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Background: The recent accurate measurement of the mass of two pulsars close to or above 2 M� has raised
the question of whether such large pulsar masses allow for the existence of exotic degrees of freedom, such as
hyperons, inside neutron stars.
Purpose: In the present work, we will investigate, within a phenomenological relativistic mean field approach,
how the existing hypernuclei properties may constrain the neutron star equation of state and confront the neutron
star maximum masses obtained with equations of state calibrated to hypernuclei properties with the astrophysical
2 M� constraint.
Method: The study is performed using a relativistic mean field approach to describe both the hypernuclei and the
neutron star equations of state. Unified equations of state are obtained. A set of five models that describe 2 M�
when only nucleonic degrees of freedom are employed. Some of these models also satisfy other well-established
laboratory or theoretical constraints.
Results: The �-meson couplings are determined for all the models considered, and the � potential in symmetric
nuclear matter and � matter at saturation are calculated. Maximum neutron star masses are determined for two
values of the �-ω meson coupling, gω� = 2gωN/3 and gω� = gωN , and a wide range of values for gφ�. Hyperonic
stars with the complete baryonic octet are studied, restricting the coupling of the � and � hyperons to the ω, ρ,

and σ mesons due to the lack of experimental data, and maximum star masses calculated.
Conclusions: We conclude that, within a phenomenological relativistic mean field approach, the currently
available hypernuclei experimental data and the lack of constraints on the asymmetric equation of state of nuclear
matter at high densities set only a limited number of constraints on the neutron star matter equation of state
using the recent 2 M� observations. It is shown that the � potential in symmetric nuclear matter takes a value of
∼30−32 MeV at saturation for the gω� coupling given by the SU(6) symmetry, being of the order of the values
generally used in the literature. On the other hand, the � potential in � matter varies between −14 and −8 MeV,
taking for vector mesons couplings the SU(6) values, at variance with generally employed values between −1
and −5 MeV. If the SU(6) constraint is relaxed and the vector meson couplings to hyperons are kept to values
not larger than those of nucleons, then values between −13 and +9 MeV are obtained.
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I. INTRODUCTION

Neutron stars are among the smallest and densest objects
in the Universe. With radii of the order of ∼10 km and
masses that can be at least as large as two solar masses, matter
inside neutron stars is subject to extreme conditions of density,
isospin asymmetry, and magnetic field intensities. These
objects constitute perfect laboratories to study nuclear matter
under extreme conditions and the QCD phase diagram at low
temperatures and high densities, and therefore they have been
attracting attention in different fields of physics. Traditionally
neutron star matter has been modeled as a uniform neutron-rich
fluid in equilibrium with respect to the weak interactions
(β-stable matter) surrounded by a nonhomogeneous crust.
Neutrons in the inner crust and neutrons and protons in the
uniform core of the star are expected to be superfluid. Because
of the large value of the density, new degrees of freedom
are expected to appear in the inner core of neutron stars in
addition to nucleons. Among others, hyperons, Bose-Einstein

condensates of kaons or pions, and even deconfined quark
matter have been considered.

Unlike in terrestrial conditions, where hyperons are unsta-
ble and decay into nucleons through weak interactions, matter
in neutron stars maintains the weak equilibrium between
the decays and their inverse capture processes. Since the
pioneering work of Ambartsumyan and Saakyan in 1960
[1], the presence of hyperons in neutron stars has been
studied by many authors using either microscopic [2–6] or
phenomenological [7,8] approaches to the neutron star matter
equation of state (EoS). All these works agree that hyperons
may appear in the inner core of neutron stars at densities
around ∼(2–3) × n0 (n0 = 0.16 fm−3), when the nucleon
chemical potential is large enough to make the conversion
of a nucleon into a hyperon energetically favorable. This
conversion relieves the Fermi pressure exerted by nucleons,
making the EoS softer. Consequently, the mass of the star,
and, in particular, its maximum value Mmax, is substantially
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reduced. In microscopic calculations (see, e.g., Refs. [2,3]),
this reduction can be even below the value of the mass of the
Hulse-Taylor pulsar (1.4408 ± 0.0003 M�) [9]. This is not the
case, however, in phenomenological calculations which find
values of Mmax compatible with the canonical value above.
In fact, most relativistic mean field (RMF) models including
hyperons predict maximum masses in the range 1.4–1.8 M�
[7], although with some parametrizations masses as large as
2 M� could be even obtained [10,11].

The presence of hyperons in neutron stars seems to be
energetically unavoidable, although the strong softening of the
EoS associated with their appearance (notably in microscopic
models) leads to the prediction of maximum masses not
compatible with observations. A natural question, therefore,
arises: Can hyperons still be present in the interior of
neutron stars if Mmax is reduced to values not compatible
with astrophysical observations, although their presence is
energetically favorable? This question is at the origin of what
has been called the hyperon puzzle. Its nontrivial solution
is currently a subject of intense research, especially in view
of the recent measurements of unusually high masses of
the millisecond pulsars PSR J1614-2230 (1.928 ± 0.017 M�)
[12,13] and PSR J0348+0432 (2.01 ± 0.04 M�) [14], which
ruled out almost all currently proposed EoS with hyperons.
The solution of this problem demands a mechanism that could
eventually provide the additional repulsion to make the EoS
stiffer and the maximum mass compatible with observation
[15]. Three different mechanisms have been proposed: (i) the
inclusion of a repulsive hyperon-hyperon interaction through
the exchange of vector mesons [16–19], or less attractive scalar
σ -meson exchange [20], at the cost of potentially making the
EoS too stiff around and below saturation density and therefore
incompatible with recent quantum Monte Carlo nuclear matter
[21] and chiral effective field theory [22] calculations; (ii) the
inclusion of repulsive hyperonic three-body forces [23–26]; or
(iii) the possibility of a phase transition to deconfined quark
matter at densities below the hyperon threshold [27–31]. An
alternative way to circumvent the hyperon puzzle by invoking
the appearance of other hadronic degrees of freedom such as,
for instance, the 
 isobar that pushes the onset of hyperons
to higher densities has also been considered [32]. We note
that very recently Haidenbauer et al. [33] have shown that the
� single-particle potential, obtained in a Brueckner-Hartree-
Fock calculation using a hyperon-nucleon interaction derived
from an SU(3) chiral effective field theory, becomes strongly
repulsive for densities larger than 2n0, therefore shifting the
onset of hyperons to extremely high densities and potentially
solving the hyperon puzzle without the necessity of invoking
any of these more exotic mechanisms.

In addition to the observation of massive neutron stars,
more astrophysical constraints on the neutron star EoS and
consequently on its hyperon content such as the measurement
of their radius, moment of inertia, or the surface gravitational
red shift from spectral lines may come in the near future
thanks to the next generation of x-ray telescopes and radio
observatories. No measurement of the two latter quantities
has been obtained so far. Many techniques have been devised
to determine neutron star radii but current estimates are still
controversial both on theoretical and observational grounds

(see, e.g., discussions in [15,34,35]. Some of the estimates
predict radii of ∼10 km or less [36,37]. If this is confirmed by
further analysis, then the simultaneous existence of massive
neutron stars and objects with small radii would be a very
complicated problem to solve for any of the existing models
of the pure nucleonic EoS. A solution to this problem that
has been proposed is the possible existence of the so-called
“twin stars,” stars with similar masses but smaller radii than
those made only of nucleons. Recently, it has been conjectured
that these twin stars could in fact be composed of strange
hadronic or quark matter [38,39]. Future x-ray missions such
as NICER [40], Athena [41], and potential LOFT-like missions
[42] promise simultaneous determinations of the mass and
radius with ∼5% precision.

In the present work, we explore the possibility of obtaining
two solar mass hyperonic stars within the relativistic mean
field (RMF) approach when the hyperon-meson couplings
are constrained by the existing experimental hypernuclear
data. We shall consider a set of models that satisfy the two
solar mass constraint imposed by the pulsars J1614-2230 and
J0348+0432 when only purely nucleonic degrees of freedom
are considered and discuss the consequences of including
hyperons when hypernuclear data are used to constrain the
hyperon-nucleon and the hyperon-hyperon interactions. In
particular, the experimental data on single and double �
hypernuclei will be taken into account in the model within
the framework of the RMF approach, as done in Ref. [43].
Recently, a study with a similar objective has been performed
in Ref. [20]. The authors of this work used symmetry
arguments to fix the couplings of the vector mesons to hyperons
and single � hypernuclei binding energies to constrain the
coupling of the σ meson to the � hyperon. The coupling of
the other hyperons to the σ meson were obtained, requiring
that the lower bound on the maximum mass of the star be
2 M�. In this work, we follow the same procedure to fix
the �-σ meson coupling, but a different approach is used
for the other couplings. In particular, we take also into account
the experimental data on double � hypernuclei. A comparison
between the two approaches is presented.

The paper is organized in the following way: In Sec.
II, we describe and summarize the main properties of the
different RMF parametrizations used in this work. Then, in
Sec. III, we review the current status of available hypernuclear
experimental data. In Sec. IV, we explain how the binding
energies of single and double � hypernuclei are used to
calibrate the coupling constants of the � hyperon with the
different mesons in the RMF models. We compare our results
for the � potential at saturation with the usual values taken in
the literature and provide tables with values of the � couplings
calibrated to up-to-date hypernuclear data. Hyperonic and
unified EOS are then built in Sec. V and their predictions for
Mmax are confronted with the existence of pulsars with M�.
We finish by briefly summarizing our results and presenting
our conclusions in Sec. VI.

II. RMF MODELS

In the following, five different RMF models, all predicting
2 M� purely nucleonic stars, are considered: four nonlinear
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TABLE I. Nuclear properties at saturation density (n0) predicted
by the different RMF models used in this work: energy per nucleon
(E0), compression modulus (K), symmetry energy (J ), its slope
(L), and incompressibility (Ksym) at the saturation point of uniform
symmetric nuclear matter at the density n0. The last column shows
the value of neutron star maximum mass (MN

max) predicted by these
models when only nucleonic degrees of freedom are considered.

Model n0 E0 K J L Ksym MN
max Ref.

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (M�)

TM1 0.146 −16.3 281.2 36.9 111.2 33.8 2.18 [44]
TM2ωρ 0.146 −16.4 281.7 32.1 54.8 −70.5 2.25 [45]
NL3 0.149 −16.2 271.6 37.4 118.9 101.6 2.77 [46]
NL3ωρ 0.148 −16.2 271.6 31.7 55.5 −7.6 2.75 [47]
DDME2 0.152 −16.1 250.9 32.3 51.2 −87.1 2.48 [48]

Walecka type models with constant coupling parameters and
one density-dependent model with coupling parameters that
depend on the density. Among the former, we consider the
parametrizations TM1 [44], TM2ωρ [45], NL3 [46], and
NL3ωρ [47], and for the latter we choose the model DDME2
[48]. Some of their nuclear properties as well as their prediction
for the neutron star maximum mass are presented in Table I.
In the following, we briefly explain the reasons for the choice
of these particular models.

The parametrization TM1 [44] was used in Ref. [43] to
describe single and double � hypernuclei, and we will consider
it as a reference. This model includes a nonlinear ω meson term
which softens the EoS at high densities and is the underlying
model of the Shen-Toki-Oyamatzu-Sumiyoshi supernova EoS
[49,50]. However, this EoS has a symmetry energy slope
parameter that is too large (L = 110 MeV) [51] and does not
satisfy the subsaturation neutron matter constraints imposed
by microscopic calculations [22]. Including a nonlinear term
that mixes the ω and ρ mesons allows us to overcome these
two shortcomings. This term has been added to the TM1
parametrization, resulting in the parametrization TM2ωρ [45]
that has a weaker nonlinear ω term, making the EoS stiffer than
TM1 at large densities. We also consider the NL3 parametriza-
tion [46], which was fitted to the ground-state properties of
both stable and unstable nuclei. This parametrization predicts
very large, purely nucleonic neutron star maximum masses but
has the drawback of having, as TM1, a symmetry energy slope
that is too large (L = 118 MeV) [51]. Thus, we will also con-
sider the parametrization NL3ωρ [47] with a softer density de-
pendence of the symmetry energy due to inclusion of the non-
linear ωρ term. We note here that in Ref. [52] this parametriza-
tion was one of only four parametrizations chosen as satisfying
a set of generally accepted constraints and were still able to de-
scribe 2 M� stars. The model DDME2 with density-dependent
couplings was another one of these four parametrizations,
which we also choose in the present study. We note also that of
these five parametrizations only TM1, TM2ωρ, and DDME2
satisfy the constraints imposed by the flow of matter in heavy
ion collisions [53] (see the discussion in Ref. [54]). However,
since the analysis of the experimental flow data is quite
complex and not totally model independent, this constraint

TABLE II. Parameter sets used in this work. The DDME2
parameters are defined at saturation density and the meson masses
are given in MeV.

TM1 TM2ωρ NL3 NL3ωρ DDME2

mσ 511.198 511.198 508.194 508.194 550.1238
mω 783 783 782.501 782.501 783
mρ 770 770 763 763 763
gσ 10.029 9.998 10.217 10.217 10.5396
gω 12.614 12.503 12.868 12.868 13.0189
gρ 9.264 11.303 8.948 11.277 7.3672
κ/M 3.043 3.523 10.431 10.431 0
λ 3.710 −47.362 −28.885 −28.885 0
ξ 0.0169 0.0113 0 0 0
�v 0 0.03 0 0.03 0

should be taken with care. Therefore, we will also consider the
two parametrizations NL3 and NL3ωρ. The set of parameters
of all the models is shown in Table II. The parameters for the
DDME2 model are shown at saturation density.

The inclusion of hyperons in RMF models is performed
in a quite natural way [55,56]. The hyperon-nucleon (YN )
interaction is described by means of the exchange of σ , ω,
and ρ mesons, similar to the nucleon-nucleon (NN ) one. The
hyperon-hyperon (YY ) interaction is included in our model
by considering also the coupling of hyperons with the hidden
strangeness mesons σ ∗ and φ. The Lagrangian density for a
system that includes the eight lightest baryons, i.e., the nucleon
doublet (neutron n and proton p) and the six lightest hyperons
(�, the �+,�0,�− triplet, and the �0,�− doublet), reads
[44,45] as

L =
∑
B

�̄B

[
γμD

μ
B − m∗

B

]
�B

+
∑
l=e,μ

ψ̄l[iγμ∂μ − ml]ψl

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

3!
kσ 3 − 1

4!
λσ 4

+ 1

2
m2

ωωμωμ − 1

4
�μν�

μν + 1
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ξg4

ω(ωμωμ)2

+ 1

2
m2

ρρμ · ρμ − 1

4
Pμν · Pμν

+�ω

(
g2

ωωμωμ
)(

g2
ρρμ · ρμ

)

+ 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2)

+ 1

2
m2

φφμφμ − 1

4
�μν�

μν, (1)

where D
μ
B = i∂μ − gωBωμ − gφBφμ − gρBτB · ρμ and m∗

B =
mB − gσBσ − gσ ∗Bσ ∗ is the effective mass of baryon B. �B

and ψl are the baryon and lepton Dirac fields, respectively,
and giB is the coupling constant of meson i with baryon
B. The mass of baryon B and lepton l are denoted by mB

and ml , respectively. The constants k, λ, and �ω are the
couplings associated with the nonlinear interaction terms,
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and τB is the isospin operator. The mesonic field tensors are
given by their usual expressions: �μν = ∂μων − ∂νωμ, Pμν =
∂μρν − ∂νρμ − gρ(ρμ × ρν), and �μν = ∂μφν − ∂νφμ. The
couplings gi,B are constant for the models TM1, TM2ωρ,
NL3, and NL3ωρ, whereas they are density dependent in
DDME2. We will explain later in Sec. IV how all these
couplings are fixed. Here, we simply indicate that the coupling
constants of the nucleons with the σ ∗ and φ mesons are set to
zero.

III. BRIEF OVERVIEW OF HYPERNUCLEAR PHYSICS

Whereas the NN interaction is fairly well known due to the
large number of existing scattering data, the YN and YY ones
are still poorly constrained. Experimental difficulties due to the
short lifetime of hyperons and the low-intensity beam fluxes
have limited the number of �N and �N scattering events to
several hundred [57–61] and that of �N events to very few.
In the case of the YY interaction, the situation is even worse
because no scattering data exist at all. This limited amount of
data is not enough to fully constrain these interactions.

In the absence of scattering data, alternative information on
the YN and YY interactions can be obtained from the study of
hypernuclei, bound systems composed of nucleons and one or
more hyperons. Hypernuclei were discovered in 1952 with the
observation of a hyperfragment in a balloon-flown emulsion
stack by Danysz and Pniewski [62]. Since then, more than 40
single � hypernuclei, and few double � [63–70] and single
� [71,72] ones have been identified by the use of high-energy
accelerators and modern electronic counters. However, it has
not been possible to prove without any ambiguity the existence
of � hypernuclei (see, e.g., Refs. [73–81]), which suggests that
the � nucleon interaction is most probably repulsive [82–91].

Single � hypernuclei can be produced by several mech-
anisms, such as (K−,π−) strangeness exchange reactions,
where a neutron hit by a K− is changed into a � emitting
a π−. The analysis of these reactions showed many of the
hypernuclear characteristics such as, for instance, the small
spin-orbit strength of the YN interaction, or the fact that the �
essentially retains its identity inside the nucleus. The use of π+
beams permitted (π+,K+) associated production reactions,
where an ss̄ pair is created from the vacuum, and a K+ and
a � are produced in the final state. The electroproduction
of hypernuclei by means of the reaction (e,e′K+) provides a
high-precision tool for the study of hypernuclear spectroscopy
[92] due to the excellent spatial and energy resolution of
the electron beams. Recently, the HypHI Collaboration at
FAIR/GSI has proposed a new way to produce hypernuclei
by using stable and unstable heavy ion beams [93]. The �,
and the 3

�H and 4
�H hypernuclei have been observed in a first

experiment performed using a 6Li beam on a 12C target at 2 A
GeV [94].

Hypernuclei can be produced in excited states if a nucleon
in a p or higher shell is replaced by a hyperon. The energy of
these excited states can be released either by emitting nucleons,
or sometimes when the hyperon moves to lower energy states,
by the emission of γ rays. Measurements of γ -ray transitions
in � hypernuclei has allowed the analysis of the excited levels
with an excellent energy resolution. Systematic studies of

single � hypernuclei indicate that the �N interaction is clearly
attractive [95].

� hypernuclei can also be produced by the mechanisms
just described. However, as said before, there is not yet an
unambiguous experimental confirmation of their existence.

To produce double-� hypernuclei, first it is necessary to
create a �− through reactions like

K− + p → �− + K+ (2)

or

p + p̄ → �− + �̄+ . (3)

Then, the �− should be captured in an atomic orbit and interact
with the nuclear core, producing two � hyperons by means of
the process

�− + p → � + � + 28.5 MeV, (4)

providing about 30 MeV of energy that is equally shared
between the two �’s in most cases, leading to the escape
of one or both hyperons from the nucleus. � hypernuclei can
be produced by means of the reactions (2) and (3) and, as said
above, very few of them have been identified. The analysis
of the experimental data from production reactions such
as 12C(K−,K+)12

�−Be [71] indicates an attractive �-nucleus
interaction of the order of about −14 MeV. Here, we should
mention the very recent observation of a deeply bound state
of the �−-14N system with a binding energy of 4.38 ± 0.25
MeV by Nakazawa et al. [72]. This event provides the first
clear evidence of a deeply bound state of this system by an
attractive �N interaction. Future � hypernuclei experiments
are being planned at J-PARC.

Double-strange hypernuclei are currently the best systems
to investigate the properties of the baryon-baryon interaction in
the strangeness S = −2 sector. The �� bond energy 
B�� in
double � hypernuclei can be determined experimentally from
the measurement of the binding energies of double and single
� hypernuclei as


B�� = B��

(A

��
Z

) − 2B�

(A−1
�

Z
)
. (5)

Emulsion experiments [64,66–68] have reported the forma-
tion of a few double � hypernuclei: 6

��He, 10
��Be, and 13

��B.
From the subsequent analysis of these emulsion experiments,
a quite large �� bound energy of around 4 to 5 MeV was
deduced, contrary to expectation from SU(3) (Stoks and Rijken
in Ref. [96]). We should also note that the identification
of some of these double � hypernuclei was ambiguous.
Therefore, careful attention should be paid when using the
data from this old analysis to put any kind of constraint on
the �� interaction. However, a new 6

��He candidate having a
�� bond energy


B�� = 1.01 ± 0.2+0.18
−0.11 MeV (6)

was unambiguously observed in 2001 at KEK [70]. This value
has then been recently revised due to a change in the value of
the �− mass [97]:


B�� = 0.67 ± 0.17 MeV. (7)

In this work, we will use these two values of 
B�� to constrain
the coupling of the � hyperon with the σ ∗ meson.

065803-4



HYPERNUCLEI AND MASSIVE NEUTRON STARS PHYSICAL REVIEW C 95, 065803 (2017)

IV. CALIBRATION OF THE � MESON
COUPLING CONSTANTS

Since the � is an isospin singlet, it does not couple with
the ρ meson. Therefore, only the coupling constants with the
σ, ω, σ ∗, and φ mesons should be fixed. The usual procedure
to fix these couplings consists in using the SU(6) symmetry to
determine the couplings of the � with the vector mesons in
terms of those of the nucleons

Rω� = gω�/gωN = 2/3, (8)

Rφ� = gφ�/gωN = −
√

2

3
, (9)

and the �-scalar mesons ones by using data derived indirectly
from hypernuclei. In particular, these couplings are obtained
by imposing the value of the � potential in symmetric nuclear
matter, UN

� , and the value of the � potential in � matter, U�
� ,

at saturation, defined respectively as

UN
� (n0) = −(gσ� + g′

σ�ρs)σ0 + (gω� + g′
ω�n0)ω0

(10)

and

U�
� (n0) = −(gσ� + g′

σ�ρs)σ0 − (gσ ∗� + g′
σ ∗�ρs)σ

∗
0

+ (gω� + g′
ω�n0)ω0 + (gφ� + g′

φ�n0)φ0

(11)

with σ0, ω0, σ ∗
0 , and φ0 being the mean-field values of the σ , ω,

σ ∗, and φ meson fields, respectively, and ρs being the scalar
density. The quantities g′

i� are the derivatives with respect
to the density of the couplings gi� and are only different
from zero for models with density-dependent couplings (see
the discussion below). All quantities are calculated at the
saturation density n0. Values of UN

� (n0) � −30 MeV and
U�

� (n0) = −5 MeV are usually employed in the literature
to determine these couplings. The first value results from
the extrapolation at A−2/3 = 0 of the experimental binding
energy of single-� hypernuclei, A being the mass number of
the hypernucleus. The second one is usually obtained from
the identification U�

� (n0) = −
B�� and the use of the value

B�� = 5 MeV deduced from the emulsion experiments of
Refs. [64,66–68] carried out in the 1960s and 1990s. However,
as pointed before, due to the ambiguous identification of some
of the double � hypernuclei in these experiments, one has to
be very careful when using these old experimental data.

In this work, however, we follow a different procedure. The
couplings of the � with the various mesons are calibrated
by fitting the experimental binding energy of � hypernuclei
following the approach of Refs. [43,98]. Before we give more
specific details on the calibration procedure, we should note
that we have considered two different approaches to fix the
hyperon-meson couplings in the case of the model DDME2.
First, we use the experimental constraints and symmetry
arguments to fix the magnitude of the couplings at saturation
density, as done for the other models with constant couplings.
Then we consider (i) that the hyperon-meson couplings do
not depend on the density (this approach is designated simply
as DDME2) and (ii) we assume for the hyperon couplings

the same density dependence of the nucleonic couplings (this
model will be referred as DDME2D). For explicit density
dependence of the couplings, the interested reader is referred
to Ref. [48].

Hypernuclei binding energies are obtained by solving the
Dirac equations for the nucleons and the � obtained from
the Lagrangian density (1) using the method described in
Refs. [99,100]. In this approach, the hypernucleus wave func-
tion is a Slater determinant and only the lowest single-particle
positive-energy states are occupied. We use the relativistic
mean field approximation where the meson field operators
are replaced by their expectation values and negative-energy
states are neglected (no-sea approximation). The numerical
algorithm consists in the expansion of the Dirac spinors and
mesonic fields in terms of the harmonic oscillator basis. There-
fore, the Dirac and Klein-Gordon equations are transformed
into matrix equations that are solved in a self-consistent way
until convergence is achieved. For an accurate description of
light hypernuclei, the center-of-mass correction, instead of the
simple correction

ECOM = 3

4
41A−1/3 [MeV] (12)

commonly used in the literature [100], is calculated through
the expression

ECOM = 〈P 2〉
2M

, (13)

where 〈P 2〉 is the expectation value of the squared total
momentum and M is the hypernucleus total mass. The former
expectation value is calculated from the actual many-body
state of the hypernucleus.

As in Ref. [43], we include the tensor term

LT � = ψ̄�

fω�

2M�

σμν∂νωμ ψ�, (14)

which is important to get a weak �-nuclear spin-orbit
interaction [101,102]. The spin-orbit potential for single �
hypernuclei is the result of two opposite contributions which
partially cancel out; one is the usual associated to the difference
between the derivative of the scalar (σ ) and vector (ω) central
potentials and the other is due to the tensor term.

Although no experimental data are available for the spin-
orbit splitting of � hypernuclei, taking into account the
tensor term, within the quark model (fω� = −gω�), causes
an improvement on the quality of the overall calibration of the
coupling constants.

A. Single � hypernuclei

For a given value of Rω�, the ratio Rσ� = gσ�/gσN is
calibrated to reproduce the binding energies B� of hypernuclei
in the s and p shells (see Fig. 1). The experimental data used
in the calibration are taken from Table IV of Ref. [103]. The
best value of Rσ� is determined by minimizing the function

χ2 = 1

N

N∑
i=1

(
B

exp
�i

− B the
�i

B
exp
�i

)2

, (15)
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FIG. 1. For the TM1-a model, experimental values of the binding
energies B� in the s and p shells of single � hypernuclei (black
circles) and modeled values (red squares and blue triangles, respec-
tively) obtained after adjusting Rσ� in order to minimize the quantity
χ 2 defined in Eq. (15). For � in p shells, p1/2 and p3/2 states are
plotted.

where B
exp
�i and B the

�i are, respectively, the values of the
binding energy of a given single � hypernuclei i obtained
experimentally and from the modeling, and N is the total
number of � hypernuclei for which experimental data are
available. Equal, or very close, values of Rσ� are obtained
if only heavy hypernuclei with Z > 20 are considered or
if the denominator in Eq. (15) is replaced by the error bar
on the experimental measurements of the binding energies.
Similarly, the calibration is hardly affected if only s-shell
binding energies are taken into account or if both shells are
included. In Table III, we indicate, for two different values of
Rω�, the calibrated values of Rσ� as well as the associated

TABLE III. Calibration to single � hypernuclei: For given Rω�,
values of Rσ� calibrated to reproduce the binding energies B� of
hypernuclei in the s and p shells. The last column contains the value
of the � potential in symmetric baryonic matter at saturation in MeV,
for reference.

Model Rω� Rσ� UN
� (n0)

TM1-a 2/3 0.621 −30
TM1-b 1 0.892 −31
TM2ωρ-a 2/3 0.621 −30
TM2ωρ-b 1 0.891 −31
NL3-a 2/3 0.622 −31
NL3-b 1 0.894 −32
NL3ωρ-a 2/3 0.622 −31
NL3ωρ-b 1 0.894 −32
DDME2-a 2/3 0.615 −32
DDME2-b 1 0.891 −35
DDME2D-a 2/3 0.621 −32
DDME2D-b 1 0.896 −35

value of the � potential in symmetric baryonic matter at
saturation UN

� (n0) obtained from Eq. (10), for all the models
considered. In this table and in the following for each RMF
parametrization we consider two values of the ratio Rω�, one
Rω� = 2/3 corresponding to SU(6) symmetry case labeled “a”
and a second with Rω� = 1 labeled “b,” where the symmetry
is broken. We note that the values of the couplings and that
of UN

� (n0) in Table III are remarkably similar: Rσ� � 0.62
for the a models and Rσ� � 0.89 for the b models, and
UN

� (n0) � −(30−32) MeV for all the models except two of
them. In Fig. 1, the experimental values and the theoretical
ones obtained after calibration are plotted for the TM1 model
with Rω� = 2/3.

B. Double � hypernuclei

The value of the coupling constants of the � to the
hidden-strangeness mesons σ ∗ and φ is calibrated using the
measured �� bond energy of 6

��He. Figure 2 shows for
the TM1-a and TM1-b models (with Rσ� values adjusted to
single � hypernuclei) lines of constant 
B�� consistent with
the experimental values of the bound energy of 6

��He, i.e.,
within the error bars defined in Eqs. (6) and (7). In particular,
the continuous lines correspond to the limits of Eq. (7), and
the dashed line corresponds to the upper limit of Eq. (6),
the lower limit being inside the interval defined by Eq. (7).
The color contours for Figs. 2(a) and 2(c) indicate the
value of the � potential in � matter at saturation, U

(�)
� (n0),

obtained from Eq. (11). For completeness, in Figs. 2(b)
and 2(d) we also plot contours for U

(�)
� at n0/5 as this is

the quantity that has been used to determine the couplings,
e.g., in Ref. [18]. The horizontal line corresponds to the
SU(6) value Rφ� = −√

2/3. We note that for most values
of the ratios Rσ ∗� = gσ ∗�/gσN and Rφ�, consistent with the
experimental constraint from 6

��He; the value of U
(�)
� (n0)

potential, however, greatly varies and is very different from
the value of approximately −5 MeV generally used in the
literature to fix these couplings. In Table IV, we indicate the
values of Rσ ∗�, U

(�)
� (n0), and U

(�)
� (n0/5) for two choices

of the ratio Rφ�: the one corresponding the SU(6) symmetry,
Rφ� = −√

2/3 � −0.471, and another one Rφ� = −√
2/2 �

−0.707 for which the symmetry is broken. The values of Rσ ∗�
and Rφ� have been obtained after calibrating to the lower and
upper values of the 6

��He binding energy given in Eq. (7),

B�� = 0.50 and 
B�� = 0.84 MeV, respectively, for our
set of models. On the one hand, U

(�)
� at saturation is shown to

vary from approximately −14 to −8 MeV, taking the SU(6)
values for vector mesons couplings, and −13 and +9 MeV
if the vector meson couplings to hyperons are imposed to be
not larger than to nucleons. These ranges strongly differ from
the generally employed one in the literature, i.e., between −1
and −5 MeV, showing that the use of such values for U

(�)
�

is inconsistent with the hypernuclei data. On the other hand,
the values of U

(�)
� evaluated at n0/5 are restricted to a smaller

range: −5 to −11 MeV approximately. On the whole, Tables III
and IV provide the complete set of values of the coupling
constants for the � calibrated to hypernuclear data for all our
parametrizations.
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FIG. 2. TM1-a (top) and TM1-b (bottom) models. The solid and dashed black lines correspond to values of (Rσ∗�,Rφ�) consistent with
the experimental values of the bound energy of 6

��He in Eqs. (6) and (7). Color contours: values of U�
� at (a) and (c) saturation density n0 and

(b) and (d) n0/5 obtained from Eq. (11).

V. HYPERONIC NEUTRON STARS

We now explore how the calibration of the coupling
constants for the � hyperon to the binding energies of
single and double � hypernuclei affects the properties of
neutron stars, in particular the maximum mass. To do so,
we calculate the EoS for neutron star matter. Following
the work of two of the authors [52], unified EoS are
built. For the outer crust, we take the EoS proposed in
Ref. [104], for the inner crust we perform a Thomas-Fermi
calculation and allow for nonspherical clusters according to
Refs. [105,106], and for the core we consider the homogeneous
matter EoS.

It is well known that the consequence of the inclusion of
hyperons is a softening of the EOS and thus a reduction of its
maximum mass Mmax compared to the purely nucleonic case.
The more hyperonic species at the density corresponding to
the central one of the NS with the maximum mass, the smaller
the value of Mmax. Consequently, we consider two types of
hyperonic models for the neutron star core: (i) a model in which
in addition to the nucleons only the � hyperon is present, and
(ii) a second one where we allow for the appearance of all
the hyperon species from the baryonic octet. The first model
constitutes a minimal hyperonic model in the sense that only
�, if they appear, are present at high density and, therefore,
compared to models with a richer hyperonic composition it

will predict largest maximum masses. Thus it defines the upper
limit on the maximum mass of an hyperonic neutron star.

For the second model, in principle a procedure similar to
the one presented in the previous section for � could be used
to determine the couplings for � and � hyperons with the
different mesons. However, as mentioned in Sec. III, there
is not yet an unambiguous experimental confirmation of the
existence of the � hypernuclei and very few � hypernuclei
have been observed. Hence, the couplings of the σ meson to
the � and � hyperons cannot be calibrated using hypernuclear
data. Therefore, in this case, we fix the value of the single-
particle potentials of the � and � and use equations equivalent
to Eq. (10) to determine these couplings. In order to explore
the dependence of the neutron star maximum mass on the
choice of potentials, we choose a repulsive potential for the �
hyperons: UN

� (n0) = 0,+30 MeV and UN
� (n0) = −14 MeV or

UN
� (2n0/3) = −14 MeV as suggested by the observations of

� hypernuclei [71,103]. In addition, since double � or double
� hypernuclei have not been observed, in this work we do
not include the coupling of these hyperons with the φ and
σ ∗ mesons. We adopt the SU(6) values for the couplings to
vector-isoscalar mesons:

gω� = 1

3
gωN = 1

2
gω�, (16)

gφ� = 2gφ� = −2
√

2

3
gωN (17)
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TABLE IV. Calibration to double � hypernuclei for all models a
and b. For given Rφ�, Rσ∗� are calibrated to reproduce the upper and
lower values of bound energy of 6

��He. For reference, the � potential
in pure � matter at saturation and at n0/5 are also given. All energies
are given in MeV.

Model 
B�� = 0.50 
B�� = 0.84

Rφ� Rσ∗� U�
� (n0) U�

� (n0/5) Rσ∗� U�
� (n0) U�

� (n0/5)

TM1-a −√
2/3 0.533 −11.2 −5.3 0.557 −14.2 −5.9

−√
2/2 0.833 −10.0 −5.4 0.849 −13.0 −6.0

TM1-b −√
2/3 0.549 −0.2 −6.8 0.580 −4.1 −7.6

−√
2/2 0.843 2.7 −6.8 0.864 −1.2 −7.7

TM2ωρ-a −√
2/3 0.529 −11.3 −5.4 0.553 −14.2 −6.0

−√
2/2 0.828 −10.1 −5.5 0.844 −13.0 −6.1

TM2ωρ-b −√
2/3 0.545 0.9 −6.9 0.577 −3.1 −7.7

−√
2/2 0.838 3.6 −7.0 0.859 −0.2 −7.8

NL3-a −√
2/3 0.534 −9.9 −5.6 0.559 −13.2 −6.3

−√
2/2 0.835 −8.4 −5.7 0.851 −11.6 −6.4

NL3-b −√
2/3 0.552 5.2 −7.0 0.586 0.8 −8.0

−√
2/2 0.846 9.0 −7.1 0.868 4.8 −8.0

NL3ωρ-a −√
2/3 0.534 −9.4 −5.5 0.560 −12.8 −6.2

−√
2/2 0.835 −7.9 −5.6 0.851 −11.2 −6.3

NL3ωρ-b −√
2/3 0.552 5.2 −7.0 0.586 0.8 −8.0

−√
2/2 0.846 9.0 −7.1 0.868 4.8 −8.0

DDME2-a −√
2/3 0.538 −8.4 −2.7 0.561 −11.6 −3.4

−√
2/2 0.828 −6.2 −2.7 0.843 −9.4 −3.4

DDME2-b −√
2/3 0.563 1.6 −2.8 0.592 −2.5 −3.7

−√
2/2 0.844 6.6 −2.8 0.864 2.6 −3.7

DDME2D-a −√
2/3 0.535 −11.9 −4.1 0.555 −11.7 −4.0

−√
2/2 0.826 −10.6 −4.0 0.840 −10.6 −4.0

DDME2D-b −√
2/3 0.564 −6.7 −4.3 0.588 −6.6 −4.3

−√
2/2 0.846 −3.4 −4.3 0.862 −3.4 −4.3

and assume

gρ� = 1

2
gρ� = gρN (18)

for the ρ meson, taking into account the isospin properties of
the different baryons.

Here we should mention that the authors of Refs. [20,107]
have considered the SU(3) flavor symmetric model to fix the
couplings of the hyperons to the three mesons, σ , ω, and ρ, and
have obtained for the last two the same couplings we define
in Eqs. (16)–(18). For the σ -hyperon couplings, they arrive at
the equality

2(gNσ + g�σ ) = 3g�σ + g�σ , (19)

which they complement with two extra conditions: that the
hyperon couplings are positive and smaller than the nucleon
ones [107]. From � hypernuclei, the ratio Rσ� was fixed to
0.616 [20] for the DDME2 model. This value of Rσ� together
with the relation (19) and the condition 0 � g�σ � gNσ results
in the following range of values for Rσ� : 0.15 � Rσ� � 0.45.
Using these values for the meson-hyperon coupling ratios, one
can determine the hyperonic potentials in symmetric nuclear
matter, taking the hyperon coupling parameters constant.
Although not indicated, this seems to have been the choice
in Refs. [20,107] since Eq. (33) in Ref. [107] applies to

TABLE V. Hyperon-σ coupling ratios and hyperonic potentials in
symmetric nuclear matter at saturation, using the conditions defined
in Refs. [20,107].

Rσ� Rσ� Rσ� U� U� U�

(MeV) MeV) (MeV)

0.6164 0.15 0 −32.6 154.9 107.7
0.6164 0.45 0.15 −32.6 34.3 47.5
0.6164 0.76 0.30 −32.6 −88.6 −14.0

constant couplings. The results are shown in Table V. The
first two lines of this table have been obtained by taking the
lower and upper values for the ratio Rσ� . While the value of
U�(n0) is within the expected range since Rσ� was fitted to
the � hypernuclei properties, the � potential is very repulsive,
contrary to the experimental results which seem to indicate
that approximately −14 MeV would be a reasonable value
[71,103]. Keeping now the Rσ� ratio and choosing Rσ� such
that U�(n0) = −14 MeV, Eq. (19) can be used to determine
Rσ� . The results are shown in the last line of Table V. One
immediately sees that the � potential comes out very attractive
when in fact it is expected to be repulsive. It appears therefore
that the constraints resulting from the SU(3) flavor symmetric
model for the hyperon-scalar-meson coupling constants are
not compatible with simultaneous attractive � potential and
repulsive � potential, and thus are in contradiction with what
experiments seem to indicate, as discussed in Sec. III.

Figure 3(a) shows the maximum mass Mmax obtained when
solving the Tolman-Oppenheimer-Volkoff (TOV) equations
[108] for an EoS based on the TM1-a parametrization as
a function of Rφ� for the two types of hyperonic models
mentioned before, both with � couplings adjusted to single
and double � hypernuclei. In addition, the horizontal gray line
indicates the maximum mass obtained for a purely nucleonic
core MN

max (see Table II) and the arrow shows the value of
Rφ� corresponding to SU(6) symmetry. Figure 3(b) shows, for
the TM1-a model and the two values of the UN

� potential, the
composition inside the core of a neutron star with a mass equal
to Mmax, taking Rφ� equal to its SU(6) value and � couplings
adjusted to 
B�� = 0.50 MeV and to single hypernuclei.

The influence of the value of the potential for the �
hyperons on the maximum mass is found to be small. Indeed,
the � are, after the �, the most numerous hyperons, owing to
the fact that the � potential is repulsive, and the fraction of �,
even if they appear, is approximately one order of magnitude
smaller, as shown in Fig. 3(b). Similarly, the value of the bound
energy of 6

��He hardly affects the results since very similar
values of Rσ ∗� are obtained for 
B�� = 0.50 or 0.84 MeV
as indicated in Table IV. The lower bound for TM1-b is very
flat, showing no dependence on Rφ� because the � hyperons
are suppressed and if present they only appear in residual
quantities. As an example, see Fig. 7(b) where a similar choice
of couplings for � is considered.

The second type of hyperonic model is a maximal hyperonic
model, which sets a lower limit on the neutron star maximum
mass with an hyperonic EoS, since for the � and � hyperons
the inclusion of the vector φ meson will bring extra repulsion
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FIG. 3. (a) Neutron star maximum mass Mmax as a function of Rφ� for for the TM1-a and TM1-b models and various hyperonic models.
The values Rσ�, Rφ�, and Rσ∗� are adjusted to reproduce the binding energies of single � hypernuclei and of 6

��He with 
B�� = 0.50 MeV
(solid lines) and 0.84 MeV (dashed lines). The dotted line indicates the SU(6) value of Rφ�; (b) composition of the neutron star core for the
TM1-a model and Rφ� equal to its SU(6) value and Rσ�, Rσ∗� calibrated to hypernuclei data with 
B�� = 0.50 MeV, for U�(n0) = 0 MeV
and U�(n0) = −14 (solid lines) or U�(2/3n0) = −14 MeV (dashed lines).

even if the scalar σ ∗ meson is also included, due to the vector
dominance at high densities. Consequently, with the two types
of hyperonic models we can calculate the range of neutron star
maximum masses consistent with the available experimental
data on hypernuclei and compare it to the astrophysical
constraints on Mmax. The width of this Mmax range reflects
our current uncertainty or lack of information on the YN and
YY interactions.

For the TM1-a model, as shown in Fig. 3, 2 M� can
only be reached when Rφ� < −1.5, i.e., when the SU(6) is
very strongly broken, and with the condition that only �
hyperons are included in the model. Therefore, this model
appears to be difficult to reconcile with both astrophysical
and hypernuclear data. In contrast, as far as the TM1-b model
is concerned, for any value of Rφ�, the maximal hyperonic
model gives Mmax > 1.78 M� and the minimum one gives
Mmax < 2.06–2.12 M�. Thus, hyperonic EoS consistent with
a maximum mass of 2 M� and current hypernuclear data can be
obtained.

A similar approach is used for the four additional
parametrizations. As shown in Fig. 4 for TM2ωρ-a model,
a maximum mass of 2 M� is reached if Rσ ∗� � −1 for the
minimal hyperonic model. Again, as for TM1, the breaking
SU(6) symmetry is required, but to a lesser extent since the
maximum masses are larger for the TM2ωρ parametrization
than for TM1 one. For the TM2ωρ-b model, the maximum
mass reachable for the minimal hyperonic model is always
larger than 2 M�: Mmax > 2.16–2.19 M�. This model is thus
compatible with both hypernuclear and astrophysical data.

Very similar results are obtained when comparing the NL3
and NL3ωρ parametrizations, shown in Fig. 5. It has to be
mentioned that for models with Rω� = 2/3 and for Rφ�

small in absolute value maximum mass, but when the baryon
effective mass becomes equal to 0. Such cases are not plotted

and no acceptable solutions were found, because the effective
mass of the nucleons becomes negative at densities that occur
inside a neutron star. The curves plotted in Fig. 5 correspond to
the hyperon-meson parametrizations which lead to physically
acceptable results, in particular, a positive effective mass. This
explains why the curves for the NL3-a and NL3ωρ-a models
extend only until −0.7 and from −0.9 to −0.8, respectively,
contrary to the curves of the other models shown in Figs. 3,
4, and 6, which extend until −√

2/3. Any model for the NL3
and NL3ωρ parametrizations is consistent with the existence
of a 2 M� neutron star and they even predict the possibility of
having hyperonic neutron stars with masses at least larger than
2.1 M�.

FIG. 4. Analog of Fig. 3(a) for the TM2ωρ parametrization.
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FIG. 5. Analog of Fig. 3(a) for the (a) NL3 and (b) NL3ωρ parametrizations.

Results for the DDME2 and DDME2D parametrizations
are plotted in Fig. 6. Whether hyperon couplings are density
dependent or not appears not to affect the maximum mass for
the models a, whereas it does for the models b.

For the DDME2 parametrization, Fig. 7 shows that for
model a the � is the first hyperon to set in. For a density
slightly larger, �− also appears and the fraction of electrons
and μ decreases. However, as soon �− sets in, it is favored
because the repulsive gω� coupling is one half of the coupling
of the ω to the �−. Taking gω� = 1, the � hyperon becomes
disfavored and only a small fraction at quite high densities
appears in the case with only nucleons and �’s. If the other
hyperons are also taken into account, there are no �’s below
nb = 1 fm−3.

For the DDME2D parametrization, the hyperon-meson
couplings are weaker than in the previous scenario, and they

decrease with the density as the nucleon-meson couplings.
A weaker gω� allows a lower onset density, and since in this
model the ρ-meson coupling is quite strong, the �− sets in first,
as shown in Fig. 8. The � hyperon sets in at a density very close
to �− if Rω� = 2/3; otherwise if Rω� = 1 its onset is shifted
to quite high densities and its fraction is always below 1%. As
in the case with constant couplings, as soon as the �− sets,
in the amount of the �− decreases steadily, since Rω� = 1/3
is half the corresponding coupling for the �−. Having more
strict constraints to fix the different hyperon-meson couplings
and including the strangeness hidden mesons, σ ∗ and φ, the
relative abundances will certainly change, but the total amount
of strangeness is less sensitive to the relative magnitude of the
couplings. For instance, making the � potential in nuclear
matter repulsive will certainly reduce the amount of �−
present in matter, increasing the amount of the other hyperons.

FIG. 6. Analog of Fig. 3 for the (a) DDME2 and (b) DDME2D parametrizations.
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FIG. 7. DDME2 parametrization with (a) SU(6), i.e., Rω� = 2/3 and (b) Rω� = 1 obtained for Rφ� equal to its SU(6) value and Rσ� and
Rσ∗� calibrated to hypernuclear data with 
B�� = 0.5 MeV. Dashed lines: only �s included; solid lines: all hyperons included with U� = 0
and U�(n0) = −14 MeV.

VI. SUMMARY AND CONCLUSIONS

In this work, we explore whether phenomenological RMF
models of the hyperonic matter EoS fitted to up-to-date
hypernuclei data are consistent with the existence of 2 M�
neutron stars.

Modeling single and double � hypernuclei, we first cali-
brate the � couplings for six different RMF parametrizations.
The usual way of calibrating the Rσ� coupling by imposing
the value of the � potential in symmetric baryonic matter,
i.e., using UN

� (n0) � −30 MeV, appears in agreement with
the binding energy of single � hypernuclei in the s and p
shells. Moreover, the value of Rσ� that comes out of the
order of ∼0.62 when the SU(6) value for gω� is taken is
quite independent of the model considered. This is not at all
the case for the calibration of the Rσ ∗� and Rφ� couplings.
Calibrating to the bound energy 6

��He shows that for the
models a and b the � potential in pure � matter U�

� (n0)

varies between approximately −14 and +9MeV. This is at
variance with the usual values of −1 or −5 MeV employed in
the literature, showing that these values are inconsistent with
the hypernuclear data. Tables III and III provide the values
of the various couplings to the � calibrated to hypernuclear
data.

We then proceed by constructing unified hyperonic EoS
for neutron star matter. While an approach similar to the one
presented for the � hyperon should in principle be used for
the � and � ones, the lack of hypernuclear experimental data
does not allow us to calibrate their couplings to hypernuclei
properties. Consequently, we proceed by devising two limiting
hyperonic models. In the minimal one, only the � hyperon
is included in addition to the nucleons and its couplings are
calibrated to hypernuclear data. The � and � hyperons are
included in the maximal hyperonic model using a repulsive
potential in symmetric baryonic matter for the � and a value
for � of −14 MeV, consistent with the scarce experimental

FIG. 8. Same as Fig. 7 for DDME2D parametrization.
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constraint for this hyperon. For these two hyperons, no
coupling to the hidden mesons σ ∗ and φ is included because
of the nonexisting experimental data that would allow us to
constrain the coupling parameters.

Finally, we confront the EoS calibrated to hypernuclear data
to the astrophysical constraint that neutron stars with 2 M�
exist. For the TM1 and TM2ωρ parametrizations, the breaking
of the SU(6) symmetry appears required to be consistent with
this constraint, and it is still not clear if even breaking the SU(6)
symmetry the 2 M� limit is satisfied when all the hyperons of
the baryonic octet also interact with the σ ∗ and φ mesons.
The NL3, NL3ωρ models predict the existence of hyperonic
stars with masses larger than at least 2 M�. However, these two
models may pose some problems when hyperons are included,
depending on the value of the hyperon-meson coupling: For
some choices of the couplings, the effective mass of the
nucleons becomes negative at densities that occur inside a
neutron star. As a consequence, these models are unacceptable
if future constraints indicate that the appropriate couplings
lie outside their physically acceptable range. The DDME2
and DDME2D models are both consistent with the 2 M�
constraint. In addition, two of the models, NL3 and TM1,
are, according to experimental and ab initio neutron matter
calculations, excluded due to their large symmetry energy and
slope [51]. Among the corresponding models satisfying those
constraints, NL3ωρ and TM2ωρ are able to satisfy the 2 M�
constraint only in a limited range of values of the hyperon-
meson coupling parameters and extra information is needed to

decide their validity. Finally, the presently existing information
on hypernuclei does not seem to put any constraint on DDME2
and DDME2D. In summary, up-to-date hypernuclei data set
some strong restrictions on the RMF parametrizations with
constant couplings and acceptable values of the symmetry
energy and its slope used in this work, but do not exclude any
of the considered models with density-dependent couplings,
on the ground that hyperonic stars are not consistent with the
existence of 2 M� neutron stars.

The properties of the nucleonic sector are themselves hardly
constrained at high density. Future measurements of neutron
star properties (mass and radius, surface gravitational redshift,
moment of inertia, etc.) and of high-density properties of
asymmetric nuclear matter in the laboratory appear necessary
to constrain further the nucleonic EoS. If in addition properties
of � and � hyperons are better constrained, one could reduce
the range of possible maximum masses given by the minimal
and maximal hyperonic models and potentially solve the
hyperon puzzle.
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