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Spin-polarization observables of deuteron photodisintegration at low energies are studied in a pionless effective-
field theory up to next-to-next-to-leading order (NNLO). The total and differential cross sections, induced neutron
polarization Py′ , and tensor analyzing powers T20 and T22 of the process are calculated at photon energies from
the breakup threshold to 20 MeV. We find that the NNLO corrections in the cross sections and Py′ converge well
whereas they turn out to be important contributions in T20 and T22. We discuss the discrepancy between theory
and experiment in Py′ still persisting as well as an implication of our result to the first measurement of T20 at low
energies in the High Intensity Gamma-Ray Source facility at Duke University.
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I. INTRODUCTION

Observables related to polarization provide more detailed
information on nuclear reactions than the unpolarized ones
[1]. There still remains a couple of problems which show dis-
crepancy between experiment and theory even in few-nucleon
systems at low energies [2–4]. Induced neutron polarization
Py ′ of the photodisintegration of deuteron is an example and
one can find more information in the HIGS2 proposal [5].
A proposal for the photodisintegration of deuteron at the
High Intensity Gamma-Ray Source (HIGS) facility at Duke
University is focusing on the role of the final state. Tensor
analyzing power T20 is chosen for the investigation, which
depends on the d state of the deuteron wave function as well
as the polarization states. The main objective of the experiment
is to figure out or resolve the discrepancy between experiment
and theory at photon energies around 10 MeV, and obtain
precise data for T20 which has not been measured yet in the
low-energy regime.

Pionless effective-field theory (EFT) for low-energy phe-
nomena, in which the pion can be treated as a heavy degree
of freedom and integrated out of the effective Lagrangian,
provides us a model independent and perturbative calculation
method [6–8]. An effective Lagrangian of the pionless EFT
can be constructed by using only the symmetry property of
the system and momentum expansion in the low energy. The
pionless EFT is able to successfully explain many low-energy
properties of nuclear two-body systems with and without
external electromagnetic probes [7–10]. Because the measured
induced neutron polarization Py ′ in γ + d → �n + p and
theoretical calculation using the phenomenological potential
model show a discrepancy [2,4], it is desirable to have a model
independent calculation.

In this paper, we compute the photodisintegration cross
section of deuteron by using a pionless EFT in dibaryon for-
malism [8,11,12] up to next-to-next-to-leading order (NNLO)
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which includes sd wave mixing effects of the deuteron wave
function. Dibaryon fields which have the quantum numbers
of two-nucleon systems in either scattering or bound states
are introduced to facilitate the resummation of effective
range effects to infinite order. The details of formalism up
to next-to-leading order (NLO) for the photodisintegration
of deuteron have been reported in [4,8,13]. The result of
pionless EFT up to NLO in [4] shows discrepancy with the
experimental data of Py ′ [14], similar to the phenomenological
nuclear force model calculations of [1,2], but the result is
different from the potential model calculation with increasing
photon energy. Even though the unpolarized cross sections
could be well described up to NLO, the spin dependent
observables can be sensitive to the higher-order corrections.
The d state in the deuteron wave function could be properly
accounted for when we increase the expansion up to NNLO.
An NNLO calculation in the pionless EFT with dibaryon
formalism for the electrodisintegration of deuteron has been
reported by Christlmeier and Griesshammer [15]. Because the
photodisintegration of deuteron has the same electromagnetic
hadronic currents of the electrodisintegration of deuteron up
to NNLO, we employ the expression of the hadronic currents
reported in [15]. Thus, we calculate the total cross section,
the differential cross section, Py ′ , T20, and T22 from threshold
to 19.8 MeV in photon energy in the center-of-mass frame.
We compare the results up to NNLO with those of NLO, and
other theoretical results. Experimental data are compared when
available.

The paper is organized as follows. In Sec. II we present
basic formalism of the pionless EFT and the analytic forms
of the transition amplitudes and probabilities. In Sec. III
numerical results and related discussions are given. In Sec. IV
we summarize the present paper.

II. FORMALISM

In this paper, we employ the standard counting rules of
pionless EFT, in which the expansion parameter is typical
momentum divided by pion mass and satisfies Q ∼ 1/3 [6,7].
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FIG. 1. Diagrams for LO (a–c) and NLO (d) of isovector magnetic currents (denoted as MV). The double line represents a dibaryon field
of spin triplet (t) and singlet (s) states. The square in (d) represents the NLO L1 term. Only 1S0 final states contribute to the magnetic currents
in (c, d) while (a, b) include spin singlet partial waves with L = 0,1, . . . .

In this section, we display the Lagrangian up to NNLO
and the expression of the cross sections, and obtain the
spin-polarization observables of the photodisintegration of
deuteron.

A. Lagrangian

The effective Lagrangian in the pionless EFT up to NNLO
can be written as [8]

L = LN + Ls + Lt + Lst, (1)

whereLN is a standard one-nucleon Lagrangian;Ls andLt are
Lagrangians for the two-nucleon part in the s-wave spin singlet
and triplet channel, respectively; and Lst is a Lagrangian for
the spin mixing channel. Thus, one has

LN = N †
[
iD0 +

�D2

2M
+ e

2M
(κ0 + κ1τ3)�σ · �B

]
N, (2)

Ls = −s†a

[
iD0 +

�D2

4M
− �s

]
sa − ys

[
s†aN

T P (1S0)
a N + H.c.

]
,

(3)

Lt = −t
†
i

[
iD0 +

�D2

4M
− �t

]
ti − yt

[
t
†
i N

T P
(3S1)
i N + H.c.

]

− Csd√
Mρd

[
δixδjy − 1

3
δij δxy

]
[t†i (NTOxy,jN ) + H.c.],

(4)

Lst = eL1

M
√

r0ρd

[t†i s3Bi + H.c.], (5)

where N is the nonrelativistic nucleon field, and sa and ti are
the dibaryon fields in the 1S0 and 3S1 states, respectively. The
dibaryon fields couple with two nucleons in each partial wave
or with other dibaryon fields. Spin projection operators, P (1S0)

a

and P
(3S1)
i , for the s-wave spin singlet and triplet channels are

given as

P (1S0)
a = 1√

8
σ2τ2τa, P

(3S1)
i = 1√

8
σ2σiτ2, (6)

where σi and τa are the Pauli matrices for spin and isospin
spaces, respectively. The projection operators satisfy the
normalization condition

Tr(P †
j Pk) = 1

2δjk. (7)

In addition, a spin projection operator for the sd wave mixing
channel is given as

Oxy,j = − 1
4

(←−
D x

←−
D yP

(3S1)
j + P

(3S1)
j

−→
D x

−→
D y

−←−
D xP

(3S1)
j

−→
D y − ←−

D yP
(3S1)
j

−→
D x

)
, (8)

where Dμ is a covariant derivative, given by Dμ = ∂μ +
ieQemAμ with a charge operator Qem, the electric charge e,
and a photon field Aμ (and �B = �∇ × �A). Three parameters, M ,
κ0, and κ1, appear in the one-nucleon part of the Lagrangian:
M is the nucleon mass, and κ0 and κ1 are magnetic momenta of
the nucleon for isosinglet and isovector channels, respectively,
κ0 = 0.44 and κ1 = 2.35. Six parameters, �s , �t , ys , yt ,
Csd, and L1, appear in the two-nucleon part. The first
four parameters are fixed by the effective range parameters:
scattering length and effective range for each NN scattering
channel. Thus, one has [8]

�s = 2

Mr0

(
1

a0
− μ

)
, �t = 2

Mρd

(
γ − ρd

2
γ 2 − μ

)
,

ys =
√

8π

M
√

r0
, yt =

√
8π

M
√

ρd

, (9)

where μ is a dimensional parameter from the power diver-
gence subtraction regularization scheme of the loop diagrams
[16].1a0 and r0 are the scattering length and effective range
in the 1S0 channel, a0 = −23.71 fm and r0 = 2.73 fm. γ is
the deuteron binding momentum, γ = √

MB = 45.70 MeV
with the deuteron binding energy B, B = 2.225 MeV, and
ρd is the effective range in the deuteron channel, ρd = 1.764
fm. The remaining two parameters, Csd and L1, are fixed by
using asymptotic ratio ηsd = 0.0254 of the s/d wave of the
deuteron wave function and the thermal neutron capture cross
section of the proton, respectively. We obtain Csd = 6

√
πηsd√
Mγ 2 and

L1 = −4.41 fm.
The amplitude A of photodisintegration, γ + d → n + p,

can be written as

A = ε(γ )
μ (q)Jμ

hadr (10)

1In the calculation of loop integrals for hadronic currents in [15], the
power divergence subtraction scheme is combined with dimensional
integration in spatial dimensions after using contour integration for
the energy part. For more details, one may refer to the Appendix
in [15].
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FIG. 2. Diagrams for LO electric currents. The double line
represents a triplet dibaryon field. While only the 3S1 final state
contributes in (b, c), other partial-wave contributions are included
in (a), which is dominated by the isovector E1 amplitude to final spin
triplet P-wave states.

where ε
(γ )
μ (q) is a polarization vector of the photon with four-

momentum q, and J
μ
hadr is a hadronic current. Hadronic current

J
μ
hadr is divided into electric and magnetic currents, J

(E)μ
hadr and

J
(M)μ
hadr , which are given as

J
(E)μ
hadr = i

√
Z√
8

(N †
pσ iσ2N

∗
n )εj

(d)J
μ
E,ij ,

J
(M)k
hadr =

√
Z√
8

εijkεi
(d)(N

†
pσ2N

∗
n )J j

M, (11)

where Np and Nn are the Pauli spinors of the proton and
neutron, and Z is a wave-function normalization factor of the
deuteron, Z = γρd

1−γρd
. Since the isoscalar magnetic moment

is smaller than the isovector magnetic moment (κ0/κ1 � Q),
isoscalar magnetic currents are treated as a numerically higher
order in this paper and thus not included in the currents. The
hadronic magnetic currents consist of contributions at leading
order (LO) and NLO (see Fig. 1), while the electric currents
have LO (see Fig. 2) and NNLO (see Fig. 3) contributions
which come from the mixing of the s wave and d wave. The
explicit expression of the hadronic currents in Eq. (11) can be
found in the Appendix of [15].2

2Since no explicit multipole expansion is done and the plane wave
is used for final nucleons, the currents in Eq. (11) contain various
multipole amplitudes including dominant M1 and E1 amplitudes.

FIG. 4. Unpolarized total cross section σtot of deuteron photodis-
integration up to NLO and NNLO. Experimental data [18–27] are
also displayed in the figure.

B. Cross section and observables

An unpolarized differential cross section for the γ + d →
n + p process is given in terms of an amplitude Amn,mp,λ,md

as

dσ0

d�p

= α

4π

ppEp

Eγ

1

2 · 3

∑
mn,mp,λ,md

∣∣Amn,mp,λ,md

∣∣2
, (12)

where λ denotes the polarization of the photon and md , mn,
and mp are the deuteron, neutron, and proton spin projections,
respectively. The unpolarized differential cross section in the
center-of-mass frame with nonrelativistic approximation is
obtained by summing the spin states. α is the fine-structure
constant, and Eγ is the photon energy in the center-of-mass
frame. The magnitude of three-momentum pp and the energy
Ep of the proton read

pp = 1

2

√(
Eγ +

√
M2

d + E2
γ

)2 − 4M2, Ep =
√

M2 + p2
p,

(13)
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FIG. 3. Diagrams for NNLO electric currents (denoted as E). The double line represents a triplet dibaryon field. The black blob represents
the sd mixing Csd contribution. While only the 3S1 final state contributes to (d, e, g, h) and only the 3D1 final state contributes to (b, c), (a, f)
include other spin triplet partial-wave contributions too.
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FIG. 5. Ratio of the unpolarized differential cross section and
total cross section for the photon energy 19.8 MeV up to NLO
(blue dashed) and NNLO (red solid). Experimental data [28] are
also displayed.

where Md is the deuteron mass. From now on, the spin indices
of the amplitude will be implied for the amplitude A for
convenience. Any spin dependent observables can be written
in an appropriate combination of differential cross section
dσ
d�p

(mn,mp,λ,md ).
In this paper, we will focus on the spin-polarization

observables: the induced polarization Py ′ of the neutron, and
the tensor analyzing powers T20 and T22 in the deuteron photo-
disintegration. Let us choose the incoming photon momentum
as z direction q̂ = ẑ, which is also a spin quantization axis,
and then introduce a second reference frame x̂ ′, ŷ ′, and ẑ′
such that the direction of the outgoing neutron momentum is
along the z′ axis, ẑ′ = p̂n, and ŷ ′ ∝ q̂ × p̂n for convenience.
In the form of components, x̂ ′, ŷ ′, and ẑ′ are represented
as (cos θn cos φn, cos θn sin φn, − sin θn), (− sin φn, cos φn,0),
and (sin θn cos φn, sin θn sin φn, cos θn), respectively. Thus, Py ′

is defined in terms of polarized differential cross sections:

Py ′ (θn) ≡ σ+y ′ (θn) − σ−y ′ (θn)

σ+y ′ (θn) + σ−y ′ (θn)
, (14)

John and Martin [29]
Jewell et al. [14]

FIG. 6. Py′ for the photon energies 2.75 MeV (top left), 5 MeV (top right), 10 MeV (bottom left), and 19.8 MeV (bottom right) up to
NLO (blue dashed) and NNLO (red solid). Experimental data from John and Martin [29] and Jewell et al. [14] are included in the figure at
Eγ = 2.75 MeV.
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where σ+y ′ (σ−y ′ ) is a differential cross section in which the
spin of the outgoing neutron is parallel (antiparallel) to the ŷ ′
direction.

The general form of the polarized deuteron cross section
with unpolarized photons is given as [17]

dσ

d�
= dσ0

d�

⎡
⎣1 +

∑
I=1,2

P d
I

∑
M�0

TIM (θ )

× cos

(
M(φd − φ) − δI1

π

2

)
dI

M0(θd )

⎤
⎦, (15)

where P d
I and TIM (θ ) are orientation parameters and analyzing

powers, respectively, for I = 1,2. (θ,φ) represents a direction
of the outgoing proton, the deuteron is oriented in a direction
(θd,φd ), and dI

M0 is a rotation matrix. When a density matrix of
the deuteron is diagonal in a quantization axis ρd

m′m = pmδm′m
where pm is a probability of finding a deuteron with a spin

projection m, orientation parameters P d
I are related to pm as

P d
1 =

√
3

2
(p1 − p−1), P d

2 =
√

1

2
(1 − 3p0). (16)

From the rotation matrix, let us define polarized cross sections
dσ� for the deuteron polarization axis orienting to (θd =
π
2 ,φd = 0), dσ ↑ for that orienting to (θd = π

2 ,φd = π
2 ), and

dσ ↓ for that orienting to (θd = π
2 ,φd = −π

2 ). Thus, we have

dσ z

d�
≡ dσ0

d�

[
1 + P d

2 T20(θ )
]
,

dσ�

d�
≡ dσ0

d�

[
1 + P d

2 T22(θ )

√
3

8
+ P d

2 T20(θ )

(
−1

2

)]
,

dσ ↑,↓

d�
≡ dσ0

d�

[
1 + P d

1 T11(θ )

(
∓ 1√

2

)
+ P d

2 T22(θ )

×
(

−
√

3

8

)
+ P d

2 T20(θ )

(
−1

2

)]
. (17)

Nath et al.
[30]

Nath et al.
[30]
Holt et al.
[31]

FIG. 7. Py′ at three different angles with increasing photon energy up to NLO (blue dashed) and NNLO (red solid). Top left: θn = 45◦. Top
right: θn = 90◦. Bottom: θn = 135◦. Experimental results from Nath et al. [30] and Holt et al. [31] are also displayed in the figures at θn = 45
and 90◦.
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The tensor analyzing powers, thus, can be obtained from the
polarized cross sections as

T11 = 1√
2P d

1

dσ ↑−↓

dσ 0
,

T20 = 1

P d
2

(
2 − dσ� + 1

2dσ ↑+↓

dσ 0

)
= 1

P d
2

(
dσ z

dσ0
− 1

)
,

T22 =
√

2√
3P d

2

dσ� − 1
2dσ ↑+↓

dσ 0
, (18)

where dσ ↑±↓ = dσ ↑ ± dσ ↓. By choosing p1 = 1, we have

P d
1 =

√
3
2 and P d

2 = 1/
√

2. This corresponds to the choice of

�ε(d) in Eq. (11) such that �ε(d) = − 1√
2
(0, + i, − 1) for dσ�,

�ε(d) = − 1√
2
(−i,0, − 1) for dσ ↑, �ε(d) = − 1√

2
(+i,0, − 1) for

dσ ↓, and �ε(d) = − 1√
2
(1, + i,0) for dσ z.

III. NUMERICAL RESULT AND DISCUSSION

A. Total and differential cross sections

In Fig. 4, we plot curves of the total cross section calculated
up to NLO and NNLO and include experimental data [18–27]
as well. With the parameters fixed to low-energy data, the
curves up to NLO and NNLO give the results consistent with
the data to Elab

γ = 30 MeV. The correction from NNLO is about
10% of the contribution up to NLO at Elab

γ ∼ 20 MeV, and
about 20% at Elab

γ ∼ 30 MeV. Although the total cross section
turns out to be in good agreement with the experimental data
up to relatively high energy, in principle, the pionless theory
must be applied to the photon energies below 10 MeV, which
corresponds to nucleon momentum close to the pion mass.
Thus, in this paper, we limit the photon energy to the range
Elab

γ � 20 MeV in the study of the spin observables.
In Fig. 5, curves of the unpolarized differential cross section

divided by the total cross section at Eγ = 19.8 MeV are
plotted by using our results up to NLO and NNLO, and
the experimental data are also included [28]. Similar to the
total cross section, the difference between NLO and NNLO is

FIG. 8. T20 for the photon energies 2.75 MeV (top left), 5 MeV (top right), 10 MeV (bottom left), and 19.8 MeV (bottom right) up to NLO
(blue dashed) and NNLO (red solid). The Bonn potential result is from [1] (black dotted).
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negligible up to 10 MeV, and the NNLO correction converges
well even at Eγ = 19.8 MeV.

B. Induced neutron polarization Py′

In Fig. 6, our results of Py ′ up to NLO and NNLO at Eγ =
2.75, 5, 10, and 19.8 MeV are plotted as functions of cos θn,
where θn is the angle for the outgoing neutron in the center-
of-mass frame. Experimental data from John and Martin [29]
and Jewell et al. [14] at Eγ = 2.75 MeV are also included in
the figure. We find that the NNLO corrections converge well
at all the photon energies and are small compared to those up
to NLO. Discrepancy between theory and experiment of Py ′

at Eγ = 2.75 MeV, which has been reported in our previous
work in the pionless EFT up to NLO [4], cannot be resolved
by including the NNLO corrections.

Figure 7 shows the results of Py ′ in three different angles
with increasing photon energy. The pionless EFT results up to
NLO and NNLO agree well with phenomenological potential
model calculation of Av18 in impulse approximation and
Av18 calculation with exchange currents [2] at low energies,
respectively. The agreement implies that model independent

calculation of pionless EFT supports the Av18 results rather
than the measurement by Nath et al. [30]. The results of Av18
and pionless EFT converge up to Eγ ∼ 10 MeV, and start to
deviate for θn = 45 and 135◦, while θn = 90◦ results show
good agreement even at Eγ � 10 MeV. This could be related
to higher-order corrections which are neglected in the present
paper.

C. Tensor analyzing power T20 and T22

By computing differential cross sections, dσ�, dσ ↑, and
dσ ↓, we can obtain the tensor analyzing powers T11, T20, and
T22. However, because dσ ↑ � dσ ↓ up to NNLO, we obtain
T11 � 0. We would need to include higher-order corrections to
have a sizable contribution to T11. Also, T22 is dominated by
the NNLO contribution since T22 � 0 at NLO, which implies
that a contribution to T22 mostly comes from the sd mixing
effects.

In Fig. 8, we summarize our results of T20 at NLO and
NNLO. There are interesting behaviors absent or appearing
weakly in other observables. First of all, in the observables
considered so far, the results of NNLO are almost identical to

FIG. 9. T22 for the photon energies 2.75 MeV (top left), 5 MeV (top right), 10 MeV (bottom left), and 19.8 MeV (bottom right) up to NLO
(blue dashed) and NNLO (red solid). The Bonn potential result is from [1] (black dotted).
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those of NLO up to Eγ = 10 MeV, but for T20 a non-negligible
difference appears already at Eγ = 5 MeV. As the energy
increases, the NLO result becomes the shape of a flat and wide
plateau. The value of T20 in the flat region is close to zero and
independent of the energy. Similarly the values at θ = 0 and
180◦ remain the same regardless of the energy.

The result at Eγ = 19.8 MeV is similar to the results
obtained from the Bonn potential model calculations, lying
between “N+MEC+IC” and “N+MEC+IC+RC” in Fig.
7.4.13 in [1]. The effect of NNLO can be distinguished from
that of NLO even at Eγ = 10 MeV, which is the energy of
interest in the HIGS proposal [5]. Therefore measurement
of T20 will provide a unique opportunity to test the role
of higher orders in the pionless theory. At the same time,
it might help to understand the origin of the discrepancy
between experiment and theory in the polarization observables
in few-body systems.

In Fig. 9, curves of T22 up to NLO and NNLO at Eγ = 2.75,
5, 10, and 19.8 MeV are plotted as functions of θ . As mentioned
before, there is no contribution from the NLO corrections, and
the NNLO corrections, mainly the sd wave mixing term, are
a leading contribution to T22 at the low energies. Our result at
Eγ = 19.8 MeV is compared to a result of the Bonn potential
model [1]. One can see quantitative agreement between the
NNLO result and the Bonn potential one.

IV. SUMMARY

Motivated by the proposal of measurement of the tensor
analyzing power T20 at the HIGS facility, we studied the
photodisintegration of deuteron at low energies. Pionless EFT
with dibaryon fields is used as the tool for calculation, and
corrections up to NNLO are included. Various observables
such as the total and differential cross sections and spin
dependent observables are investigated.

For the quantities that have nonvanishing contributions
from LO such as the cross sections and Py ′ , NNLO terms give
perturbative corrections to the NLO results, and thus the theory
shows good convergent behavior. For Py ′ , including NNLO

contributions, our result becomes closer to a sophisticated
calculation with the Av18 model. The discrepancy between
measurement and the NLO result remains unsolved even if we
include the NNLO corrections.

For T20, NNLO gives negligible change to the NLO result at
Eγ = 2.75 MeV, but the correction becomes more significant
as the energy increases. No data are available below 19.8 MeV,
and we can make comparison to the result with the Bonn
potential model at Eγ = 19.8 MeV. The agreement to the Bonn
model result depends on the angle, but as a whole the NNLO
result agrees well with that of the Bonn model quantitatively.

For T22, contributions up to NLO are null, and nonvanishing
values appear at NNLO. The NNLO result agrees with the
Bonn model result fairly well. The agreement in the tensor
analyzing power proves that increase of the order in both wave
functions and operators for the external probe in the pionless
EFT can give results as accurate as those of the most elaborate
calculation with modern phenomenological potential models.
Since our paper includes electric and magnetic hadronic
currents up to NNLO, it would be interesting to check the
effects of other multipole operators.
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