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Structure of neutron star crusts from new Skyrme effective interactions
constrained by chiral effective field theory
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We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme
mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the
ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model
as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical
nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase
as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters,
especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability
method to check the validity of the numerical solutions based on energy comparisons.
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I. INTRODUCTION

Neutron stars offer the possibility to study matter under
extreme conditions (in density and neutron-to-proton ratio)
inaccessible to laboratory experiments on Earth. The inner
core of a neutron star may reach densities as high as five to ten
times nuclear saturation density, a regime for which no well-
converged theoretical expansions are presently available. The
structure and composition of the inner core are consequently
highly uncertain and may contain deconfined quark matter
[1–3], hyperonic matter [4–8], or meson condensates [9–12].
In contrast, the inner crust and outer core span densities from
n � 4 × 1011 to 5 × 1014 g/cm3, corresponding to nucleon
Fermi momenta of kF � 400 MeV, which are much less than
the chiral symmetry breaking scale of �χ = 4πfπ � 1 GeV.
Chiral effective field theory (EFT) [13] may therefore provide
a suitable theoretical framework for exploring neutron star
matter at these densities.

In recent years there has been significant progress in the
development of realistic chiral nucleon-nucleon (NN) forces
[14–17] at and beyond next-to-next-to-next-to-leading order
(N3LO) in the chiral power counting. Nuclear many-body
forces become relevant in homogeneous matter at densities
larger than n � 0.25n0 (where n0 = 2.4 × 1014 g/cm3 is the
saturation density of nuclear matter) and have been included
in numerous studies of the cold nuclear and neutron matter
equations of state (EOS) [18–28]. Neutron star structure
and evolution requires in addition the equation of state at
arbitrary isospin-asymmetry [29,30] and finite temperature
[31–33], which has been computed consistently with the
same chiral nuclear force models and many-body methods.
The inhomogeneous phase of nuclear matter encountered in
neutron star crusts depends also on gradient contributions to
the energy density. Previous work has focused on the leading-
order Hartree-Fock contribution to the isoscalar and isovector
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gradient couplings from the density matrix expansion [34–36],
ab initio studies of the isovector gradient coupling strength
from quantum Monte Carlo simulations of pure neutron matter
[37,38], and nuclear response functions in Fermi liquid theory
[39–42].

Neutron star crusts have been studied using phenomeno-
logical liquid drop models [43–45] and the Thomas-Fermi
approximation [46–51]. Nuclear pasta phases resulting from
the competition between the Coulomb interaction and nuclear
surface tension were also treated in the liquid drop and
Thomas-Fermi methods. More sophisticated approaches to
the nuclear pasta phase have been investigated using the
Skyrme-Hartree Fock approximation [52–55] and molecular
dynamics simulations [56–58].

In the present work we utilize recent results for the
homogeneous nuclear matter equation of state from chiral
EFT to develop new Skyrme mean field parametrizations
that enable the study of finite nuclei, inhomogeneous nuclear
matter in neutron star crusts, and the mass-radius relation of
neutron stars. Recent works [59–61] have used the low-density
equation of state of neutron matter from chiral EFT to constrain
nonrelativistic and relativistic mean field models, while the
present study includes the full isospin-asymmetric matter
equation of state at second order in perturbation theory up to
n = 2n0 as a fitting constraint. Several chiral nuclear force
models are considered in order to estimate the theoretical
uncertainty.

We find that the traditional Skyrme model cannot accom-
modate the density dependence of the nuclear equations of
state derived from chiral effective field theory (χEFT). We
therefore introduce additional interaction terms in the Skyrme
Hamiltonian that go as the next higher power of the Fermi
momentum. This enables an accurate reproduction of the
bulk-matter equation of state from chiral EFT. Using the
new models, we investigate the phase of subsaturation nuclear
matter, which is expected to be present at the boundary between
the outer core and inner crust of neutron stars, an environment
that is highly neutron rich. Indeed the proton fraction of nuclear
matter in beta equilibrium at the crust-core boundary is roughly
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∼3%. In the boundary region, nuclear matter experiences a
shape change caused by the competition between the repulsive
Coulomb interaction and surface tension. We adopt the analytic
solution of the Coulomb interaction in discrete dimensions to
study the phase of nuclear matter in the liquid drop model
(LDM) formalism. The energy per nucleon of nuclear matter
determines the lowest energy state and therefore the discrete
shape in the pasta phase. We also study inhomogeneous nuclear
matter by employing the Thomas-Fermi (TF) approximation
employing a parameterized density profile (PDP) for neutrons
and protons.

The paper is organized as follows. In Sec. II we describe the
Skyrme force model used to investigate the neutron star inner
crust and outer core. The traditional Skyrme model is extended
in order to reproduce the homogeneous matter equation of state
of isospin-asymmetric nuclear matter from chiral effective
field theory as well as the ground state energies of doubly-
magic nuclei. In Sec. III, we present the numerical method to
determine the transition density for the core-crust boundary.
The liquid drop model, Thomas-Fermi approximation, and
thermodynamic instability methods are then employed to find
the transition densities. We summarize our results in Sec. IV.

II. NUCLEAR MODEL

We begin by describing the microscopic chiral nuclear force
models [24,62] employed in the present study. The two-body
force is treated at N3LO in the chiral expansion, and the 24
low-energy constants associated with NN contact terms are
fitted to elastic nucleon-nucleon scattering phase shifts and
deuteron properties. The three-body force is treated at N2LO,
and the cE and cD low-energy constants associated with the
contact three-body force and one-pion exchange three-body
force, respectively, are fitted to reproduce the ground-state
energies of 3H and 3He as well as the beta-decay lifetime of
3H. The resolution scale is set by the momentum-space cutoff
�, which is varied over the range 414 < � < 500 MeV. At
this resolution scale many-body perturbation theory is well
converged, and the resulting neutron matter equation of state
below saturation density is strongly constrained [63]. Cutoff
variation provides only one means to study the theoretical
uncertainties in chiral effective field theory, and future work
will be devoted understanding better the errors due to neglected
higher-order terms in the chiral expansion.

To be specific we use three different values of the
momentum-space cutoff, � = 414, 450, and 500 MeV, we
and denote the corresponding nuclear potentials as n3lo414,
n3lo450, and n3lo500. The strategy is then to identify what
approximations are needed in each case to provide an accurate
description of the bulk matter equation of state in the
vicinity of nuclear matter saturation. As shown in previous
work [24], the chiral potentials with the two lowest cutoff
values give reasonable nuclear matter properties at second
order in many-body perturbation theory with Hartree-Fock
intermediate-state propagators. In particular, the saturation
energy lies in the range E/A = −(15.7–16.2) MeV while the
saturation density lies in the range n0 = (0.165–0.174) fm−3.
At the same approximation in many-body perturbation theory,
the � = 500 MeV chiral potential exhibits too little attraction,

and the binding energy per nucleon at saturation density
is only E/A � −11.5 MeV. We therefore employ for this
potential second-order perturbation theory with free-particle
intermediate-state energies, which on the one hand accounts
for theory uncertainties associated with the choice of the
single-particle energy spectrum, and on the other hand leads to
an improved description of nuclear matter saturation. The latter
results from a larger density of states near the Fermi surface
that enhances the overall attraction from the second-order
perturbative contribution. In this case the saturation energy
and density are E/A = −15.9 MeV and n0 = 0.171 fm−3,
respectively.

The calculations outlined above have been extended in
the present work to describe cold nuclear matter at arbitrary
isospin asymmetry. The resulting equations of state are then
used as data in fitting new Skyrme model parametrizations.
In addition, the density-gradient contributions to the nu-
clear energy density, which have important effects on the
structure of the neutron star inner crust, are constrained by
including the ground-state energies of doubly-magic nuclei
in the χ2 minimization function for the Skyrme model
parameters.

The same two- and three-body chiral potentials have also
been used in numerous studies of nuclear dynamics and
thermodynamics (for recent reviews, see Refs. [64,65]). In
particular, the critical endpoint of the first-order liquid-gas
phase transition line was found [32] to be consistent with recent
empirical determinations [66], and the low-density–high-
temperature equation of state of pure neutron matter was found
[33] to be in very good agreement with the model-independent
virial expansion. The applications described below focus on
the cold neutron star composition and equation of state,
but we may anticipate future extensions to finite tempera-
ture matter employing a strategy similar to that described
above.

The energy density in dense nuclear matter can be expanded
in powers of the proton and neutron Fermi momenta, k

p
f =

(3π2np)1/3 and kn
f = (3π2nn)1/3, as follows:

ε = 1

2m
(τn + τp) + αL

(
n2

n + n2
p

) + 2αUnnnp

+ [
ηL

(
n2

n + n2
p

) + 2ηUnnnp

]
nγ , (1)

where αL,U , ηL,U , and γ are constants and

τn = 3
5 (3π2)2/3n5/3(1 − x)5/3,

τp = 3
5 (3π2)2/3n5/3(1 − x)5/3,

(2)

nn = n(1 − x), and np = nx. The above approximation can
explain χEFT asymmetric matter results quite well with small
deviation (<1%). However, it cannot be used to calculate the
properties of finite nuclei directly unless we find the surface
tension in the liquid drop model or the gradient terms in the
Thomas-Fermi approximation

The polynomial expansion in Eq. (1) can be derived from
the phenomenological Skyrme nucleon-nucleon interaction,
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given by [67–69]:

vi,j (ri ,rj )= t0(1 + x0Pσ )δ(ri − rj )

+ t1

2
(1 + x1Pσ )[δ(ri − rj )k2 + k′2δ(ri − rj )]

+ t2(1 + x2Pσ )k′ · δ(ri − rj )k

+ 1

6
t3(1 + x3Pσ )ργ1δ(ri − rj )

+ iW0k′δ(ri − rj ) × k · (σ i + σ j ), (3)

where Pσ is the spin exchange operator, k = 1
2i

(∇i − ∇j ),
k′ = − 1

2i
(∇′

i − ∇′
j ), and the local density ρ is evaluated at

(ri + rj )/2.
Traditional Skyrme force models have ten parameters

which can be fitted to the binding energies of finite nuclei,
neutron skin thicknesses, bulk matter properties, and neutron
matter calculations. However, we find that this number of
parameters is insufficient to reflect both the equation of state
of asymmetric nuclear matter from chiral EFT as well as the
properties of finite nuclei. We therefore extend the traditional
Skyrme force model by adding extra density dependent terms
of the form

vij → vij + 1
6 t4(1 + x4Pσ )ργ2δ(ri − rj ). (4)

We determine the Skyrme Hartree-Fock parameters from
fitting to the recent χEFT asymmetric nuclear matter calcula-
tions outlined in Ref. [30] together with the binding energies
of doubly closed shell nuclei. We define the χ2 minimization
function:

χ2(x0, . . . ,x4,t0, . . . ,t4,W0)

= wb

[
1

NiNj

∑ {EEFT(ni,xj ) − ESk(ni,xj )

MeV

}2
]

+ wn0 (0.16 − ρ0 fm3)2 + wB(−16 + BSk MeV−1)2

+ wF

[
1

Nk

∑ (
B

Exp.
k − BSk

k

MeV

)2]
(5)

with weighting factors {wb,wn0 ,wB,wF }.
Since Hartree-Fock theory is the lowest order approxima-

tion in a systematic many-body perturbation theory expansion,
there is no clean one-to-one correspondence between the
Skyrme parameters and the chiral expansion coefficients. It
is, however, possible to reproduce properties of the chiral EFT
equation of state from a simplified Skyrme mean field model.
The desirable aspect of the Skyrme parametrization is that it
enable us to then calculate also the properties of finite nuclei,
such as their density profiles and binding energies, as well as
the composition and structure of neutron star inner crusts.

We present the new Skyrme parametrizations in Table I.
We set γ1 = 1/3 and γ2 = 1 in all cases. This can be justified
when we consider that the energy density of bulk nuclear
matter can be expanded as a function of the Fermi momentum
kf . Note that x4 is much larger than the other x’s in the
parametrization. This indicates that spin exchange interactions
give very large attraction in dense matter within the extended
Skyrme formalism. Figure 1 shows the energy per baryon

TABLE I. Skyrme force parameters fitted to the chiral N3LO
asymmetric matter equation of state and finite nuclei binding energies.
The parameters have units such that the energy density is given in
MeV fm−3.

Skχ414 Skχ450 Skχ500

t0 −1734.0261 −1803.2928 −1747.48258
t1 255.6550 301.8208 241.31968
t2 −264.0678 −273.2827 −331.04118
t3 12219.5884 12783.8619 12491.50533
t4 556.1320 564.1049 405.03174
x0 0.4679 0.4430 0.59530
x1 −0.5756 −0.3622 −1.15893
x2 −0.3955 −0.4105 −0.58432
x3 0.7687 0.6545 1.20050
x4 −15.8761 −11.3160 −25.49381
γ1 1/3 1/3 1/3
γ2 1 1 1
W0 93.7236 106.4288 98.08897

in asymmetric nuclear matter from both chiral effective field
theory and Skyrme phenomenology. The “+” denotes the
energy per baryon from χEFT with � = 450 MeV, while the
solid lines are results from the new Skyrme models derived
in our work. The deviations get larger as the total baryon
number density increases, but overall the agreement is quite
satisfactory given the simplicity of the Skyrme mean field
model. We have performed the same fitting procedure also for
the � = 414 MeV and � = 500 MeV chiral nuclear potentials,
and in these cases the fit is of the same quality as that shown in
Fig. 1 for the case � = 450 MeV. We include as well the total
binding energy of doubly-magic nuclei in the χ2 minimization
function for the Skyrme parametrizations. Table II shows the
results of the Skyrme Hartree-Fock calculations compared to
the experimental values [70].
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FIG. 1. Comparison of the energy per baryon in asymmetric
nuclear matter from chiral EFT (� = 450 MeV) and its Skyrme fitting
model. The isospin asymmetry is denoted by δ = (nn−np)/(nn+np).
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TABLE II. Skyrme Hartree-Fock results for the binding energies
(in units of MeV) of doubly closed shell nuclei together with bulk
nuclear matter properties [71].

Exp. Skχ414 Skχ450 Skχ500

16O 127.62 126.73 126.93 127.07
40Ca 342.05 342.63 341.93 341.43
48Ca 415.99 416.66 416.69 417.24
56Ni 483.99 482.29 482.32 482.38
100Sn 825.78 826.20 825.69 822.55
132Sn 1102.90 1103.05 1103.22 1106.91
208Pb 1636.44 1635.88 1636.21 1635.30

ρ0 (fm−3) 0.160 ± 0.005 0.1697 0.1562 0.1679
B (MeV) 16.0 ± 0.5 16.1987 15.9262 15.9895
K (MeV) 230 ± 30 243.19 239.53 238.16
Sv (MeV) 32.5 ± 2.5 32.3456 30.6346 29.1167
L (MeV) 58 ± 18 51.9307 42.0518 40.7415

Having determined all Skyrme model parameters from
the χ2 fitting function in Eq. (5), we now check theoretical
predictions for bulk matter and finite nuclei. Also in Table II
we show the properties of nuclear matter around the saturation
density, including the saturation energy per particle B, the
nuclear incompressibility K , the isospin-asymmetry energy
Sv , and the isospin-asymmetry slope parameter L. Overall the
microscopic predictions agree very favorably with experimen-
tal constraints [71].

As an example of the Skyrme Hartree-Fock calculations
for finite nuclei, we present the density profile of 208Pb in
Fig. 2. The experimental charge density [72] is included
for comparison. The central density of 208Pb from the � =
414 MeV and � = 500 MeV chiral potentials is greater
than that from the � = 450 MeV potential model. This can
be understood by noting that the saturation density of the
� = 450 MeV model is close to the empirical value of

0 2 4 6 8 10 12

r (fm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
ty

(f
m

−3
)

neutron

proton
208Pb

Exp. Charge

Skχ414

Skχ450

Skχ500

FIG. 2. Density profiles of neutron and proton in 208Pb using
Skyrme Hartree-Fock calculations. Experimental charge density is
also added for comparison.
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FIG. 3. Mass-radius curves from the Skyrme mean field models
constructed in the present work.

n0 = 0.16 fm−3, while the other two potentials give saturation
densities closer to n0 = 0.17 fm−3.

To check the behavior of the Skyrme mean field models
in the high-density region (ρ > 0.4 fm−3), we solve the
Tolman-Oppenheimer-Volkov (TOV) equations for a static
cold neutron star:

dp

dr
= −G[M(r) + 4πr3p](ε + p)

r[r − 2GM(r)]
,

dM

dr
= 4πεr2,

(6)

where r is the radial distance from the center, M(r) is the
enclosed mass of a neutron star within r , ε represents the
energy density, and p the pressure. Figure 3 shows the mass
and radius curves for the three different Skyrme parameter
sets. For inhomogeneous nuclear matter in the crust of neutron
stars, we used the EOS from the liquid drop model described
in more detail in Sec. III.

The central shaded area is a comprehensive estimate of
neutron star radii from observations of X-ray bursters [73].
The rectangular bars around 2.0M� represent observational
constraints on the maximum neutron star mass [74,75]. For
all three Skyrme parametrizations we see that the maximum
neutron star mass is equal to 2.1M�. Therefore, all of the
parameter sets satisfy the maximum mass constraint and
moreover are also consistent with the radius constraint. The
speed of sound in nuclear matter is defined as

c2
s

c2
= ∂p/∂n

∂ε/∂n
, (7)

where c is the speed of light. The speed of sound for the
new Skyrme parametrizations was checked. The total baryon
number densities when cs/c = 1 are 1.41, 1.11, 1.50 fm−3 for
Skχ414, Skχ450, Skχ500 respectively. The central densities
reached at maximum neutron star mass are 1.17, 1.18,
1.14 fm−3 for Skχ414, Skχ450, Skχ500 in this order. Only
the Skχ450 would lead to a violation of causality in neutron
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stars close to the upper mass limit. However, for all of the new
Skyrme parametrizations, 2.1M� neutron stars satisfying the
causality constraint can be constructed.

III. NEUTRON STAR CRUST EOS
AND THE CORE-CRUST BOUNDARY

In the crust of neutron stars, a nucleus exists at the center of
unit cell, called as Wigner-Seitz cell. Electrons are treated as a
free relativistic gas that interacts with protons only through the
Coulomb interaction. In the inner crust, neutrons drip out of
heavy nuclei and form a dilute gas of interacting particles. As
the baryon number density increases, heavy nuclei, neutrons,
and electrons merge together to make homogeneous nuclear
matter.

A. Compressible liquid drop model

A phenomenological approach to study the neutron star
inner crust equation of state is to utilize the liquid drop model
(LDM) in the Wigner-Seitz cell approximation.

The energy density used to obtain the ground state of
inhomogeneous nuclear matter in the crust of a neutron star
can be written as

ε = unifi + σ (xi)ud

rN

+ 2π (nixierN )2ufd (u)

+ (1 − u)nnofno, (8)

where u is the filling factor (the fraction of space taken up by
a heavy nucleus in the Wigner-Seitz cell), ni is the number
density of heavy nuclei, xi is the proton fraction, fi represents
the volume contribution to the energy per baryon in the heavy
nucleus obtained from the new Skyrme parametrizations, σ (xi )
is the surface tension as a function of the proton fraction, rN

is the heavy nucleus radius, nno is the density of the unbound
neutron gas, fno is the energy density of the neutron gas, and
fd is a geometric function describing the Coulomb interaction
[43] for different dimensions d. The surface tension is given
explicitly by

σ (x) = σ0
2α+1 + q

(1 − x)−α + q + x−α
, (9)

where q parametrizes how quickly the surface tension de-
creases as a function of the proton fraction x. Larger values
of q correspond to more gradual decreases in the surface
tension for neutron-rich nuclei. The parametrization of the
surface tension in Eq. (9) avoids the problem of negative
values that can occur for highly neutron-rich nuclei when
a simple quadratic formula for the surface tension is used
[76]. The numerical values of σ0 and q are fitted to give the
lowest root-mean-square deviation to known nuclear masses
[77]. For the three chiral interactions n3lo414, n3lo450,
and n3lo500, we find σ0 = {1.311, 1.186, 1.233} MeV fm−2

and q = {40.362, 46.748, 69.413}, respectively. In all cases
α = 3.4 is used since it is adequate in describing both isolated
nuclei and nuclei in dense matter.
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FIG. 4. Shape function D(u) for discrete dimension and contin-
uous dimension. The continuous dimension curve always lies below
those of the discrete geometries.

The Coulomb energies for different nuclear geometries
(e.g., cylindrical or planar) are encoded in the function

fd (u) = 1

d + 2

[
2

d − 2

(
1 − 1

2
du1−2/d

)
+ u

]
. (10)

The case d = 3 corresponds to spherical shape, d = 2 to
cylindrical shape, and d = 1 to slab shape. The equation
for spherical bubble geometry can be obtained with the re-
placement uσ → (1 − u)σ and ufd (u) → (1 − u)fd (1 − u).
For a given baryon number density n and proton fraction
Yp, we solve the following equations for the four unknowns
{u,ni,xi,nno}:

μni − xiσ
′(xi)d

rNni

= μno, (11a)

Pi − 2π (nixierN )2 ∂(ufd )

∂u
= Pno, (11b)

n − uni − (1 − u)nno = 0, (11c)

nYp − unixi = 0, (11d)

where n is the total baryon number density in the Wigner-Seitz
cell. From the nuclear virial theorem, the surface energy
ES = σ (xi)ud/rN is related to the Coulomb energy EC =
2π (nixierN )2ufd (u) by ES = 2EC , which is obtained by
setting ∂ε/∂rN = 0. This gives [78] the relation ES + EC =
βD, where β = ( 243π

2 )
1/3

(nixieσ )2/3 and D(u) = u[ d2fd

9 ]
1/3

.
If we allow d to be continuous, we can find the shape function
D that describes all pasta phases with a single formula.

We adopt the function D used in the Lattimer-Swesty
EOS [78]:

D(u) = u(1 − u)
(1 − u)f 1/3

3 + uf
1/3
3 (1 − u)

u2 + (1 − u)2 + 0.6u2(1 − u)2
. (12)

The combined pasta phase model can be implemented if
a continuous dimension d is allowed. Figure 4 shows the
shape function D(u) for each discrete dimension (shown as
colored lines) as well as for continuous dimension (black
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FIG. 5. Energy per nucleon as a function of baryon number
density in beta-stable nuclear matter employing the liquid drop model
with the Skχ450 Skyrme mean field model.

line). The latter has the correct behavior as u → 0 and u → 1.
It represents the energy state that minimizes the combined
Coulomb and surface energies.

Note that the dimension of the lowest energy state will
be determined by the volume fraction of dense matter in the
Wigner-Seitz cell. The crossing points for each dimension are
independent of the equation of state and occur at the values u =
{0.21525,0.35499,0.64501,0.78475} for the {3D-2D, 2D-1D,
1D-2DB, 2DB-3DB} transitions. For instance, if the volume
fraction of dense matter is 0.4, then the lowest energy state is
the slab phase.

In Fig. 5 we show the energy per baryon in the geo-
metric configuration with the lowest energy, including also
the beta-equilibrium condition. As the density increases the
lowest energy state proceeds through d = 3,2,1,2B,3B, and
finally to uniform matter. By “2B” and “3B” we denote the
two-dimensional and three-dimension bubble geometries. The
solution found by employing a continuous dimension correctly
represents the lowest energy state. The first derivative of
E/A with respect to the baryon number density, namely the
pressure, is shown in Fig. 6. The pressure at each transition
density is essentially continuous in the LDM formalism. The
continuous dimension LDM also gives the correct numerical
values compared with the discrete dimension calculation in the
LDM.

In Table III we show the phase transition densities to
different nuclear pasta geometries in the neutron star inner
crust. We see that the different Skχ mean field models
predict similar transition densities for each of the phases, with
uncertainties less than 0.006 fm−3.

In Fig. 7 we show the volume fraction of dense matter in the
Wigner-Seitz cell for each discrete dimension and continuous
dimension calculation. The volume fractions for the lowest
energy states are in the correct regions as expected. Therefore,
the volume fraction of the dense phase in the Wigner-Seitz
cell at each dimension can be used to identify the ground state
dimension among the different pasta phases. The continuous
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FIG. 6. Pressure as a function of baryon number density in
beta-stable nuclear matter employing the liquid drop model with
the Skχ450 Skyrme mean field model. At each transition density the
pressure is almost continuous in the case of the LDM approach.

dimension approach provides a reliable way to construct the
nuclear equation of state in the pasta phase analytically. This
also indicates that the supernova EOS table [78] using the
continuous dimension is a valid numerical method that does
not destroy the continuity in pressure at each transition density.

B. Thomas-Fermi approximation

In the Thomas-Fermi (TF) approximation, the number
density and momentum density are given by

ρt = 1

4π2

∫ ∞

0
ft d

3p, τt = 1

4π2

∫ ∞

0
ftp

2d3p (13)

where t is the type of nucleon and ft is the Fermi occupation
function:

ft = 1

1 + exp
(

εt−μt

T

) , (14)

where εt is the single-particle energy for protons or neutrons
and μt is the chemical potential for each species. At T = 0
MeV this equation simply gives τt = 3

5 (3π2)2/3ρ
5/3
t . In the

crust of neutron stars, the density profile of inhomogeneous

TABLE III. Transition densities (in units of fm−3) between
different geometries in the neutron star inner crust using the LDM
method.

Skχ414 Skχ450 Skχ500

3DN-2DN 0.0665 0.0634 0.0656
2DN-1DN 0.0766 0.0736 0.0782
1DN-2DB 0.0864 0.0837 0.0895
2DB-3DB 0.0884 0.0859 0.0918
3DB-Uni. 0.0901 0.0878 0.0940
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FIG. 7. Volume fraction of the dense phase in the Wigner-Seitz
cell. The volume fraction indicates which dimension is the ground
state for a given baryon number density.

nuclear matter can be parametrized [46] as

nt (r) =
{

(nti − nto)
[
1 − (

r
Rt

)αt
]3 + nto if r < Rt ,

nto if r � Rt .
(15)

When μn > 0, nno 	= 0. Thus nno represents the density of the
unbound neutron gas. Depending on the density, all parameters
(nti , nto, rt , Rt , αt ) are to be obtained numerically from the
minimization of the total energy:

E =
∫

[H(nn,np) + mnnn + mpnp + Eel(ne)

+ ECoul(np,ne) + Eex(np,ne)] dr, (16)

where Eel is the energy density of noninteracting electrons and
the Hamiltonian H is given by

H(nn,np) = 1

2mn

τn + 1

2mp

τp + VNN (nn,np). (17)

We use for VNN the nonrelativistic Skyrme force models
obtained in this work. In the crust of neutron stars, the electrons
are distributed uniformly, so we assume a constant electron
density. The Coulomb energy is given by

ECoul(np,ne) = 1
2 [np(r) − ne][Vp(r) − Ve(r)]. (18)

The Coulomb potentials for protons and electrons are given by

Vp(r) =
∫

e2 np(r′)
|r − r′| dr′, Ve(r) =

∫
e2 ne

|r − r′| dr′ (19)

and the Coulomb exchange energy is given as [79]

Eex = −3

4

(
3

π

)1/3

e2
[
n4/3

p (r) + �(xe)n4/3
e

]
, (20)

where

�(xe) = 1

4x4
e

[
9

4
+ 3

(
β2 − 1

β2

)
ln β − 6(ln β)2

−
(

β2 + 1

β2

)
− 1

8

(
β4 + 1

β4

)]
,

xe = kFe

mec
; β = xe +

√
1 + x2

e . (21)

Note that xe 
 1 indicates a nonrelativistic limit and thus
�(xe) approaches 1. On the other hand, when xe � 1,
�(xe) becomes −1/2, which changes the sign and thus the
exchange interaction becomes repulsive compared with the
nonrelativistic case. We take �(xe) = −1/2 since xe � 80
in the inner crust of neutron stars. The nuclear pasta phases
require Coulomb interaction formulas for different dimensions
[51]:

Spherical:

Vp(r) = 4πe2

[
1

r

∫ r

0
r ′2ρp(r ′)dr ′ +

∫ Rc

r

r ′ρp(r ′)dr ′
]
,

Ve(r) = 2πe2ne

[
R2

c − 1

3
r2

]
. (22)

Cylindrical:

Vp(r) = −4πe2

[
ln(r)

∫ r

0
r ′ρp(r ′)dr ′

+
∫ Rc

r

r ′ ln r ′ρp(r ′)dr ′
]
,

Ve(r) = πe2neR
2
c

[
1 − r2

R2
c

− 2 ln Rc

]
. (23)

Slab:

Vp(z) = −4πe2

[
z

∫ z

0
ρp(z′)dz′ +

∫ Rc

z

z′ρp(z′)dz′
]
,

Ve(z) = −2πe2ne

(
z2 + R2

c

)
. (24)

Figure 8 shows the energy per baryon for beta-equilibrated
neutron star matter obtained in the TF approximation using
the Skyrme parametrization Skχ450 developed in the present
work. As in the case of the LDM model, the ground-state
geometry for increasing density proceeds through the sequence
{spherical, cylindrical, slab, cylindrical hole, spherical hole,
uniform matter} in this order. Each new geometry spans
smaller and smaller ranges of densities, and the transition
density to the homogeneous phase occurs at nc = 0.084 fm−3.

The ground state pressure as a function of density employ-
ing the same interaction model is shown in Fig. 9. Unlike the
LDM approach, the Thomas-Fermi approximation results in
a small discontinuity in the pressure at the interface between
each phase when we only compare the energy per baryon
to find the ground state of the phase. This is caused by the
intrinsic discontinuity in the expressions for the Coulomb
energy in the different geometries. The LDM approach enables
us to investigate the structure of the pasta phase with fewer
parameters, so the pressure discontinuity or proton fraction
discontinuity can be small. On the other hand, the more
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FIG. 8. Energy per baryon using the TF approximation with the
Skχ450 Skyrme fit model.

realistic TF method can be performed in space discretization.
This means that the discontinuity in the pressure is a natural
phenomenon in the case of phase transformation in the TF
approximation. When the Maxwell construction is employed,
the interval of the density in the coexistence region is so small
(�ρ = 0.0001 fm−3) that the microscopic structure of the
neutron star barely changes. As an example, the two densities
of mixed state for spherical shape and cylindrical shape are
ρt1 = 0.06406 fm−3 and ρt2 = 0.06414 fm−3.

The choice of LDM vs TF model also gives rise to
differences in nuclear composition. Figure 10 shows the atomic
number of heavy nuclei in the crust of neutron stars. We define
the atomic number as the integrated number of protons in the
Wigner-Seitz cell. The dotted line indicates the 3D–2D phase
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FIG. 9. Pressure vs baryon number density using in the TF
approximation. A discontinuity in the pressure occurs at the shape
transition densities, but the discontinuity region (shown in the inset)
is very narrow.
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FIG. 10. Atomic number of heavy nucleus in the Wigner Seitz
cell. The dotted line around ρ = 0.064 fm−3 indicates the transition
between 3D nuclei and 2D nuclei.

transition density, which is nearly independent of whether we
employ the LDM or the TF model. The atomic number is
consistently larger in the TF approximation, differing from
the LDM atomic number by roughly 2 up to the transition
to cylindrical geometry. The atomic number in continuous
dimension over the 3D–2D phase transition density represents
the average atomic number in the unit cell. It is not a physical
quantity in the crust. Above the 3D–2D phase transition
density, the TF model gives a larger atomic number since
the Wigner-Seitz cell decreases as the total baryon density
increases (which means the distance between nuclei decreases)
and total number of protons and neutrons increases in the
spherical cell.

Figure 11 shows the neutron and proton density profiles in
each numerical calculation with the Skχ450 interaction. Even
if the central densities of protons and neutrons are different
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FIG. 11. Neutron and proton density profiles using three different
numerical methods with the Skχ450 Skyrme mean field model.
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TABLE IV. Pasta phase transition densities (in units of fm−3)
using the TF method. The numbers in parentheses represent the
transition densities with the exchange Coulomb interaction included.

Skχ414 Skχ450 Skχ500

3DN-2DN 0.0681 0.0641 0.0626
(0.0684) (0.0643) (0.0629)

2DN-1DN 0.0791 0.0755 0.0790
(0.0795) (0.0759) (0.0795)

1DN-2DB 0.0830 0.0809 0.0865
(0.0830) (0.816) (0.0868)

2DB-3DB 0.0852 0.0830 0.0885
(0.0860) (0.0835) (0.0890)

3DB-Uni. 0.0860 0.0835 0.0894
(0.0868) (0.0842) (0.0894)

in the LDM and TF model, the neutron densities outside the
nucleus are nearly the same. This indicates that the density
profile is the problem to be solved in order to understand the
coexistence of dense and dilute matter. Whatever numerical
method is used, the density of the unbound gas of neutrons
should be the same under identical physical conditions.

Table IV shows the transition density at each phase
boundary. The transition density for uniform matter is highly
correlated with the saturation density. If the saturation density
is greater (as is the case for the Skχ414 and Skχ500 Skyrme
interactions), uniform nuclear matter is formed at a higher
density. The numbers in parentheses indicate the transition
density when we include the exchange Coulomb interaction in
the numerical calculation. The exchange Coulomb interaction
in Eq. (20) gives a negative contribution to the total energy and
therefore its presence tends to delay the transitions to higher
densities. However, the effects are nearly negligible.

C. Thermodynamic instability

In neutron stars, the phase transition from uniform nuclear
matter to inhomogeneous nuclear matter takes place when
matter begins to exhibit an instability to density fluctuations.
Baym et al. [80] show that the matter is stable when the
following relationship is maintained:

v0 + 2(4πe2β)1/2 − βk2
T F > 0, (25)

where

v0 = ∂μp

∂ρp

− (∂μp/∂ρn)2

∂μn/∂ρn

, (26)

β = 2(Qpp + 2Qnpζ + Qnnζ
2), ζ = −∂μp/∂ρn

∂μn/∂ρn

, (27)

and kT F is the Thomas-Fermi wave number,

k2
T F = 4e2

π
k2
e , ke = (3π2ρp)1/3. (28)

In Skyrme models, Qnn and Qnp are given by

Qnn = Qpp = 3
16 [t1(1 − x1) − t2(1 + x2)],

Qnp = Qpn = 1
16 [3t1(2 + x1) − t2(2 + x2)]. (29)
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FIG. 12. Transition density contour plot for the core-crust bound-
ary obtained from thermodynamic instability. The individual points
are taken from the modified Skyrme interactions obtained in Ref. [81].

For the three Skyrme parametrizations developed in this
work, Qnn and Qnp are given by Qnn = {107.297,105.458,

106.901} MeV fm5 and Qnp = {119.833,94.759,119.641}
MeV fm5 for Skχ414, Skχ450, and Skχ500 respectively.
A more conservative uncertainty estimate is obtained by
considering a wider set of 31 Skyrme models whose neutron
matter equations of state are similar to that from chiral effective
field theory. The 31 Skyrme force models include KDE [82],
KDE0 [82], LNS [83], MSk1 [84], MSk2 [84], SGII [85],
SkM [86], SkM∗ [87], SkT1 [88], SkT2 [88], SkT3 [88],
SkT8 [88], SKX [89], SKXce [89] Skxs15 [90], Skz-1 [91],
SLy0 [92], SLy1 [92], SLy2 [92], SLy3 [93], SLy4 [93],
SLy5 [93], SLy6 [93], SLy7 [93], SLy8 [92], SLy9 [92],
SLy10 [93], SLy230a [94], UNEDF0 [95], and UNEDF1
[96]. Figure 12 shows the resulting confidence contour of
Qnn and Qnp, with the symbol “×” at the center of the
ellipse representing the average values. In these calculations
the proton and neutron chemical potentials in homogeneous
matter are taken from the microscopic equation of state
computed from the � = 450 MeV chiral nuclear potential.
The three individual points labeled “SLy7,” “SLy4,” and
“SkM*” come from the modified isovector gradient coupling
strengths deduced in recent quantum Monte Carlo studies [81].
Figure 12 indicates that the density for the core-crust boundary
is between ρ = 0.082 fm−3 and ρ = 0.087 fm−3. We infer
from the contour plot that the core-crust transition density
is proportional to the sum of Qnn + kQnp. We propose an
empirical formula for the core-crust density with Qnn and
Qnp:

ρt � ρt1 + αQnn + βQnp, (30)

which indicates that Qnn and Qnp will directly determine the
core-crust density. Table V shows α and β corresponding to
Eq. (30), which were obtained from our new parametrization.
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TABLE V. Numerical values for the parameters in Eq. (30).

ρt1 (fm−3) 9.103 × 10−2 ± 7.065 × 10−4

α (MeV−1 fm−8) −3.088 × 10−5 ± 5.257 × 10−7

β (MeV−1 fm−8) −1.891 × 10−5 ± 1.010 × 10−6

IV. CONCLUSION

We have studied the composition and structure of neutron
star crusts by comparing the energy densities for different
pasta phases using both the liquid drop model and the Thomas-
Fermi model. The results are based on a new set of extended
Skyrme parametrizations derived in the present work that fit the
bulk isospin-asymmetric nuclear matter equation of state from
χEFT and the binding energies of doubly-magic nuclei. The
neutron star maximum masses obtained from these Skyrme
parametrizations are consistent with observations of 2.0M�
neutron stars.

From the LDM and TF calculations, the crust-core transi-
tion density is strongly correlated with the saturation density
of symmetric nuclear matter. For this reason the extended
Skyrme parametrization Skχ450, which reproduces well both
the empirical saturation energy and density, is expected to
provide the most reliable prediction for the crust-core interface
density. The predicted pressure at the phase boundaries
between different pasta geometries is smooth in the LDM
but exhibits small discontinuities in the TF approximation. We
have studied as well a continuous-dimension LDM that treats

the pasta phases as a function of the dense matter volume
fraction in the Wigner-Seitz cell. All three methods give a
core-crust boundary density around half saturation density,
ρt = 0.084 fm−3.

Compared to previous works [97,98], we analyzed the
theoretical uncertainties in the core transition density of
neutron stars by varying the gradient terms Qnn and Qnp.
We find that the transition density has a two-dimensional
correlation with the Q’s. Low values of these gradient term
coupling strengths result in an increase in the transition density
from the crust to core, which increases the volume of the
neutron star crust. The uncertainty in Qnn and Qnp can be
reduced by microscopic calculations of the static density
response function using χEFT in many-body perturbation
theory or quantum Monte Carlo simulations. A more accurate
determination of Qnn and Qnp will therefore play an important
role for improving energy density functionals and to more
accurately predict the density at a neutron star’s core-crust
boundary.

We find that nuclear pasta exists within the density range
between ρ = 0.065 and 0.090 fm−3. Macroscopically it exists
within a 100 m thickness in the inner crust of a neutron star
with 1.4M�. The spherical hole phase exists within the density
range of �ρ = 0.002 fm−3 at most. This means that spherical
holes exist only within a �R = 5 m range in neutron stars,
which might be destroyed in fast rotating neutron stars because
of tidal deformation. Our results are similar to the previous
works of Oyamatsu [46] and Sharma et al. [51], who employed
phenomenological models with equations of state similar to the
predictions from χEFT.
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