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Shell-model-based deformation analysis of light cadmium isotopes
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Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd–108Cd have been performed
with the ANTOINE code in the π (2p1/2; 1g9/2) ν(2d5/2; 3s1/2; 2d3/2; 1g7/2; 1h11/2) model space without further
truncation. Known experimental energy levels and B(E2) values could be well reproduced. Taking these
calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a
function of neutron number N and spin J using the methods of model independent invariants introduced by
Kumar [Phys. Rev. Lett. 28, 249 (1972)] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)].
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I. INTRODUCTION

In nuclei with a single closed shell (either protons or
neutrons) the energy spectra are characterized by the pairing
energy of the valence particles in the open shell, making
seniority an approximate quantum number. For, e.g., the Sn
(Z = 50) and Pb (Z = 82) isotopes and the N = 82 isotones
this turns out to be the case. The pair-breaking energy (energy
gap 2�) separates the ground state from a rapidly increasing
level density at energies of Ex∼1.5–2 MeV. Moreover, the
excitation energy of the first excited 2+ state stays remarkably
constant with changing neutron (in the Z = 50 and Z = 82
isotopes) or proton number (in the N = 82 isotones). Pairing
was incorporated using the BCS theory of superconductivity
as applied to even-even atomic nuclei [1] and is described
in detail by [2,3]. This pairing fingerprint is well covered by
many present-day large-scale shell-model calculations [4,5].

A few valence particle (or holes) away from the closed shell,
an onset of quadrupole collectivity appears, which is indicated
by the change in excitation energy of the low-lying 21

+, 41
+,

61
+,... states as well as by the increase of corresponding

B(E2) values. This is an interesting issue to explore in detail
how nuclei with just two protons outside the closed shell (or
missing) behave; see, e.g., the Cd (Z = 48), Te (Z = 52), the
Hg (Z = 80), and the Po (Z = 84) isotopes, as well as isotones
with N = 80 and N = 84.

For the Cd nuclei, an extensive set of experimental data has
been obtained over the years, covering essentially the whole
N = 50–82 neutron major shell, and even going beyond the
N = 82 closed shell, both on low- and high-spin states, B(E2)
values, g factors (see the detailed set of references [6–64]), as
well as the systematics for those data (see Refs. [65–67]). See
also Ref. [68] for a recent review on the structure of 100Sn and
neighboring nuclei including the light Cd isotopes.

The Cd nuclei have been studied using shell-model calcula-
tions for the lighter mass region [7–12,14,16,69] and also using
the interacting boson model (IBM) [15,16,19,21,49,62,70–
77]. Besides that, other studies, starting from a general col-
lective Bohr Hamiltonian, derived from a microscopic starting
point using a Skyrme force, calculations using the adiabatic
time-dependent Hartree-Fock-Bogoliubov (ATDHFB) method
(for the nuclei 106−116Cd) [78], as well as using a self-consistent

HFB approach, starting from the finite range Gogny interaction
[79], have been carried out.

Our aim, in the present paper is to show how, starting
from an extensive and large-scale shell-model calculation,
it becomes possible to characterize the onset of quadrupole
collectivity with an increasing number of valence neutrons
outside of the 88

38Sr50 core nucleus. We concentrate on the
calculation of both quadratic and cubic rotational invariants
(constructed starting from the E2 transition and diagonal
matrix element) as was originally proposed by Kumar [80] and
Cline and Flaum [81–84]. Subsequently, using those matrix
elements as input, we can extract quantitative information
about the changing collective properties of the low-lying states
(band structure if possible), through the quadrupole parameters
(β, γ ) [85], mainly used to characterize the intrinsic deforma-
tion properties of the Cd nuclei studied in the present paper.

The detailed spectroscopic results for the Cd nuclei, studied
in this paper, such as energy spectra (covering both the
low-spin and high-spin regions), indications of “collective
bands” and related electromagnetic properties (mainly electric
quadrupole and magnetic dipole), as well as a detailed
comparison with the extensive set of data, will form the content
for a forthcoming paper.

II. SHELL-MODEL CALCULATIONS

Large-scale shell-model calculations (LSSM) of cadmium
isotopes have been performed using the complete neutron
model space (N = 50–82), i.e., filling the 2d5/2, 3s1/2, 2d3/2,
1g7/2, and 1h11/2 orbitals with neutrons while ten protons
remain distributed in the 2p1/2 and 1g9/2 orbitals (Z = 48)
forming the proton model space (Z = 38–50). This way 88Sr
acts as an inert model space core, i.e., we assume no interaction
between the valence particles in the model space and the inert
core. Within this model space we study and explore a multitude
of nuclear structure properties, in particular, the changing
quadrupole collective properties, indicated through the Ex(2+

1 )
and B(E2) values along the yrast band, with increasing number
of valence neutrons moving outside the N = 50 closed shell.
The nucleon-nucleon interaction used is an effective realistic
force originating from the CD-Bonn [86] potential, resulting
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in a G matrix called the v3sb effective interaction (see [12],
page 2, left column for more details). This interaction has
been modified implying a slight adjustment of the monopoles
such as to exhibit the correct propagation of the single-particle
neutron energies moving from N = 51 (89Sr) towards the end
of the shell at N = 81 (131Sn) as well as some changes in
the effective pp, np, and nn matrix elements as outlined in
Ref. [12] resulting from a fit of the force to 189 data points
(excitation energies) in the mass region considered here. This
interaction is later on called v3sbm.

An important point is the right choice of the proton and
neutron effective charges throughout the full set of Cd nuclei.
The procedure used is to fix the proton effective charge
eπ fitting the theoretical B(E2) value for the 81

+ → 61
+

transition to the known experimental value in 98Cd [8]. Having
fixed this value, the neutron effective charge eν was fixed
by comparing the experimentally known and theoretically
calculated B(E2) values for the 21

+ → 01
+ transitions in

102,104Cd [13]. The effective charges used in the current work
are eπ = 1.7e and eν = 1.1e, i.e., the same effective charges as
in the previous shell-model calculations with this interaction
[12,13]. A former shell-model study on light Cd isotopes
using v3sb by Ekström et al. [14] (see also Refs. [87–89])
successfully reproduced the experimental values with similar
effective charges.

With these ingredients kept constant in the LSSM study of
the Cd nuclei, it is only the NN interaction acting in the large
model space that produces the nuclear structure properties as a
function of increasing neutron number. The large-scale shell-
model calculations were performed with the code ANTOINE

[4]. The calculations presented here were conducted in the
full model space without any additional truncations. The m-
scheme matrix dimension for m = 0 in 108Cd was about 108.
First results have been published in [90].

III. SHAPE INVARIANTS

It turns out that rather than comparing a multitude of exper-
imental data separately with the results from a specific model
description of nuclear structure, almost model-independent
methods have been developed to characterize the nuclear
quadrupole properties for all states. This leads to the possibility
to find sets of correlated states based on the intrinsic properties
for those states. The idea is to construct so-called rotational
invariants, which, in the case of studying quadrupole collective
properties, are built from a product of a number of the E2
operators [80,81] which, starting from the E2 operator,

P2μ =
A∑

i=1

eir
2
i Y2μ(�i), (1)

is described as a tensor product of n = 2,3, . . . such operators,
coupled to a rank 0 tensor, defined as

P (n) = [P2 ⊗ P2 ⊗ · · · ⊗ P2]2 · P2. (2)

When calculating the expectation value of such operators in
any given eigenstate of the nucleus |J,M〉 and because of its
zero rank character, this gives rise to a rotational invariant
quantity. As the spectroscopic quadrupole moments for 0+

states vanish, invariants are also the only access to study the
deformation of those states. This also implies that the results
will be the same, independent of the reference frame used: be it
the laboratory frame or the frame centered on the principal axis
of the nucleus. For a more general derivation and discussion
of these invariants, the reader is referred to Refs. [80,81].

In this section, we give a short review on the building of
these invariants and also lay open some differences in the
methods initiated by Kumar [80] and Cline [81].

For our analysis, we aim to extract the deformation
parameters β and γ as introduced by Bohr and Mottelson
[85]. Therefore, it is sufficient to derive the invariants P (2)

s

and P (3)
s , though invariants of higher couplings are possible in

principle [81], denoted as P (n)
s = 〈s,Ms |P (n)|s,Ms〉, resulting

in the expressions

P (2)
s = 1

2Is + 1

∑
r

(Msr )2, (3)

P (3)
s = −

√
5

2Is + 1
(−1)2Is

∑
rt

{
2 2 2
Is Ir It

}
MsrMrtMts,

(4)

with r and t describing the intermediate states of the coupling
and with {} denoting a Wigner-6j symbol. Furthermore,
Msr = 〈s‖P2‖r〉 is a shorthand notation for the reduced E2
matrix elements that are needed as input to calculate the
P (2)

s and P (3)
s invariants. These can be the results extracted

from experimental studies, or, as we are performing LSSM
calculations for the Cd nuclei, the calculated E2 reduced
matrix elements. In the above, s,r,t, . . . are shorthand notations
to specify all quantum numbers necessary to characterize the
various nuclear levels.

Once the invariants are calculated and available, deforma-
tion parameters can be extracted using methods originally
proposed by Kumar [80] and Cline and Flaum [81–84] using
slightly different methods to do so. These methods have been
used in a large number of recent papers (in particular in the
region of the Ge, Kr, Mo, Ru, and Pd nuclei [91–96], as well
as in the much heavier Pb mass region (W, Os, Pt, Hg, Po
isotopes) [97–102].

In the present paper, we use both methods to study the
sensitivity of the extracted deformation parameters β and γ ,
which we review in a succinct way so as to point out similarities
and some subtle differences.

Shape invariants have also been studied within the context
of the interacting boson model (IBM) in various mass regions
(see, e.g., [103,104] and references therein) in order to
extract information on a mean-field level (nuclear quadrupole
deformation parameters, etc.). Care should be taken into
account when applying the calculation of the quadrupole
invariants within the context of the IBM, as was pointed out
by Dobaczewski et al. [105].

A. Kumar method

The approach of Kumar makes use of the intrinsic
quadrupole moment, which is

Qi
sμ =

√
16π

5

∫
ρsr

2Y2μdV . (5)
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In this notation Qi
sμ is the μth component of the quadrupole

moment of an equivalent ellipsoid of the nucleus, with charge
density ρs . Furthermore, because of its reflection symmetry,
for the quadrupole components of the ellipsoid it can be shown
that [80,85]

Qi
s2 = Qi

s,−2, Qi
s1 = Qi

s,−1 = 0. (6)

The nonvanishing components are written per definition as
[80,85]

Qi
s0 = Qi

s cos γs, Qi
s2 = Qi

s,−2 = Qi
s√
2

sin γs. (7)

The invariant P (2)
s of Eq. (3) is now rewritten by replac-

ing the reduced matrix elements of the E2 operators P2μ

with the intrinsic quadrupole moments given in (5). This way
the invariants for n = 2 and 3 are expressed by Qi

sμ and γs ,
and, due to Eq. (7), they are expressed by Qi

s . This way one
finally gets the expressions [80]

Qi
s =

√
16π

5

√
P

(2)
s , (8)

cos 3γs = −
√

7

2

P (3)
s(

P
(2)
s

)3/2 . (9)

Although the intrinsic quadrupole moment Qi
s in (8) already

is an expression of the nuclear deformation, it is convenient to
express the nuclear shape by the usual deformation parameters
β and γ . Therefore a calculation of β defined by the ratio of
the quadrupole moment over the monopole moment is useful:

βsμ = 4π

5

∫
ρsr

2Y2μdV∫
ρsr2dV

=
√

π

5

Qi
sμ

Z〈s|r2|s〉 . (10)

The normalization factor 4π
5 has been chosen so that the

deformation parameter matches with β of Bohr and Mottelson
[85]. Since the proportionality factors in (10) are independent
of μ, the tensor βsμ follows the same relations as Qsμ in
Eqs. (6) and (7) and thus it is sufficient to focus on the
magnitude of the deformation βs instead of βsμ. The remaining
difficulty now is to calculate the monopole moment 〈r2〉. This
can be done by calculating 〈r2〉 for an equivalent ellipsoid
of equal volume (or R3

0) with charge density obtained by
uniformly distributing the charge Ze over the ellipsoid and
where P (2)

s and P (3)
s are equal to those of the nucleus in the

given state |s,Ms〉. Kumar [80] has shown that extracting the
value of β under the above condition is equivalent to solving
the cubic equation

δ3
s

(
g3

s − 2 cos 3γs

) + 3δ2
s − 1 = 0, (11)

with the relation between δs and βs expressed as

δs = βs/

√
4π

5
, (12)

and gs = 6ZR2
0

5Qi
s

. It is important to mention that the values Qi
s

and cos3γs define the deformation characteristics associated
with the given state s, the extraction of deformation parameters
β, γ imply a certain model assumption, which is very general
though.

B. Recent analyses methods: Cline-Flaum approach

In most of the recent papers it is more common to use
a slightly different notation for the invariants P (2)

s and P (3)
s ,

which was initially introduced by Cline [81]. Besides the
difference in notation there is a difference in prefactors, which
can result in some confusion, when comparing both notations.1

Here, one starts from the knowledge that the expecta-
tion value of a tensor rank zero operator, [E2 ⊗ E2](0)

0 ,
[[E2 ⊗ E2](2) ⊗ E2](0)

0 , is independent of the reference frame.
Evaluating the above tensor products within the principal
axis frame, the quadrupole operator is described by two
nonvanishing quadrupole operators, only. One makes the
choice of E20 = Qcosδ, E2±2 = Qsinδ 1√

2
, E2±1 = 0.

Analogous to (3) one now derives the result [81]

〈i|[E2 ⊗ E2](0)
0 |i〉 = 1√

5

1

2Ii + 1

∑
t

|〈i‖E2‖t〉|2

= 1√
5
〈Q2〉. (13)

The matrix elements involved are now denoted by 〈i‖E2‖t〉
instead of Msr as before. A comparison of both formulas
shows indeed that 〈Q2〉 = P

(2)
i , which in turn is equal to a

summation of B(E2) values, indicating the equivalence of both
methods in evaluating the quadratic invariants. In the same way
one obtains for the coupling of three operators analogous to
invariant P (3)

s of Eq. (4) [81,95],

〈i|[[E2 ⊗ E2](2) ⊗ E2](0)
0 |i〉

= (−1)2Ii

2Ii + 1

∑
t,u

〈i‖E2‖u〉〈u‖E2‖t〉〈t‖E2‖i〉

×
{

2 2 2
Ii Iu It

}
. (14)

Carrying out the recoupling when working in the principal axis
frame, the expectation value of the cubic invariant becomes

〈i|[[E2 ⊗ E2](2) ⊗ E2](0)
0 |i〉 = −

√
2

35
〈Q3 cos(3δ)〉. (15)

Here the deformation parameter expressing triaxiality is de-
noted by δ. Keeping in mind that 〈Q3〉 = (P (2)

i )3/2 one obtains
exactly the same expressions using the Kumar convention as
when using the notation of the present subsection to calculate
the invariant P

(3)
i (or 〈i|[[E2 × E2](2)

2 × E2]|i〉 respectively)
and, thus, γs equals δ.

In most experimental papers, starting from reduced E2
matrix elements 〈‖E2‖〉 obtained using Coulomb excitation,
the values of 〈Q2〉 and 〈Q3 cos(3δ)〉 can be extracted for each
individual excited state. Having come this far, it is important

1Kumar derives the invariants by making a transformation from a
tensor product to a scalar product, when coupling E2 matrix elements
(P2 · P2 = √

5[P (2) ⊗ P (2)](0)
0 ) to produce the angular momentum

zero coupling. In this section the invariants are derived by tensor
couplings exclusively, resulting in a general difference in factors of√

5, when comparing both methods.
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to mention that the quadrupole invariants do play a role as
extracted “observables,” being constructed from measured
reduced E2 matrix elements, and as such express the nuclear
deformation characteristics in a condensed way through the
sums P (2)

s , P (3)
s and this for a given nuclear state described by

the quantum numbers s (Kumar notation), or i (Cline notation).
They are both useful and significant in presenting the way

in which the nuclear excited states are “correlated” through
a subset of collective degrees of freedom, expressed mostly
using the Bohr-Mottelson β, γ parameters. A problem, at
present, is still the knowledge of too few data because of the
difficulties to extract rather complete sets of reduced E2 matrix
elements using Coulomb excitation [14,63,64]. Therefore,
there is need for experiments that use higher-energy Coulomb
excitation, which is one of the goals of the HIE-ISOLDE
project [106].

It is interesting though (see Kumar method) to transform
the 〈Q2〉 and 〈Q3 cos(3δ)〉 invariants into corresponding 〈β2〉
and 〈β3 cos(3γ )〉 values. An extensive study has been carried
out by Srebrny et al. [95] describing deformed nuclei by a
Nilsson ellipsoidal deformed potential [107–109], equating
the experimental (or theoretical, as derived from our present
LSSM calculations) P (2)

s , P (3)
s invariants with the correspond-

ing theoretical values. This results in the relations

Q2 =
(

3

4π
ZeR2

0

)2

(β2 + O(β3)), (16)

and

Q3 cos (3δ) =
(

3

4π
ZeR2

0

)3

(β3 cos(3γ ) + O(β4)) (17)

(whereas in Kumar’s approach, no such expansion is needed).
It can also be shown that within the context of Hartree-Fock-

Bogoliubov microscopic calculations, only the lowest order
contribution results, for both Eqs. (16) and (17). In general,
small differences in the extracted values of β, γ may result
depending on the precise definition of the collective variables
(see, e.g., [94]). The higher order terms of Eqs. (16) and (17)
can be found in the Appendix of [95].

We note that in the treatments of Kumar and Cline
[81,95,98], sums of products of E2 matrix elements are defined
for fluctuations in the invariants. This is important when
addressing experimental data. Herein, we present detailed
maps of all of the E2 strengths which, de facto, represent a
very high resolution decomposition of the fluctuational content
of the centroids.

C. Deformation analysis: Application to the harmonic oscillator

Before moving into a detailed discussion of the deformation
properties for the light Cd nuclei, spanning the region in
between mass number A = 98 and A = 108, we have carried
out a schematic analysis of the Kumar-Cline sum-rule method
extracting the invariants when applied to a harmonic vibrator
model. Consequently, we have an exact test of the sum-rule
method when applied for vibrational nuclei in the evaluation
of the value of 〈β2〉 [3,110].

Within the harmonic vibrator model with an homogeneous
charge distribution, the resulting collective model electric

operator, describing harmonic vibrational motion [85] with
multipolarity λ, is defined by

M (Eλ) = 3

4π
ZeRλα̂λμ, (18)

with α̂λμ, the collective coordinates describing the oscillatory
behavior.

This results in the well-known variation of the mean-square
charge radius, which can be derived as [110]

β2
N = 〈α,N,JM|

∑
μ

α̂∗
2μα̂2μ|α,N,JM〉,

= h̄ω2

2C2
(5 + 2N ), (19)

with the phonon number N , spin J , and spin projection M .
It can easily be shown in an example calculation, using the

restricted framework of an ideal vibrator, where both states
and transition strength of the phonons are known, that a simple
application of sum rules to (19) results in the calculation of
invariants for the ideal vibrator including the correct energy
dependency as in (19).

We first consider the ground state 01
+. Here, the sum in

Eq. (13) only contains the 21
+ state as intermediate state,

with a result similar to 〈Q2〉 = q2
0

5h̄ω2
2C2

, where q0 according to

Eq. (16) is defined by q0 = 3
4π

ZeR2
0 . This straightforwardly

identifies the invariant analyses with the correct value by 〈β2〉
for the ground-state vibrational mode. As a proof of concept
the example of the sum rule calculation for the first phonon
(N = 1) state 21

+ will be shown too:

〈2+
1 |

∑
μ

|α2μ|2|21
+〉 = 1

5

∑
J,f

(−1)J |〈21
+‖α̂2‖Jf 〉|2. (20)

Let us remark that the right-hand side can also be written
as

∑
J,f B(E2; 21

+ → Jf ). In this case the sum of (20) runs
over Jf = 41

+, 22
+, 02

+, and 01
+ only. Thus, with respect to

the normalized transition strength of the harmonic oscillator
phonon levels to the first (21

+ → 01
+) phonon transition [85],∑

JN−1

B(E2; N,Jn → N − 1,JN−1)

= N × B(E2; N = 1 → N = 0), (21)

and taking B(E2; N = 1 → N = 0) := 1 the sum of (20)
results in (

1 + 2

5
+ 10

5
+ 18

5

)
h̄ω2

2C2
= 7

h̄ω2

2C2
. (22)

We recall that the quadrupole moment of a pure harmonic
oscillator is zero and thus in the sum of (20) 〈21

+‖α̂2‖21
+〉 =

0. The outcome of (22) is fully consistent with the expected
result from (19).

This example demonstrates the direct connection between
the invariant P (2)

s , the deformation parameter βs =
√

〈β2〉,
and the collective coordinates α2μ. Although the mean square
deformation βs , derived from the invariants in the lab frame,
and β, originally defined as a collective coordinate, are of the
same physical quality, by construction they are not the same
physical quantity.
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FIG. 1. (a) The theoretical B(E2; 21
+ → 01

+) values with red
lines to guide the eye. We also present the separate contributions
of protons (green triangles), neutrons (blue dots), and overall
contribution to transition strength (red squares). The black circles
present experimental results as well as data taken from [14]
(100Cd), [13] (102,104Cd), and [64] (106,108Cd). (b) The theoretical
B(E2; 41

+ → 21
+)values compared to experimental results taken

from [11] (102Cd), [13] (104Cd), and [63] (106,108Cd).

IV. DEFORMATION ANALYSIS

A. Deformation correlated to neutron number

A common tool for the analysis of collectivity in general is
the E2 transition strength of the first 21

+ state to the ground
state. In the harmonic vibrator picture, this transition is also
considered to correspond to the one phonon transition and,
because of its collective character, is expected to increase
with the number of valence particles. In Fig. 1 we present a
comparison between the theoretical and experimental B(E2)
values as well as the separate contributions corresponding with
the proton and neutron part, in the shell-model calculations.
The evolution of the theoretical B(E2) values follows a steady
increase as a function of neutron number up to 104Cd. Here
the experimental data indicate a leveling off whereas the
theoretical B(E2) values are still increasing albeit less steep.

The experimental data for the heavier Cd nuclei (beyond
A = 108) indicate a further increase, coming to a maximal
value of 1140e2 fm4 at neutron number 70 (A = 118) before
dropping again (see Ref. [14]). On the other hand, these
effective charges do not result in too large B(E2; 41

+ → 21
+)

values for the 104−108Cd nuclei as shown in Fig. 1(b). A slight
reduction of the effective charges from(eπ ,eν) = (1.7e,1.1e)
to (1.6e,1.0e) as in [14] would result in a better agreement
with the B(E2; 21

+ → 01
+) values for 106,108Cd, but the

reproduction of the B(E2; 41
+ → 21

+) data would deteriorate.
Any small variation of the effective charges would result in
small changes of the SM E2 strengths used as an input for the
deformation analysis performed in this work, thus preserving
the overall validity of the deformation analysis results.

Considering the B(E2; 01
+ → 21

+) transition as the only
allowed transition starting from the 01

+ state is of course
an idealized picture in terms of exciting possible higher-
lying 2+ states for the Cd nuclei discussed here. On the
other hand it is expected that the 01

+ → 21
+ transition,

on average, covers ∼97% of the summed E2 transition
strength

∑
f B(E2; 01

+ → 2f
+) [[111,112], see page 449]

for medium and heavy mass nuclei. Because of the relation
between the E2 transition matrix elements and the quadrupole
deformation, as discussed in Secs. III A and III B, a behavior
of the deformation describing the intrinsic properties of the
01

+ ground state, as a function of neutron number N , similar
to Fig. 1(a), is expected (see Fig. 2).

The present experimental status is such that the 21
+ → 01

+
and the 22

+ → 01
+ transitions are the only transitions from a

2+ state to the ground state with experimentally known B(E2)
values in 106Cd and 108Cd. In 100Cd, 102Cd, and 104Cd only the
B(E2) value of the 21

+ → 01
+ transition is known, whereas

for 100Cd only an upper limit is available. For 98Cd, no data
about the 21

+ → 01
+ transition strength are known. On the

other hand, the present shell-model calculations include all
E2 transitions 01

+ → 2f
+ up to f = 50 for 100–106Cd and up

to f = 30 for 108Cd,2 which is a very large number of states,
and is expected to cover the full E2 strength as compared to
the experimentally known data.

In Fig. 2 we present a comparison of the theoretical β values
corresponding to the 01

+, 02
+, and 03

+ states, resulting from all
calculated transitions and the experimental β value making use
of the only known 21

+ → 01
+ E2 transition [13,14,64] for the

present Cd nuclei. (The shell-model-based results shown here
are derived by the method as discussed in Sec. III B). The fact
that the β values extracted for the 01

+ ground states, making
use of many E2 transition matrix elements 〈2f

+‖E2‖01
+〉,

resulting from the present shell-model calculations, and only
one experimental transition matrix element, are very close for
all nuclei considered, is a result of the dominant contribution
of the 01

+ → 21
+E2 transition strength to the total sum,

as argued before. The shell-model results exhibit the same
behavior, as the sums

∑M
f =2 B(E2; 01

+ → 2f
+) over the

2The 01
+ → 2f

+ transitions of 108Cd have only been calculated up
to f = 30 to reduce the computation time, which is still sufficient to
cover the full E2 strength, as Fig. 3 exhibits.
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FIG. 2. The calculated quadrupole deformation for the 01
+ (blue

squares), 02
+ (red dots), and 03

+ (green triangles), compared with the
experimental data [[14] (100Cd), [13] (102,104Cd), and [64] (106,108Cd)]
for the ground state only considering the 21

+ → 01
+ E2 transition

strength, to extract the value of β

nonyrast transitions cover only ∼5–6% of the total sum.
Figure 3 presents the sums of the transition strength for the
three lowest 01,2,3

+ states with contributions from shell-model
2f

+ states as a function of energy of the 2+ states for the
nuclei 100Cd up to 108Cd. This figure which represents the E2
strength function connected to the first three 0+ states at the
same time exhibits the convergence of the sum in P (2)

s and
〈Q2〉 respectively [Eqs. (3) and (13)] for the 01,2,3

+ states, for
which transitions from states of higher energy (2f

+; f � 30)
are only contributing in negligible amounts.

The way convergence is reached for the 02,3
+ levels exhibits

a most interesting behavior with increasing mass. Whereas
for the lighter isotopes (A = 100–104) the curves are mainly
characterized by a large number of intermediate steps, an
increasing concentration into just a few states shows up in
approaching 108Cd. One observes a transition from a highly
fragmented trend for the 02

+, and even more so for the 03
+

state moving through the nuclei, to a situation in 108Cd, with
the 02

+ state exhibiting a similar character as the ground state.
The total strength of each sum is in line with the extracted value
of β, shown in Fig. 2. What is thus interesting is the fact that
the strength functions of the 03

+ state and the lower 0+ states
are quite different even though the corresponding β values are
very close to each other. In the latter case, one also notices that
for the 03

+ state in 108Cd, the full strength is nearly reached
within three steps, which is different from the lighter mass Cd
nuclei. In those cases, where the full E2 strength concentrates
in a single state, the deformation parameter is associated to an
intrinsic state. Mean field calculations of Prochniak et al. [78]
point also in this direction.

At this point we emphasize the importance of studying the
strength functions in such detail, in order to understand the
underlying structure of the states and band members. The E2
strength functions, shown in Fig. 3, add important information
to the invariants calculated before using the Kumar-Cline
method. Combining the information contained in Figs. 2 and 3

and later also Fig. 5, deep insight into the structure of in
particular the ground state band, and to a lesser extent for the
higher bands, is obtained.

The values of β are compared in Table I. The table
displays that the values of both deformation analysis methods
differ only in the order of three places after the decimal
point, which illustrates the excellent congruency of both
approaches.

We notice that no β value could be derived for the 02
+

state in 98Cd using the method of Sec. III A in this LSSM
model space. The nucleus 98Cd has a closed neutron shell
and two proton holes within the 1g9/2 and 2p1/2 orbitals,
which can couple to form excited states within the used
model space. The 98Cd E2 transition scheme therefore consists
mainly of an yrast band, characterized by seniority ν = 2
excitations, with the two proton holes placed in the 1g9/2

orbital for each state of the band. The only other possible
particle distribution producing positive parity states is when
the two proton holes are placed in the 2p1/2 orbital, making up
for a 02

+state. Therefore besides the yrast band the 02
+ → 21

+
transition is the only possible E2 transition. In comparison
the 01

+ → 21
+B(E2) value is approximately seven times

stronger than the 02
+ → 21

+B(E2) value. This leads to a
“lack” in E2 transition strength when calculating the P (2)

s

invariant for the s = 02
+ state, relative to the P (3)

s invariant,
which involves, in addition, the quadrupole moment of the
21

+ intermediate state, with a three times stronger diagonal
E2 matrix element as compared to the 02

+ → 21
+ transition

E2 matrix element. This results, according to Eq. (9), in a
situation with P (3)

s /(P (2)
s )3/2

> 1 and, consequently, γ cannot
be calculated for the 02

+which, in turn, is necessary for the
derivation of β.

Using the concept that most nuclei exhibit some softness
and, consequently, exhibit a tendency for deformation (be it
static as for strongly deformed nuclei, or, in a dynamic way
for soft nuclei in transitional regions and near closed shells),
any excited state is prone to be described using collective
modes of motion (rotation, shape oscillations), implying that
a nuclear shape is not a net “observable.” Although the
magnitude of the overall nuclear deformation β remains a
well defined variable, the uncertainty in the nuclear shape γ
(which can be quantified by calculating the variance, defined
as σ (〈Q3〉) ≡

√
〈Q6〉 − (〈Q3〉)2; see also Refs. [81,95,98]) is

in general increasing with the increasing nuclear spin. Thus
we do not consider γ values of other states than 01

+, though
they could in principle be calculated from the shell-model
results. In Fig. 4 the deformation parameter γ is shown for the
ground state as a function of increasing mass number A(N ).
Together with the information of Fig. 2, one notices that γ
increases with N , starting at a slightly prolate deformation in
98Cd of γ = 7.8◦. In 108Cd the γ value reaches a value of
17.5◦ and thus approaches the maximal triaxiality value of
30◦, a value that separates the regions of prolate and oblate
deformation. Therefore the overall shape of the ground states
is to be considered as prolate with a growing triaxiality as
the number of valence neutrons increases when starting to fill
the N = 50–82 shell. This result may support the picture of
a γ soft structure in the light Cd isotopes, opposite to the
traditional, vibrational picture.

014302-6



SHELL-MODEL-BASED DEFORMATION ANALYSIS OF . . . PHYSICAL REVIEW C 96, 014302 (2017)

FIG. 3. A graphical illustration of the contributions for each 0i
+ state (with i = 1, 2, 3) to the sums of Eqs. (3) and (13) respectively, as a

function of energy of the various 2f
+ states (with f = 1, . . . 50 for 100–106Cd and f = 1, . . . 30 for 108Cd, respectively) on the horizontal axis.

Vertical, dashed drop lines indicate the energies of the 2f
+ states in each figure, with a solid drop line for every full set of ten 2+ states.

Besides LSSM calculations, only few studies in the context
of (beyond) mean-field studies have been performed. For the
Cd nuclei mean-field calculations have been carried out by
Prochniak et al. [78] and Rodriguez and Egido [79]. In partic-
ular, in Ref. [78], total energy surfaces have been calculated for
the 106–116Cd nuclei. In the mass span of A = 106 to A = 108,
a slight prolate minimum appears at a value of β ∼ 0.15–0.2,
a value quite close to the results of our shell-model-based
deformation analysis. The correspondence becomes even more
pronounced when comparing the spectroscopic quadrupole

moments derived from the mean-field results of Ref. [78]
for the 21,2,3

+ states. The resulting negative values for the
21,3

+ and a positive value for the 22
+ state, as well as the

magnitudes, are comparable to our SM results. This shows
that both descriptions are very much consistent.

B. Deformation correlated to spin

We have also studied the deformation for various excited
states and the way this indicates the presence of correlations
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TABLE I. Comparison of β values derived from the methods of Secs. III A and III B (see Fig. 2).

Nucleus β value for 01
+ β value for 02

+ β value for 03
+

Sec. III A Sec. III Ba Sec. III A Sec. III Ba Sec. III A Sec. III Ba

98Cd 0.0723 0.0725 0.0267
100Cd 0.1138 0.1144 0.1047 0.1051 0.1004 0.1008
102Cd 0.1435 0.1446 0.1371 0.1381 0.1338 0.1347
104Cd 0.1657 0.1675 0.1557 0.1571 0.1628 0.1644
106Cd 0.1842 0.1866 0.1734 0.1754 0.1744 0.1764
108Cd 0.1818 0.1841 0.1872 0.1890 0.1895 0.1922

aWe emphasize that the results of Sec. III B are the root-mean-square values, i.e.,
√

〈0+
i |β2|0+

i 〉.

with the nuclear spin as one moves up in excitation energy.
This study has been carried out by examining the deformation
corresponding to the shell-model wave functions as a function
of spin, up to J = 8, thereby following the deformation
through a set of states defined as a band, as derived from
the shell model. In Fig. 5 such bands are shown for the nuclei
100Cd up to 108Cd, in all of which two bands could be identified.
The way in which we define a given band is by studying where
the strongest E2 matrix elements appear, when moving up in
excitation energy through the spin sequences of 0+, 2+, 4+,
6+ in steps of �J = 2 until the 8+ states and starting at the
01

+ and 02
+ states, respectively. In the resulting band structure

any possible deexcitation from any state of band 1 will most
probably end in the ground state, whereas a deexcitation of any
state of band 2 will most probably end up in 02

+ respectively
(M1 branches are excluded in this study). A detailed study of
the spectroscopy of these Cd nuclei, including comparisons
with the large set of experimental data available at present, on
issues such as low-lying states, high-spin bands, and detailed
spectroscopic information on moments, will form the content
of a forthcoming paper.

In Fig. 5 results of the deformation parameter β are given
for the members of bands 1 and 2 in 100Cd–108Cd, as well
as for the 81

+ and 82
+ states in 108Cd. When analyzing the

FIG. 4. The deformation parameter γ extracted for the different
isotopes.

evolution of state deformation for band 1 of all considered
nuclei and comparing the deformation curves, a number of
characteristic similarities in all the nuclei show up. Starting
at the 01

+ level one notices that the deformation slightly
increases when moving into the 2+ level for each band.
Then a decrease in deformation follows, when going from
2+ to 4+, except for 104Cd where one again observes a slight
increase but weaker than before, even close to stagnation in
deformation as compared to the former step. For higher spins,
beyond 4+ and from 102Cd on, the decrease in deformation
is enhanced until Jπ = 8+. Such a trend could be explained
qualitatively by looking at the sources of E2 transition strength
not only but especially between the band members. As the
number of valence neutron pairs increases, going from 100Cd
to 108Cd, the contribution of configurations allowing seniority
changing transitions also increases, which affects stronger
transitions between the low-spin states, i.e., 0+,2+,4+. In
addition, even small admixtures of neutron stretched E2
transitions (�j = �l = 2), which in this model space are only
of the type 2d5/2 ←→ 3s1/2, will increase the total E2 strength
and consequently the deformation β. As the lowest seniority
configurations, for which one or two neutrons are in the 3s1/2

orbital, and the other valence neutrons occupy the rest of the
neutron orbitals, can only produce low spins (for example
the coupling of 2d5/2 ⊗ 3s1/2 is limited to 2+ and 3+, while
the members of the 1g7/2 ⊗ 3s1/2 multiplet have spins 3+ and
4+), this additional E2 strength is concentrated between the
low-spin states up to 4+.

Generally, band 2 exhibits characteristics similar to the
behavior of band 1, where an increase in deformation is
observed in the step J = 0 → J = 2, except for 100Cd. The
nuclei 104Cd, 106Cd, and 108Cd are very good examples for
this behavior with �β ≈ 0.01 in the step when going from
02

+ to the 2+ member of band 2. For the steps from 2+ until
8+, similar to the case with band 1, an overall decrease in
deformation is observed. In 102Cd for J = 4 → J = 6 the
decrease in deformation escalates, resulting in a less smooth
deformation curve compared to band 1. With these similarities,
it can be stated that the maximum in deformation is located
at the 2+ band member (except for band 1 in 104Cd where
the 4+ is at the maximum value, and band 2 in 100Cd where
deformation decreases from 02

+ onwards).
Besides these similarities in the deformation characteristics

of the examined nuclei, the overall deformation strength of
band 2 in 108Cd exceeds the deformation of band 1, which
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FIG. 5. Partial level schemes with energies in keV and transition strengths in W.u. grouped in band structures for 100Cd–108Cd. On the
right-hand side of each figure the β deformation as a function of increasing spin is displayed, whereas blue squares denote values for members
of band 1, connected to the ground state, and red dots denote values for members of band 2 ending up in the 02

+ state. In the bottom right part
of the figure, the specific orbital occupation of the two bands in 108Cd is presented as a function of increasing spin. The deformation and orbital
occupation of the 81

+ and 82
+ state in 108Cd are given as additional examples.
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exhibits a change in the nuclear structure, as this behavior is
not present in the lighter nuclei. These changes in deformation
characteristics may well be associated with the particular
occupation numbers of the various orbitals in 108Cd.

At the bottom right part of Fig. 5 the related orbital
occupation numbers of bands 1 and 2 of 108Cd are displayed.
The orbital occupation numbers shown in Fig. 5 have been
calculated using the shell-model wave functions resulting from
the present calculations. A detailed examination of the orbital
filling shown in Fig. 5 indicates that the increasing occupation
of the 1h11/2 orbital originates mainly from a depletion of the
2d5/2 orbital, and this for all spin values in the two bands.
This is especially obvious when going from the 61

+ to the
83

+ state in band 1. The occupation number of the 2d5/2 is
lowered by an amount of � ≈ −0.5 and the occupation of the
1h11/2 is raised by � ≈ 0.7. It can nearly be considered as
a neutron moving from the 2d5/2 to the 1h11/2 orbital. Also
minor contributions from other orbitals can be observed, e.g.,
resulting from excitations from the 1g7/2, 2d3/2, and 3s1/2

orbitals to the neutron 1h11/2 orbital.
When comparing the deformation curve of band 2 in 108Cd

to the curve showing the occupation of the 1h11/2 orbital in
band 2, it is obvious that neutrons in the 1h11/2 orbital are
affecting the deformation. In those states, where the 1h11/2

orbital occupation increases, the corresponding deformation
of band 2 is enhanced. Although both curves show a similar
shape, the relation between the deformation of band 2 and the
occupation of the 1h11/2 orbital is not directly proportional.

In band 1 of 108Cd the deformation strength is also affected
by the filling of the 1h11/2 orbital. This is not as obvious from
the shape of the deformation curve, but the influence caused
by the 1h11/2 can be illustrated by comparing the decrease
in deformation over the steps from 4+ to 8+ for the various
nuclei presented. In 100Cd, 102Cd, 104Cd, and 106Cd these drops
in deformation amount to �β(4+ → 8+) ≡ β(4+) − β(8+) =
0.008, 0.016, 0.017, and 0.022 respectively, thus exhibiting an
increasing drop of the deformation. In the case of 108Cd, on
the other hand, this trend is hindered by the drop amount of
�β(4+ → 8+) = 0.014.

Two further examples which confirm the importance of
the 1h11/2 orbital on the deformation for the high-spin 81

+

and 82
+ states, resulting from the shell-model calculations,

are highlighted. The calculated excitation energies are 2755
and 3136 keV, respectively. The 81

+ state exhibits the largest
deformation β = 0.20 found in the examined states in 98Cd–
108Cd, whereas the 82

+ shows the lowest deformation of the
examined states in 108Cd with β = 0.14. Comparing the orbital
occupation numbers of these two states, one notices that the
major differences result from the filling of the 2d5/2 and
the 1h11/2 orbitals. In the 81

+state the 2d5/2 and 1h11/2 orbitals
are filled with ≈3.4 and ≈2 neutrons respectively, whereas in
the 82

+ state the 2d5/2 orbital contains ≈4.8 and the 1h11/2

orbital ≈0.3 neutrons. This looks like a neutron 2p − 2h

excitation from the 2d5/2 into the 1h11/2 orbital, causing a
clear difference in the resulting deformation when comparing
the β values for the 81

+ state with the 82
+ state (notice

the νh11/2 occupation number in Fig. 5). It turns out that
the shell-model 82

+ state exhibits a proton 1g−2
9/2 character,

whereas experimental studies of 108Cd show that the 81
+ state

at 3111 keV is of proton character and the 83
+ state at 3862

keV is of neutron 1h2
11/2 character [113]. In the same study

it was found that the 1h11/2 orbital plays a dominant role in
the low and high-spin structure of 108Cd with a shape driving
effect.

V. SUMMARY AND CONCLUSIONS

In the present paper, we have studied how to extract the
changing quadrupole collectivity and its associated defor-
mation using input from large-scale shell-model calculations
(LSSM) of the light 98–108Cd nuclei. The effective interaction
used in the present study succeeds rather well in describing the
overall variations in the excitation energy of the low-spin states
in the Cd nuclei (spanning the A = 98 to A = 108 region) [90],
in particular the excitation energy for the 21

+ state, as well as
the increasing trend in the B(E2; 21

+ → 01
+) value. This is

an indication of a well-balanced description in which both the
monopole and quadrupole components of the force and the
induced polarization for the protons and neutrons, as obtained
here, form a well-balanced system.

We emphasize that large-scale shell-model calculations
(LSSM) can and have been carried out within a symmetry-
dictated truncation basis (whenever the single-particle states
spanning the model space are prone to such truncations).
More in particular, both the quasi-SU(3) [114,115] as well
as the pseudo-SU(3) [116,117] variants of Elliott’ s SU(3)
model [118,119] provide such options. Applications have been
carried out in this spirit for the N = 20, 40, 48,... and even
heavier nuclei [5,120,121]

The sdg (excluding the 1h11/2 unnatural parity orbital)
neutron shell is apt to follow such an approach. Such
calculations may allow us to obtain a deeper insight in the
results from a LSSM study about how quadrupole collectivity
develops in the Cd isotopes, and this as a function of increasing
neutron number.

We have been able, using the calculated E2 reduced matrix
elements starting from the shell-model wave functions, defined
within the laboratory framework, to derive both the quadratic
and cubic quadrupole invariants. Using the fact that these
invariants contain information about the nuclear deformation,
defined within a frame of the principal axis of the nucleus,
we are able to quantify the changing quadrupole deformation
parameters β and γ in an almost model-independent way.

The first part (Sec. III) presented a rather detailed compar-
ison of two methods that have been (and are) used to derive
the intrinsic deformation characteristics, extracted from the
quadrupole invariants. Here, the aim was to discuss the slight
and often subtle differences between both approaches that
lead to apparent slightly different expressions in the major
papers and how, precisely, the intrinsic shape parametrization
is extracted. This method is called in most papers “model
independent,” an issue which we discuss in some detail
pointing out how, even though very general, generic features
related to quadrupoles’ deformed and intrinsic shape can be
described and parametrized.

The comparison between the calculated B(E2; 21
+ → 01

+)
reduced transition probabilities and the known data for the Cd
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nuclei with 50 � N � 60 showed that the LSSM reproduces
well the collectivity. For the presented variation of the
extracted deformation, characterized by β starting at 98Cd, one
observes an expected, rapid increase, followed by saturation
when reaching the 106,108Cd isotopes. Moreover, inspecting
the β value extracted from the set of levels that are strongly
connected to the 01

+ and 02
+ “band-head levels,” through a

sequence of particularly strong E2 transition matrix elements,
one observes two separate bands characterized by β values,
that are strongly “correlated” as a function of increasing
angular momentum up to spin 8+ states. We also notice
that within each of those bands, there is not a particular
increase in the value of β as a function of increasing angular
momentum, which would be expected, even for close to
harmonic vibrational collective quadrupole motion, at least
up to mass number A = 102. In the 106,108Cd nuclei, an
initial slight increase is observed, followed by a decrease with
increasing spin up to 8+. In 108Cd, a specific upslope in β
shows up and it turns out that this effect can be associated with
a redistribution of neutrons from the 2d5/2 into the 1h11/2

shell-model orbital (the latter orbital is characterized by a
larger value of 〈|r2|〉 when using harmonic oscillator radial
wave functions).

An interesting conclusion from the present LSSM calcu-
lations is the observation that the 02

+ and 03
+ as well as

associated band members exhibit similar β values as the ones
obtained for the 01

+ ground state. Different values would be
expected from a purely collective vibrational model approach
to describe the quadrupole collective characteristics of these
light Cd nuclei. We do not exclude that part of this may well
be due to the fact that the model space does not contain proton
np-nh excitations across the Z = 50 closed shell (even though
such correlations are implicitly included by the use of proton
as well as neutron effective charges). Consequently, explicit
breaking of the proton Z = 50 shell is not incorporated in a

direct way (we refer to [66] for an extensive study of so-called
intruder states as well as to a recent focus issue on shape
coexistence [122]). This is an issue to be explored in more
detail, using more specific shell-model truncation schemes
and model spaces which include np-nh proton excitation to
study Cd isotopes.

The present paper has concentrated on the deformation
characteristics for the lighter Cd nuclei. It is to be understood
that a more detailed comparison of the extensive spectroscopic
information for the set of Cd isotopes with mass number
ranging from A = 98 up to A = 108 will follow. Thereby, both
the low-spin energy spectra as well as the high-spin structure
is studied. Moreover, when known, electromagnetic moments
(electric quadrupole and magnetic dipole moments) will be
compared with the present LSSM calculations as carried out
at present.

We note that shortly before the submission of this work,
new experimental results on B(E2) values and g factors have
become available (see [123]) but have not been addressed in
our current paper. The reasons are (i) the fact that the B(E2)
values in Table III of [123] are inconsistent with previously
published 106Cd values, and, (ii) these B(E2) values are
inconsistent with the Cd systematics for the light Cd isotopes.
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