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Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory
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Cross sections for inclusive neutrino scattering off the deuteron induced by neutral and charge-changing weak
currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high
orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be
small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the
whole energy range 0–150 MeV. The cutoff dependence is negligible, and the predicted cross sections are within
∼2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange
frameworks.
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I. INTRODUCTION

A number of studies of neutrino-deuteron scattering were
carried out in the past several decades, and work done up
to the mid 1990s is reviewed in Ref. [1]. In the early
2000s, these efforts culminated in a set of predictions [2,3]
for neutrino-deuteron cross sections induced by both neutral
and charge-changing weak currents and incoming neutrino
energies up to 150 MeV. The calculations were based on
the conventional meson-exchange framework and used last-
generation realistic potentials available at the time and a
realistic model for the nuclear weak currents, which included
one- and two-body terms. The vector part of these currents was
shown to provide an excellent description of the np radiative
capture cross section for neutron energies up to 100 MeV
[2], while the axial part was constrained to reproduce the
Gamow–Teller matrix element contributing to tritium β decay
[3]. The Nakamura et al. studies played an important role
in the analysis and interpretation of the Sudbury Neutrino
Observatory (SNO) experiments [4], which have established
solar neutrino oscillations and the validity of the standard
model for the generation of energy and neutrinos in the sun [5].

Concurrent with those studies was a next-to-next-to-
leading-order calculation of neutrino-deuteron cross sections
at low energies (�20 MeV) in an effective field theory in which
pion degrees of freedom were integrated out and which was
consequently parametrized in terms of contact terms [6]. In
the strong-interaction sector, the low-energy constants (LECs)
multiplying these contact terms were fixed by fitting the
effective range expansions in the 1S0 and 3S1 two-nucleon
channels (which dominate the low-energy cross sections).
The weak current included one-body terms with couplings
(nucleon magnetic moments and axial coupling constant) taken
from experiment as well as two-body terms. In the vector
sector, the two LECs associated with these two-body terms
were determined by reproducing the radiative capture rate
of neutrons on protons at thermal energies and the deuteron
magnetic moment. In the axial sector the two-body terms
were characterized by a single LEC (labeled L1,A), which,
however, remained undetermined. Nevertheless, by fitting the
results of Ref. [3], Butler et al. [6] were able to show that the

resulting value for L1,A was natural, and that the calculated
cross sections reproduced well the energy dependence of those
obtained by Nakamura et al.

The energy range of the Nakamura et al. studies was
extended up to 1 GeV in the more recent calculations
by Shen et al. [7]. These calculations too were based on
the conventional framework but included refinements in the
modeling of the weak currents. However, they turned out to
have only a minor impact on the predicted cross sections [7].
The results have confirmed those of Nakamura et al. in the
energy range up to 150 MeV, and have provided important
benchmarks for the studies of the weak inclusive response
in light nuclei, including 12C, with the Green’s function
Monte Carlo method that have followed since [8–11]. They
have also been useful in a recent analysis of the world data
on neutrino-deuteron scattering aimed at constraining the
isovector axial form factor of the nucleon [12], by supplying
reliable estimates for the size of nuclear corrections.

The present study differs from all previous ones in one
essential aspect: it is fully based on a chiral-effective-field-
theory (χEFT) formulation of the nuclear potential [13,14]
and weak currents [15–19] at high orders in the power
counting. The potential and currents contain intermediate- and
long-range parts mediated by one- and two-pion (and selected
multipion) exchanges, and a short-range part parametrized
in terms of contact interactions. The latter are proportional
to LECs, which, in the case of the potential, have been
constrained by fitting the nucleon-nucleon scattering database
in the energy range extending up to the pion-production
threshold [13,14] and, in the case of the current, by reproducing
a number of low-energy electroweak observables in the A = 2
and 3 nuclei [17,19] (specifically, the isoscalar and isovector
magnetic moments of the deuteron and trinucleons, and the
tritium Gamow–Teller matrix element).

The importance that accurate predictions for cross sections
of neutrino-induced deuteron breakup into proton-proton
and proton-neutron pairs have in the analysis of the SNO
experiments has prompted us to reexamine these processes
in the context of χEFT. Because of its direct connection to
the symmetries of quantum chromodynamics, this framework
affords a more fundamental approach to low-energy nuclear
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dynamics and electroweak interactions than the meson-
exchange phenomenology adopted in the Nakamura et al. [2,3]
and Shen et al. [7] calculations. The remainder of this paper is
organized as follows: In Secs. II and III we provide a succinct
summary of the theoretical framework, including the cross-
section formalism and χEFT modeling of the nuclear weak
currents, while in Sec. IV we present results for the deuteron
disintegration cross sections by neutral and charge-changing
weak currents. A summary and concluding remarks are given
in Sec. V.

II. NEUTRINO INCLUSIVE CROSS SECTION

The differential cross section for neutrino (ν) and antineu-
trino (ν) inclusive scattering off a deuteron, specifically the
processes 2H(νl,νl)pn and 2H(νl,νl)pn induced by neutral
weak currents (NCs) and denoted respectively as νl-NC and
νl-NC, and the processes 2H(νe,e

−)pp and 2H(νe,e
+)nn

induced by charge-changing weak currents (CC) and denoted
respectively as νl-CC and νl-CC, can be expressed as [7](

dσ

dε′d�

)
ν/ν

= G2

8π2

k′

ε
F (Z,k′)[v00R00 + vzzRzz − v0zR0z

+ vxxRxx ∓ vxyRxy], (2.1)

where G = GF for the NC processes and G = GF cosθC for
the CC processes, and the − (+) sign in the last term is relative
to the ν-initiated (ν-initiated) reactions. Following Ref. [3], we
adopt the value GF = 1.1803 × 10−5 GeV−2 as obtained from
an analysis of superallowed 0+ → 0+β decays [20]—this
value includes radiative corrections—while cosθC is taken as
0.97425 from Ref. [21]. The initial neutrino four-momentum
is kμ = (ε,k), the final lepton four-momentum is kμ′ = (ε′,k′),
and the lepton scattering angle is denoted by θ . We have
also defined the lepton energy and momentum transfers as
ω = ε − ε′ and q = k − k′, respectively, and the squared four-
momentum transfer as Q2 = q2 − ω2 > 0. The Fermi function
F (Z,k′) with Z = 2 accounts for the Coulomb distortion of
the final lepton wave function in the CC reaction,

F (Z,k′) = 2(1 + γ )(2k′rd )2γ−2exp(πy)

∣∣∣∣ �(γ + iy)

�(1 + 2γ )

∣∣∣∣
2

,

γ =
√

1 − (Zα)2, (2.2)

and it is set to one otherwise. Here y = Zαε′/k′, �(z) is
the gamma function, rd is the deuteron charge radius (rd =
1.97 fm), and α is the fine-structure constant.

The factors vαβ denote combinations of lepton kinematical
variables including the final lepton mass, while the nuclear
response functions are defined schematically as (explicit
expressions for the vαβ and Rαβ can be found in Ref. [7])

Rαβ(q,ω) ∼ 1

3

∑
M

∑
f

δ(ω + md − Ef )〈f |jα(q,ω)|d,M〉

× 〈f |jβ(q,ω)|d,M〉∗, (2.3)

where |d,M〉 and |f 〉 represent, respectively, the initial
deuteron state in spin projection M and the final two-nucleon
state of energy Ef , and md is the deuteron rest mass. The

three-momentum transfer q is taken along the z axis (i.e., the
spin-quantization axis), and jα(q,ω) is the time component
(for α = 0) or space component (for α = x,y,z) of the NC or
CC, denoted, respectively, by jα

NC or jα
CC . The former is given

by

jα
NC = −2sin2θWjα

γ,S + (1 − 2sin2θW )jα
γ,z + jα5

z , (2.4)

where θW is the Weinberg angle (sin2θW = 0.2312 [21]), jα
γ,S

and jα
γ,z include, respectively, the isoscalar and isovector terms

of the electromagnetic current, and jα5
z includes the isovector

terms of the axial current (the subscript z on these indicates
that they transform as the z component of an isovector under
rotations in isospin space).

The charge-changing weak current is written as the sum of
polar- and axial-vector components

jα
CC = jα

± + jα5
± , j± = jx ± ijy. (2.5)

The conserved-vector-current (CVC) constraint relates the
polar-vector components jα

b of the charge-changing weak
current to the isovector component jα

γ,z of the electromagnetic
current via [

Ta, j
α
γ,z

] = iεazbj
α
b , (2.6)

where Ta are isospin operators. Before turning to a brief
discussion of the one- and two-body χEFT contributions to
the NC and CC, we note that, as described in considerable
detail in Ref. [7], we evaluate, by direct numerical integra-
tions, the matrix elements of the weak current between the
deuteron and the two-nucleon scattering states labeled by the
relative momentum p and in given pair-spin and pair-isospin
channels, thus avoiding cumbersome multipole expansions.
Differential cross sections are then obtained by integrating
over p and summing over the discrete quantum numbers
the appropriate matrix-element combinations entering the
response functions [7].

III. ELECTROWEAK CURRENT

The χEFT contributions up to one loop to the electro-
magnetic current [15,17] and charge [16,17] are illustrated
diagrammatically in Figs. 1 and 2, while those to the weak
axial current and charge [18,19] in Figs. 3 and 4. The former
are denoted below as jγ = j i

γ and ργ = j 0
γ , and the latter as

j5 = j i5
z and ρ5 = j 05

z , respectively, and subscripts specifying
isospin components are dropped for simplicity here. In these
figures, the NnLO corrections are proportional to Qn × Qν0 ,
where Q denotes generically the low-momentum scale (the
expansion parameter is Q/�χ , where �χ ∼1 GeV is the
chiral symmetry-breaking scale) and ν0 characterizes the
leading-order (LO) counting: ν0 = −2 for the electromagnetic
current and axial charge and ν0 = −3 for the electromagnetic
charge and axial current [the chiral order in these operators is
indicated by the superscript (n)]. We begin by discussing the
electromagnetic operators.

The electromagnetic currents from LO, N1LO, and N2LO
terms and from N3LO loop corrections depend only on the
nucleon axial coupling gA and and pion decay constant fπ

(N1LO and N3LO), and the nucleon magnetic moments (LO
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(a)

(b)

(d)

(e) (f) (g) (h) (i) (j) (k)

(c)

FIG. 1. Diagrams illustrating one- and two-body electromagnetic currents entering at Q−2 (LO), Q−1 (N1LO), Q0 (N2LO), and Q1

(N3LO). Nucleons, pions, and photons are denoted by solid, dashed, and wavy lines, respectively. The square in panel (d) represents the
(Q/m)2 relativistic correction to the LO one-body current (m is the nucleon mass). The solid circle in panel (j) is associated with the γπN

coupling involving the LECs d8, d9, and 2d21 − d22 in the πN chiral Lagrangian L(3)
πN [22]. The solid circle in panel (k) denotes two-body

contact terms of minimal and nonminimal nature, the latter involving two unknown LECs (see text). Only one among all possible time orderings
is shown for the N1LO and N3LO currents, so that all direct- and crossed-box contributions are accounted for.

(a)

(b)

(c)

(f) (g) (h) (i) (j) (k)

(d) (e)

FIG. 2. Diagrams illustrating one- and two-body electromagnetic charge operators entering at Q−3 (LO), Q−1 (N2LO), Q0 (N3LO), Q1

(N4LO). The square in panel (b) represents the (Q/m)2 relativistic correction to the LO one-body charge operator, whereas panel (c) represents
the charge operator ρ(0)

γ (OPE) given in Eq. (3.1). As in Fig. 1, only a single time ordering is shown for the N3LO and N4LO contributions.
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FIG. 3. Diagrams illustrating one- and two-body axial currents entering at Q−3 (LO), Q−1 (N2LO), Q0 (N3LO), and Q1 (N4LO). Nucleons,
pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. The squares in panels (c) and (d) denote relativistic corrections
to the one-body axial current, while the circles in panels (e) and (f) represent vertices implied by the L(2)

πN chiral Lagrangian [22], involving the
LECs ci (see Ref. [18] for additional explanations). As in Fig. 1, only a single time ordering is shown.

FIG. 4. Diagrams illustrating one- and two-body axial charge operators entering at Q−2 (LO), Q−1 (N1LO), and Q1 (N3LO). Nucleons,
pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. The diamonds in panels (l) and (m) indicate higher-order
AπN vertices implied by the L(3)

πN chiral Lagrangian [22], involving the LECs di (see Ref. [18] for additional explanations). As in Fig. 1, only
a single time ordering is shown.
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and N2LO). Unknown LECs enter the N3LO OPE contribution
involving the γπN vertex from the chiral Lagrangian L(3)

πN

(see Ref. [22]) as well as the contact currents implied by
nonminimal couplings, as discussed in Sec. III A. On the other
hand, in the charge operator there are no unknown LECs
up to one loop, and OPE contributions, illustrated in panels
(c)–(e) of Fig. 2, only appear at N3LO. The contributions in
Figs. 2(d) and 2(e) involve nonstatic corrections [16], while
those in Fig. 2(c) lead to the following operator, first derived
by Phillips [23]:

ρ(0)
γ (OPE) = eg2

A

8mf 2
π

(τ 1 · τ 2 + τ2z)
σ 1 · qσ 2 · k2

k2
2 + m2

π

+ (1 � 2),

(3.1)

where q is the momentum imparted by the external field,
ki = p′

i − pi and pi (p′
i) is the initial (final) momentum of

nucleon i (with k1 + k2 = q), σ i and τ i are its Pauli spin
and isospin operators, m (mπ ) is the nucleon (pion) mass.
This operator plays an important role in yielding predictions
for the A = 2–4 charge form factors that are in excellent
agreement with the experimental data at low and moderate
values of the momentum transfer (q � 1 GeV/c) [17,24].
The calculations in Ref. [17] also showed that the nonstatic
corrections of pion range from Figs. 2(d) and 2(e) are
typically an order of magnitude smaller than those generated
by Fig. 2(c).

The axial current and charge operators illustrated in Figs. 3
and 4 include pion-pole contributions, which are crucial for the
current to be conserved in the chiral limit [18] (obviously, these
contributions are suppressed in low-momentum-transfer pro-
cesses). There are no direct couplings of the time-component of
the external axial field to the nucleon; see Fig. 4(a). In the axial
current pion-range contributions enter at N3LO, Figs. 3(e)
and 3(f), and involve vertices from the subleading L(2)

πN chiral
Lagrangian [22], proportional to the LECs c3, c4, and c6.
The associated operator is given by (the complete operator,
including pion-pole contributions, is listed in Ref. [18])

j(0)
5,a(OPE)

= gA

2f 2
π

{
2c3τ2,ak2 + (τ 1 × τ 2)a

×
[

i

2m
K1 − c6 + 1

4m
σ 1 × q +

(
c4 + 1

4m

)
σ 1 × k2

]}

× σ 2 · k2

k2
2 + m2

π

+ (1 � 2), (3.2)

where Ki = (p′
i + pi)/2. In contrast, the axial charge has a

OPE contribution at N1LO, illustrated in Figs. 4(b) and 4(c),
which reads

ρ
(−1)
5,a (OPE) = i

gA

4f 2
π

(τ 1 × τ 2)a
σ 2 · k2

k2
2 + m2

π

+ (1 � 2). (3.3)

In fact, an operator of precisely this form was derived by
Kubodera et al. [25] in the late seventies, long before the
systematic approach based on chiral Lagrangians now in
use had been established. Corrections to the axial current at
N4LO in Figs. 3(i)–3(x) have been included in a very recent

calculation of the tritium Gamow–Teller matrix element [19],
while those to the axial charge at N3LO in Figs. 4(d)–4(n)
are considered in the present study. It is worthwhile noting
that vertices involving three or four pions, such as those, for
example, occurring in Figs. 3(l), 3(p), 3(q), and 3(r), depend on
the pion field parametrization. This dependence must cancel
out after summing the individual contributions associated with
these diagrams, as indeed it does [18] (this and the requirement,
remarked on below, that the axial current be conserved in the
chiral limit provide useful checks of the calculation).

The loop integrals in the diagrams of Figs. 1–4 are
ultraviolet divergent and are regularized in dimensional
regularization [15,16,18]. In the electromagnetic current the
divergent parts of these loop integrals are reabsorbed by
the LECs multiplying contact terms [15], while those in
the electromagnetic charge cancel out, in line with the fact
that there are no counter terms at N4LO [16]. In the case
of the axial operators [18], there are no divergencies in the
current, while those in the charge lead to renormalization of
the LECs multiplying contact-type contributions. In particular,
the infinities in loop corrections to the OPE axial charge (not
shown in Fig. 4) are re-absorbed by renormalization of the
LECs di in the L(3)

πN chiral Lagrangian. For a discussion of
these issues we defer to Ref. [18].

The two-nucleon chiral potentials used in the present
study have been derived up to order Q4 [13,14], requiring
two-loop contributions. Conservation of the electromagnetic
current q · jγ = [H, ργ ], where the two-nucleon Hamiltonian
is given by H = T (−1) + v(0) + v(2) + v(3) + v(4) with the
(two-nucleon) kinetic energy T (−1) being counted as Q−1 and
where the v(n) are the potentials of order Qn, implies [15],
order by order in the power counting, a set of nontrivial
relations between the j(n)

γ and the T (−1), v(n), and ρ(n)
γ . Since

commutators implicitly bring in extra factors of Q3, these
relations couple different orders in the power counting of the
operators, making it impossible to carry out a calculation,
which at a given n for j(n)

γ , v(n), and ρ(n)
γ (and hence “consistent”

from a power-counting perspective) also leads to a conserved
current. Similar considerations also apply to the conservation
of the axial current in the chiral limit [18].

We conclude this section by noting that a number of
independent derivations of nuclear electromagnetic and axial
currents exists in the literature in the χEFT formulation
adopted here, in which nucleons and pions are the explicit
degrees of freedom. The early and pioneering studies by
Park et al. [26–28] used heavy-baryon covariant perturbation
(HBPT) theory, while the more recent ones by the Bochum–
Bonn group [29–31] are based on time-ordered perturbation
theory (TOPT) and a different prescription for isolating
noniterative pieces in reducible diagrams than adopted in
Refs. [15–18]. Detailed comparisons between the operators
obtained in these latter papers and the HBPT papers of Park
et al. can be found in Refs. [15] and [18]. It suffices to
note here that Park et al. in their evaluation of two-nucleon
amplitudes have only included irreducible diagrams and, for
the case of the axial currents, did not concern themselves
with pion-pole contributions. Because of these limitations, the
electromagnetic current and axial current in the chiral limit are
not conserved.
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The two TOPT-based methods lead to formally equivalent
operator structures for the nuclear potential, electromagnetic
current and charge, and axial charge up to one-loop corrections
included [17]. However, some of the N4LO loop corrections
to the axial current obtained by Krebs et al. [31] are different
from those reported in Refs. [18,19]. These differences seem
to originate from the evaluation of box diagrams; Figs. 3(m)
and 3(n). Additional differences result from the fact nonstatic
corrections at N4LO have been neglected in Ref. [18], while
they have been retained explicitly in Ref. [31].

Constraining the low-energy constants
in the electroweak currents

There is a total of ten LECs entering the two-body
electroweak currents discussed above, five of these are in the
electromagnetic (vector) sector and the remaining five (in the
limit of vanishing momentum transfer) in the axial sector. In
the vector sector, contact terms originate from minimal and
nonminimal couplings. The LECs multiplying the former are
known from fits of the two-nucleon scattering database [17].
Nonminimal couplings enter through the electromagnetic field
tensor, and it has been shown [15] that only two independent
structures occur at order Q1 [see panel (k) in Fig. 1]:

j(1)
γ (CT) = −ie

[̃
c S
γ σ 1 + c̃ V

γ (τ1,z − τ2,z)σ 1
] × q + (1 � 2),

(3.4)

where e is the electric charge, c̃S
γ and c̃V

γ are the two LECs,
and the superscripts specify the isoscalar (S) and isovector (V )
character of the associated operator. There is also a pion-range
two-body operator resulting from subleading γπN couplings
associated with theL(3)

πN Lagrangian and illustrated by Fig. 1(j).
It reads

j(1)
γ (OPE) = ie

gA

4f 2
π

σ 2 · k2

k2
2 + m2

π

[(
d̃ V

γ,1τ2,z + d̃ S
γ τ 1 · τ 2

)
k2

− d̃ V
γ,2(τ 1 × τ 2)zσ 1 × k2

] × q + (1 � 2),

(3.5)

where the LECs d̃ V
γ,1, d̃ V

γ,2, and d̃ S
γ are related [17] to the LECs

d8, d9, d21, and d22 in the original L(3)
πN Lagrangian [22] in the

following way:

d̃ S
γ = −8d9, d̃ V

γ,1 = −8d8, d̃ V
γ,2 = 2d21 − d22. (3.6)

As discussed below, these LECs have been determined by
a combination of resonance saturation arguments and fits to
photonuclear data in the two- and three-nucleon systems.

In the weak axial sector, there is a single contact term at
order Q0 [or N3LO, see Figs. 3(g) and 3(h)]:

j(0)
5,a(CT) = c̃ V

5,1(τ 1×τ 2)a

[
σ 1×σ 2− q

q2 + m2
π

q · (σ 1 × σ 2)

]
,

(3.7)

where the second term of Eq. (3.7) is the pion-pole contri-
bution, and none at order Q1 (or N4LO). The axial charge
operators at N3LO from OPE [Figs. 4(l) and 4(m)] and
contact interactions [Fig. 4(n)] involve, in principle, nine
LECs [18]. Since the processes of interest in the present work
are relatively low-momentum-transfer processes, however, we
have considered here these operators in the limit q → 0 (or
k1 	 −k2), which leads to

ρ
(1)
5,a(OPE)

= i
gA

384π2f 4
π

(τ 1 × τ 2)a

×
{
g2

A

[(
5k2

2 + 8m2
π

) s2

k2
ln

s2 + k2

s2 − k2
− 13

3
k2

2 + 2m2
π

]

+
(

s3
2

k2
ln

s2 + k2

s2 − k2
− 5

3
k2

2 − 8m2
π

)

+ d̃ V
5,1k

2
2 + d̃ V

5,2m
2
π

}
σ 2 · k2

k2
2 + m2

π

+ (1 � 2), (3.8)

ρ
(1)
5,a(CT) = ic̃ V

5,2(τ 1 × τ 2)aσ 1 · k1 + ic̃ V
5,3τ1,a(σ 1 × σ 2) · k2

+ (1 � 2), (3.9)

where sj = (k2
j + 4m2

π )1/2. The LECs d̃ V
5,i denote the combi-

nations [18]

d̃ V
5,1 = 4(d1 + d2 + d3), d̃ V

5,2 = 4(d1 + d2 + d3) + 8d5,

(3.10)

in terms of the di in L(3)
πN [22] and are taken from an analysis

of πN scattering data as reported in Ref. [14] (note that a new
analysis of these data has become recently available [32]). The
LECs c̃ V

5,2 and c̃ V
5,3 have yet to be determined.

Configuration-space representations of the χEFT operators
in Figs. 1–4 are required in the computer programs. Those for
the one-body operators, illustrated in Figs. 1(a) and 1(d), 2(a)
and 2(b), 3(a)–3(d), and 4(a), follow directly from the
momentum-space expressions listed in Refs. [17,18] by simply
multiplying each term in these expressions by exp(iq · ri) and
by replacing Ki with −i∇i (and properly symmetrizing for
Hermiticity). The configuration-space representations of the
two-body operators are strongly singular at short internucleon
separations and must be regularized before they can be sand-
wiched between nuclear wave functions. This is accomplished

TABLE I. The LECs in units of powers of 1/� (� is the short-range cutoff) as in Eq. (3.12). Their values are adimensional. See text for
further explanations.

� (MeV) dS
γ dV

γ,1 dV
γ,2 cS

γ cV
γ dV

5,1 dV
5,2 cV

5,1 cV
5,2 cV

5,3

500 0.219 3.458 0.865 4.072 −7.981 −0.210 0.690 13.22 0.062 0.062
600 0.323 4.980 1.245 11.38 −11.69 −0.302 0.994 25.07 0.130 0.130
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by insertion in the Fourier transforms of a regulator of the
form C�(k) = exp[−(k/�)n] with n = 4 and � in the range
(500–600) MeV. For processes involving low momentum and
energy transfers one would expect predictions to be fairly
insensitive to variations of �, and this expectation is indeed
borne out by the calculations reported in the present work.

In the electromagnetic sector, the two isoscalar LECs c̃ S
γ

and d̃ S
γ are fixed (for each �) by reproducing the deuteron

and isoscalar trinucleon magnetic moments, while the two
isovector LECs d̃ V

γ,1 and d̃ V
γ,2 are constrained by assuming

�-resonance saturation [17],

d̃ V
γ,1 = 4μγN�hA

9m(m� − m)
, d̃ V

γ,2 = 1

4
d̃ V

γ,1, (3.11)

where m� − m = 294 MeV, hA/(2fπ ) = fπN�/mπ with
f 2

πN�/(4π ) = 0.35 as obtained by equating the first-order
expression of the �-decay width to the experimental value, and
the transition magnetic moment μγN� is taken as 3μN [33].
The remaining LEC c̃ V

γ is determined by reproducing the
isovector trinucleon magnetic moment [17]. In the weak
axial sector, the LEC c̃ V

5,1 is fixed by reproducing the tritium
Gamow–Teller matrix element [19], while the other two LECs
c̃ V

5,2 and c̃ V
5,3 in the axial charge are taken here to assume

natural values c̃ V
5,i 	 1/�4

χ , for i = 2,3 and with �χ = 1 GeV.
However, cross-section results are insensitive to variations of
c̃ V

5,2 and c̃ V
5,3 over a rather broad range (see Sec. IV). In Table I

we list the values of all these LECs in units of the short-range
cutoff �; namely,

d̃S
γ = d S

γ /�2, d̃V
γ,i = d V

γ,i/�
2, c̃ S

γ = cS
γ /�4,

c̃ V
γ = cV

γ /�4, d̃ V
5,i = dV

5,i/�
2, c̃ V

5,1 = cV
5,1/�

3,

c̃ V
5,2 = cV

5,2/�
4, c̃ V

5,3 = cV
5,3/�

4. (3.12)

Finally, we note that, since the processes under considera-
tion involve small but nonvanishing four-momentum transfers
Q2, hadronic electroweak form factors need to be included in
the χEFT operators. Some of these form factors have been cal-
culated in chiral perturbation theory [34], but the convergence
of this calculation in powers of the momentum transfer appears
to be rather poor. For this reason, in the results reported below,
the form factors in the electromagnetic current and charge
are accounted for as in Ref. [17], i.e., the nucleon, pion, and
N�-transition electromagnetic form factors are taken from
fits to available electron-scattering data. For the case of the
axial charge and current, the operators are simply multiplied
by GA(Q2)/gA, where GA(Q2) is the nucleon axial form
factor, parametrized as GA(Q2) = gA/(1 + Q2/�2

A)2 with
�A = 1 GeV, consistently with available neutrino scattering
data (see Ref. [7] and references therein).

IV. CROSS-SECTION PREDICTIONS

Total cross sections, integrated over the final lepton energy
and scattering angle and obtained for the νe-CC, νe-CC,
νl-NC, and νl-NC processes, are shown, respectively, in
Figs. 5–8, where they are compared with the corresponding
predictions from Ref. [3] for incoming neutrino energies
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12

16

σ(
10

-1
4  fm

2 )

This paper
Nakamura et al. (2002)

0 50 100 150
Eν(MeV)

0.96

0.98

1.00

νe-CC

FIG. 5. Total cross sections in fm2 for the νe-CC induced process
on the deuteron. The solid line corresponds to the χEFT calculation
with cutoff � = 500 MeV, based on the chiral potential of Ref. [13]
and including electroweak contributions up to N3LO in the vector
current and axial charge, and up to N4LO in the axial current and
vector charge; see Figs. 1–4. The dashed line is obtained within the
conventional meson-exchange picture of Ref. [3]. The inset shows
the ratio of conventional to χEFT predictions.

ranging from threshold up to 150 MeV. The present χEFT cal-
culations are based on the Entem and Machleidt potentials of
Refs. [13,14] corresponding to cutoffs � = 500 and 600 MeV,
and weak (vector and axial) current and charge operators of
Refs. [15–18], as described in the previous section. Matrix el-
ements of these operators, suitably regularized as in Sec. III A,
between the initial deuteron and final two-nucleon scattering
states are evaluated with the methods developed in Ref. [7].
In practice, this entails obtaining the two-nucleon radial wave
functions from solutions of the Lippmann–Schwinger equation
in pair spin-isospin ST channels with total angular momentum
J � Jmax, and in approximating these radial wave functions
by spherical Bessel functions in channels with J > Jmax.
The full wave function, labeled by the relative momentum
p [and corresponding energy p2/(2μ), μ being the reduced
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FIG. 6. Same as in Fig. 5 but for the νe-CC-induced process on
the deuteron.
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FIG. 7. Same as in Fig. 5 but for the νe-NC-induced process on
the deuteron.

mass] and discrete quantum numbers ST , is then reconstructed
from its partial-wave expansion [7]. Consequently, interaction
(including Coulomb in the case of two protons) effects in
the final scattering states are exactly accounted for only in
channels with J � Jmax. For the neutrino energies of interest
here, however, we find that these effects are negligible when
Jmax � 5 [7].

The cross sections increase rapidly, by over two orders of
magnitude, as the neutrino energy increases from threshold to
150 MeV. Nevertheless, the present χEFT predictions remain
close to, albeit consistently larger at the 1%–2% level, than
those obtained in the conventional frameworks of Refs. [3]
and [7], as shown explicitly for the case of Ref. [3] by the insets
in Figs. 5–8. The present χEFT electroweak current and the
meson-exchange models adopted in Refs. [3] and [7] provide
an excellent description of low-energy observables in the two-
and three-nucleon systems (see Refs. [17,24] and references
therein). In particular, the axial current in both approaches
(χEFT and meson-exchange) is constrained to reproduce
the tritium Gamow–Teller matrix element. The χEFT cross
sections of Figs. 5–8 correspond to cutoff � = 500, but
their variation as � is increased to 600 MeV remains well
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FIG. 8. Same as in Fig. 5 but for the νe-NC-induced process on
the deuteron.

below 1% over the whole energy range, as can be seen in
Tables II and III, rows labeled N(3|4)LO and N(3|4)LO�.
The convergence of the chiral expansion is also shown in
these tables, where the various rows are labeled in accordance
with the power counting adopted in the present work; see
Figs. 5–8. A graphical representation of this convergence
is provided by Fig. 9. Overall, contributions beyond LO
lead to a couple of percent increase in the cross sections
for both the CC and NC processes. A similar increase due
to two-body terms in the weak current is obtained in the
conventional calculations; see rows labeled IA and TOT
in Tables II and III. Note that the IA row corresponds to
results obtained with one-body currents, including relativistic
corrections [7]. These IA currents are the same as the
χEFT ones illustrated by Fig. 1(a), Figs. 2(a) and 2(b),
Figs. 3(a)–3(d), and Fig. 4(a). Since the contributions due
to the OPE two-body terms in the vector current, Figs. 1(b)
and 1(c), and axial charge, Figs. 4(b) and 4(c), are very small,
then the difference between the IA and N(1|2)LO results
essentially reflects differences in the wave functions obtained
from conventional and chiral potentials. Indeed, the overall
∼2% offset between the TOT and N(3|4)LO predictions is
primarily due to these differences.

The cross sections for the νl-NC and νl-NC processes
only differ in the sign of the interference response function
Rxy in Eq. (2.1). In the case νe-CC and νe-CC processes,
additional differences result from isospin-symmetry-breaking
terms in the final-state interactions of pp versus nn. At low
energies (Eν � 10 MeV), cross sections are dominated by the
axial current; the associated contributions being more than two
orders of magnitude larger than those from the vector current.
As the energy increases, vector-current contributions increase
becoming comparable, albeit still significantly smaller by
over a factor of five at Eν = 150 MeV, than axial-current
contributions. As a consequence, the νl-NC and νl-NC are
fairly close at low energies but diverge significantly from each
other as the energy increases. Because of the aforementioned
isospin-symmetry-breaking effects (primarily induced by the
Coulomb repulsion), the νe CC and νe CC differ even at
low energies. Finally, contributions from the axial charge are
negligible at Eν ∼ 10 MeV, since at those energies the cross
section is dominated by the 1S0 channel, to which axial-charge
transitions from the 3S1-3D1 state of the deuteron are strongly
suppressed. However, these axial-charge contributions remain
well below 1% even at the high end of the energy range studied
in this work, Eν = 150 MeV. At this latter energy, for example,
ignoring these axial-charge contributions altogether would
reduce the νl-NC (νl-NC) cross section from the N(3|4)LO
value of 6.176 (3.214) listed in Table III to 6.157 (3.194) in
units of 10−14 fm2. Thus, uncertainties in the values of the
LECs c5,2 and c5,3 in the contact axial charge do not have a
significant impact on the present cross-section predictions.

Finally, for the purpose of illustration, Fig. 10 shows
the double-differential cross sections for CC-νe- and CC-νe-
induced processes as function of the final lepton energy at a
fixed scattering angle of 90◦ and for incident neutrino energy
of 10 MeV. The deuteron wave functions are obtained from
the N3LO chiral potential with cutoff � = 500 MeV. The
energy spectrum of the χEFT predictions closely matches
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TABLE II. Total cross sections in fm2, corresponding to cutoff � = 500 MeV, for the CC-induced processes on the deuteron at selected
initial neutrino energies and at increasing orders in the chiral counting. Referring to Figs. 1–4, the rows are labeled as follows: LO for the
leading-order vector and axial current and charge; N(1|2)LO including the vector current and axial charge at N1LO, and the axial current and
vector charge at N2LO; N(2|3)LO including the vector current at N2LO, and the axial current and vector charge at N3LO; N(3|4)LO including
the vector current and axial charge at N3LO, and the axial current and vector charge at N4LO. Also listed are the results at LO and N(3|4)LO
but � = 600 MeV [labeled as LO� and N(3|4)LO�], and those obtained in the conventional frameworks of (i) Ref. [7] in impulse approximation
(IA) and with inclusion of two-body currents (TOT) and (ii) Ref. [3] with inclusion of two-body currents (TOT). The notation (xx) means 10xx .

σ (νe-CC) σ (νe-CC)

Eν (MeV) 10 50 100 150 10 50 100 150

LO 2.676(−16) 1.345(−14) 6.611(−14) 1.591(−13) 1.243(−16) 7.441(−15) 2.661(−14) 4.944(−14)
N(1|2)LO 2.670(−16) 1.345(−14) 6.606(−14) 1.581(−13) 1.237(−16) 7.341(−15) 2.602(−14) 4.792(−14)
N(2|3)LO 2.794(−16) 1.413(−14) 6.913(−14) 1.653(−13) 1.298(−16) 7.825(−15) 2.801(−14) 5.221(−14)
N(3|4)LO 2.734(−16) 1.388(−14) 6.852(−14) 1.650(−13) 1.266(−16) 7.523(−15) 2.676(−14) 4.981(−14)
LO� 2.666(−16) 1.342(−14) 6.593(−14) 1.588(−13) 1.239(−16) 7.417(−15) 2.653(−14) 4.925(−14)
N(3|4)LO� 2.729(−16) 1.388(−14) 6.858(−14) 1.656(−13) 1.263(−16) 7.520(−15) 2.679(−14) 4.998(−14)
IA Ref. [7] 2.630(−16) 1.314(−14) 6.424(−14) 1.516(−13) 1.219(−16) 7.260(−15) 2.567(−14) 4.688(−14)
TOT Ref. [7] 2.680(−16) 1.348(−14) 6.631(−14) 1.574(−13) 1.242(−16) 7.403(−15) 2.606(−14) 4.751(−14)
TOT Ref. [3] 2.708(−16) 1.376(−14) 6.836(−14) 1.641(−13) 1.242(−16) 7.372(−15) 2.618(−14) 4.871(−14)

that of Ref. [3]. We have not explicitly verified that this
agreement persists for different combinations of final lepton
scattering angles and incident neutrino energies. However,
we expect this to be the case for both the CC and NC
reactions.

V. SUMMARY AND CONCLUSIONS

Cross sections for the reactions 2H(νe,e
−)pp, 2H(νe,e

+)nn,
and 2H(νl/νl,ν

′
l /ν

′
l)np have been studied in χEFT with the

chiral potentials of Refs. [13,14] and chiral electroweak current
of Refs. [15–19]. The potentials include intermediate- and
long-range parts mediated by one- and multipion exchanges,
and a short-range part parametrized in terms of contact
interactions, whose LECs have been constrained by fits to the
nucleon-nucleon database for energies ranging from zero up
to the pion-production threshold. The vector- and axial-vector
components of the weak current have been derived up to one
loop and include primarily one- and two-pion exchanges. In
addition to these loop corrections, a number of contact terms
occur. The five LECs that multiply the contact currents in
the vector sector have been determined by a combination
of resonance-saturation arguments and fits to photonuclear

data in the two- and three-nucleon systems. Five LECs also
enter the axial sector (in the limit of low-momentum-transfer
processes). Four of these are in the charge operator: two
are known from analyses of πN data, while the remaining
two have yet to be determined and, in the present work,
have been assumed to be of natural size. However, it is
worthwhile emphasizing that the neutrino cross sections under
consideration are only marginally impacted by the axial-charge
components in the weak current. The fifth and only LEC
entering the axial current has been fixed by reproducing the
tritium Gamow–Teller matrix element.

Higher-order contributions beyond LO lead to an overall
increase by about 2% in the cross sections obtained with LO
transition operators. Predictions are also fairly insensitive to
variations in the short-range cutoff �, and change by a few
parts in a thousand as � is changed from 500 to 600 MeV in
both the potential and weak current. As illustrated by Fig. 9,
there is good convergence in the chiral expansion of the weak
current. The χEFT cross-section predictions reported here are
consistently larger by a couple of percent than corresponding
results obtained in conventional formulations based on meson-
exchange phenomenology [3,7]. These conventional calcula-
tions too are based on a model for the electroweak current

TABLE III. Same as in Table II but for the NC-induced processes.

σ (νe-NC) σ (νe-NC)

Eν (MeV) 10 50 100 150 10 50 100 150

LO 1.101(−16) 5.872(−15) 2.660(−14) 5.991(−14) 1.050(−16) 4.554(−15) 1.664(−14) 3.175(−14)
N(1|2)LO 1.097(−16) 5.856(−15) 2.644(−14) 5.912(−14) 1.045(−16) 4.505(−15) 1.631(−14) 3.076(−14)
N(2|3)LO 1.151(−16) 6.178(−15) 2.789(−14) 6.250(−14) 1.097(−16) 4.793(−15) 1.752(−14) 3.347(−14)
N(3|4)LO 1.124(−16) 6.032(−15) 2.740(−14) 6.176(−14) 1.069(−16) 4.625(−15) 1.684(−14) 3.214(−14)
LO� 1.096(−16) 5.853(−15) 2.652(−14) 5.973(−14) 1.045(−16) 4.539(−15) 1.659(−14) 3.165(−14)
N(3|4)LO� 1.121(−16) 6.028(−15) 2.742(−14) 6.191(−14) 1.067(−16) 4.622(−15) 1.685(−14) 3.224(−14)
IA Ref. [7] 1.084(−16) 5.747(−15) 2.577(−14) 5.720(−14) 1.033(−16) 4.449(−15) 1.604(−14) 3.003(−14)
TOT Ref. [7] 1.104(−16) 5.892(−15) 2.657(−14) 5.935(−14) 1.053(−16) 4.546(−15) 1.640(−14) 3.075(−14)
TOT Ref. [3] 1.107(−16) 5.944(−15) 2.711(−14) 6.130(−14) 1.053(−16) 4.535(−15) 1.647(−14) 3.129(−14)

014002-9



A. BARONI AND R. SCHIAVILLA PHYSICAL REVIEW C 96, 014002 (2017)

0 50 100 150
0.95

1.00

1.05

N(1|2)LO/LO
N(2|3)LO/N(1|2)LO
N(3|4)LO/N(2|3)LO

0 50 100 150
0.90

1.00

1.10

0 50 100 150
Eν(MeV)

0.95

1.00

1.05

0 50 100 150
Eν(MeV)

0.90

1.00

1.10

νe-CC νe-CC

νe-NC νe-NC

FIG. 9. The convergence pattern as function of increasing order
in the chiral expansion of the weak current. Ratios of corrections at
a given order relative to the preceding order are shown. Note that the
y-axis scale in the right-hand-side panels is doubled relative to that
in the left-hand-side panels.

that provides an excellent description of electromagnetic ob-
servables in the few-nucleon systems and the tritium β-decay
rate; indeed, two-body meson-exchange terms in the axial
current are constrained to reproduce the Gamow–Teller matrix
element, just as in χEFT. The enhancement in the cross section
due to (two-body) meson-exchange terms in the weak current is
similar (about 2%) to that obtained in the χEFT calculations.
Indeed, as noted in the previous section, the approximately
1%–2% offset between the conventional (Refs. [3,7]) and
present χEFT results originates from differences in the
deuteron and two-nucleon continuum wave functions obtained
with the corresponding potentials rather than from the model-
ing of the weak current. To explore this point further, we carried
out preliminary calculations of the νe-NC and νe-NC cross
sections with the LO weak current by using one of the recently
developed “minimally nonlocal” configuration-space chiral
potentials of Ref. [35]. We find that the LO νe-NC (νe-NC)
cross sections, in units of fm2, are 1.101(1.050) × 10−16 at 10
MeV and 5.937(3.147) × 10−14 at 150 MeV, to be compared,
respectively, with 1.101(1.050) × 10−16 and 5.991(3.175) ×
10−14 obtained with the chiral (and strongly nonlocal in
configuration space) potentials of Refs. [13,14] adopted in the
present work. This suggests that the cross-section predictions
based on chiral potentials and currents may have a very small
error (<1%) in the low-energy regime. A more rigorous way
to estimate the theoretical uncertainty of the calculated cross
sections is described in Refs. [36,37].

FIG. 10. Double-differential cross sections in fm2/(MeV sr) for
the νe-CC- and νe-CC-induced process on the deuteron. The solid
line corresponds to the χEFT calculation with cutoff � = 500 MeV,
based on the chiral potential of Ref. [13] and including electroweak
contributions up to N3LO in the vector current and axial charge, and
up to N4LO in the axial current and vector charge; see Figs. 1–4.
The dashed line is obtained within the conventional meson-exchange
picture of Ref. [3]. The inset shows the ratio of conventional to χEFT
predictions.

Finally, we conclude by noting that radiative corrections for
the CC and NC processes due to bremsstrahlung and virtual
photon and Z exchanges have been evaluated by the authors
of Refs. [38,39] at the low energies (∼10 MeV) most relevant
for the SNO experiment, which measured the neutrino flux
from the 8B decay in the Sun. In the case of the 2H(νe,e

−)pp,
these corrections lead to an enhancement of the tree-level cross
sections calculated in the present work (and in Refs. [3,7]),
which ranges from about 4% in the threshold region to about
3% at the endpoint of the 8B νe-spectrum—this enhancement
is in fact larger than that induced by contributions in the weak
current of order higher than leading. While the present results
are not expected to impact the 8B νe-spectrum deduced by
the SNO measurements (as the inset of Fig. 5), they should
nevertheless be helpful in reducing the theoretical error in this
inferred spectrum.
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