently inaccessible to all other ab initio
methods. Finally, we see that, throughout the nickel chain,
absolute ground-state energies become modestly overbound
in the midshell region on the order of up to 10 MeV. All
other experimental trends (aside from the artificial kink in the
vicinity of N = 40) are well reproduced, including the sharp
drop past N = 28. We also note that the somewhat larger
discrepancy between single-reference and VS-IM-SRG results
for 56Ni is likely due to the ground-state configuration obtained
in the valence-space diagonalization being only 30% pure
filled proton and neutron f7/2. While experimental energies
are known past A = 72, this represents our current limitation
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FIG. 9. Ground-state energies (top) and two-neutron separation
energies (bottom) of calcium isotopes for the 1.8/2.0 (EM) Hamil-
tonian (circles) compared with experiment (AME 2012, bars) [40].
See text for details of the valence spaces used. For closed-subshell
isotopes we also show the results of the single-reference IM-SRG
(diamonds) for comparison.

of diagonalizing the valence-space Hamiltonian exactly with
modest computational resources. Using standard extensions
and/or controlled truncations, isotopes as heavy as 80Ni may
be reached, although as seen in Sec. II, such results may
not be completely converged in terms of E3Max. The results
for the calcium and nickel isotopes using the consistently
SRG-evolved EM 500 MeV potential with local N2LO 3N
forces [48] are significantly overbound up to 100 MeV [12],
highlighting the importance of considering saturation for
whether chiral interactions can describe bulk properties of
nuclei across the nuclear chart.

While we reserve a complete discussion of charge radius
systematics within the VS-IM-SRG for a future work, we
illustrate the versatility of this approach in Fig. 12, where
we plot radii for the complete pf -shell manganese chain,
comparing with experimental data obtained by collinear-laser
spectroscopy at ISOLDE, CERN [51]. From Fig. 6, we expect
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FIG. 10. Ground-state energies (top) and two-neutron separation
energies (bottom) of manganese isotopes compared with experiment,
with the same legend and details as in Fig. 9.

charge radii predicted with the 1.8/2.0 (EM) and 2.0/2.0
(PWA) interactions to be systematically too small and too
large, respectively. While this is indeed seen, an interesting
trend in charge radii is predicted in both cases, with a roughly
parabolic shape to N = 28, followed by a sharp increase for
N > 28. Experimental data show this trend, albeit with more
pronounced structures, as also seen in recent experimental
measurements of charge radii in calcium isotopes [35]. While
neither interaction perfectly reproduces experiment, 2.0/2.0
(PWA) only moderately overpredicts charge radii and should
provide a reasonably reliable guide to trends across isotopic
chains. The general absence of systematic data highlights the
importance of continued systematic experimental investiga-
tions of charge radii.

B. Excited states

Given the remarkable description of experimental ground-
state properties from the 1.8/2.0 (EM) interaction, it is also of
interest to investigate to what extent the structure of excited
states is captured. In the VS-IM-SRG approach, all excited
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FIG. 11. Ground-state energies (top) and two-neutron separation
energies (bottom) of nickel isotopes compared with experiment, with
the same legend and details as in Fig. 9. The vertical dotted line marks
the end of the pf shell at N = 40.

states allowed within a given valence space are obtained
directly via diagonalization. Here we focus on first-excited 2+
states and associated shell closures in the subset of even-even
sulfur, calcium, and nickel isotopes.

Beginning with sulfur, shown in Fig. 13, we see an overall
good reproduction of the experimental trends in 2+ energies.
When neutrons occupy the sd valence space, however, these
energies are systematically several hundred keV too high.
Beyond N = 20, when the neutron valence space changes to
the pf shell, agreement with data improves, including the
modest peak at N = 28 in 44S. Given the absence of allowed
neutron excitations at N = 20, the 2+ energy here is artificially
too high and is expected to decrease when such degrees of
freedom are included in the valence space.

For the calcium isotopes, shown in Fig. 14, the calculated
results agree well with data for open-shell cases. While relative
peaks are seen at the N = 28,32 shell closures as well as
the recently measured N = 34 closure in 54Ca [53], they are
systematically too high, particularly in 48Ca. While we might
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FIG. 12. Charge radii of manganese isotopes for the 1.8/2.0
(EM) (blue circles) and 2.0/2.0 (PWA) (red circles) Hamiltonian
compared with recent experimental measurements by the COLLAPS
collaboration [51]. See text for details on the valence spaces used.

initially attribute this to neglected proton excitations due to
the choice of valence space, similar features are also seen
in the nickel isotopes, which allow both proton and neutron
excitations except at N = 40. For the nickel isotopes, a similar
picture to sulfur is seen in Fig. 15. Where when neutrons fill
the pf shell, the 2+ energies reproduce the experimental trend,
but are systematically several hundred keV too high. When
neutrons begin filling the sdg orbits past 68Ni, the results agree
very well with data, making predictions out to 80Ni possible
to investigate the closed-shell nature of 78Ni. The very high
2+ state in 68Ni is clearly due to a lack of allowed neutron
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FIG. 13. First-excited 2+ energies of even sulfur isotopes for the
1.8/2.0 (EM) Hamiltonian (circles) compared with experiment [52].
See text for details on the valence spaces used. The vertical dotted
line marks the end of the sd shell at N = 20.
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FIG. 14. First-excited 2+ energies of even calcium isotopes for
the 1.8/2.0 (EM) Hamiltonian (circles) compared with experiment
[52]. See text for details on the valence spaces used.

excitations, and should again be regarded as an artifact of the
many-body approximation.

The pattern of too-high 2+ energies in closed-shell systems
is a common feature of our calculations. The origin of this
behavior is unclear, but some direction might be provided
by coupled-cluster calculations of 48Ca and 78Ni [36]. In
this work, it was found that using the same 1.8/2.0 (EM)
interaction, when particle-hole excitations were limited to the
coupled-cluster singles and doubles (CCSD) approximation,
the first-excited 2+ state in 48Ca was approximately 1 MeV
too high, very close to our result. When perturbative triples
excitations were then included, this energy was lowered
to close to the experimental value, and a similar decrease
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FIG. 15. First-excited 2+ energies of even nickel isotopes for the
1.8/2.0 (EM) Hamiltonian (circles) compared with experiment [52].
See text for details on the valence spaces used. The vertical dotted
line marks the end of the pf shell at N = 40.
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was seen in the first 2+ energy in 78Ni. Because the IM-
SRG(2) approximation in this work is analogous to the CCSD
truncation [7], we might expect a similar improvement in
extensions of IM-SRG(2) analogous to the perturbative triples
of coupled cluster. Due to the final step of diagonalizing in the
valence space, however, the expectation would be that much of
this physics should already be captured, as long as excitations
near the Fermi surface were of dominant importance. Because
the development of a controlled approximation to IM-SRG(3)
is currently in progress, we so far have no means to check
whether such an improvement will remedy the too-high 2+
states at closed shells. Nevertheless, this appears to be a
deficiency in the many-body method, not the interaction.

IV. SUMMARY AND CONCLUSIONS

We have performed ab initio IM-SRG calculations of
ground-state energies and charge radii of a broad range
of closed- and open-shell nuclei with A � 78. For open-
shell nuclei, we extended the valence-space IM-SRG to first
calculations of radii. We have focused on a set of chiral
low-resolution NN + 3N interactions that predict realistic
saturation properties. As a baseline, we first studied the
convergence properties of these Hamiltonians with respect
to model-space truncations for both two- and three-body
interactions. Each of the NN + 3N interactions used here
reproduces few-body data with equivalent accuracy. However,
the interactions do not produce equivalent results for medium-
mass nuclei. In fact, the systematics of ground-state energies
and radii indicates that the difference is dominantly due to
their different nuclear matter saturation properties.

One particular interaction yields energies in good agree-
ment with experiment from light nuclei up to the point at
which we are limited by the convergence of the many-body
calculation. This behavior appears to be accidental, in the
sense that we could not have anticipated from the few-body
results which of these interactions would produce the desired
absolute energies, but it suggests two conclusions: First, that
the operator structures contained in these chiral interactions
(NN at N3LO and 3N at N2LO) are sufficient to describe
many of the features of the energies of light- and medium-mass
nuclei, while future consistent calculations at N3LO (and
N2LO) are of course called for. Second, as suggested in
Ref. [25], saturation properties are essential for this accurate
description. Both of these points highlight the importance of
nuclear matter as a theoretical benchmark and guidance for
the development of next-generation chiral interactions. For
this, improvements in nuclear-matter calculations including
studies of their many-body convergence are necessary.
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