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Effect of the Coulomb interaction on the liquid-gas phase transition of nuclear matter
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We investigate the role of the Coulomb interaction on the liquid-gas phase transition of nuclear matter with
three different values of proton fraction (Yp = 0.5,0.3, and 0.1), relevant for heavy-ion physics as well as various
astrophysical scenarios, within the framework of quantum molecular dynamics. We perform simulations for a
wide range of density and temperature with and without the Coulomb interaction and calculate the two-point
correlation functions of nucleon density fluctuations for all the configurations to determine the phase transition
region. We also determine the critical end point of the liquid-gas phase transition for all three values of proton
fraction considered. We observe that the Coulomb interaction reduces the transition temperature by �2 MeV for
nuclear matter with Yp = 0.5 and 0.3 and by ∼1 MeV for nuclear matter with Yp = 0.1. However, the critical
density is found to be more or less insensitive to the Coulomb interaction.
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I. INTRODUCTION

One main focus of heavy-ion collision experiments is to
understand the properties of the liquid-gas phase transition in
nuclear matter [1,2]. This phase transition is also important
for various astrophysical reasons. For example, it plays a
significant role in the dynamics of supernova explosions [3–5]
and neutron stars [5–8]. There exist numerous studies on the
liquid-gas phase transition of both symmetric and asymmet-
ric nuclear matter using nonrelativistic Skyrme interactions
[9–13] as well as relativistic mean-field models [4,14–16,18].
Studies of the the liquid-gas mixed phase are mostly done
using the Gibbs phase equilibrium conditions derived in
bulk limit, i.e., ignoring the finite-size effects from the
surface and Coulomb interactions [4,13–18]. Several authors
have included finite-size effects but at different levels of
approximations and obtained considerable effects on the
liquid-gas phase transition properties [9,19–22]. Recently, in
Ref. [23] the influence of surface and Coulomb interactions
on the liquid-gas phase transition of stellar matter is studied
in a consistent manner by using a compressible liquid-drop
model where the surface and Coulomb contributions are
included while deriving the phase equilibrium conditions.
They found that the finite-size effects significantly reduce
the region of liquid-gas mixed phase and the critical tem-
perature (Tc) is much lower than that obtained with bulk
calculation.

In this article, we investigate the influence of Coulomb
interaction on the liquid-gas phase transition of nuclear matter
with quantum molecular dynamics (QMD) simulation. In
particular, we use the QMD model developed by Maruyama
et al. [24] and extensively used to study the various properties
of pasta phases that appear at the liquid-gas transition region,
in recent years [25–29].
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II. FORMALISM

In the QMD approach the state of a nucleon is represented
by a Gaussian wave packet (we set h̄ = c = 1):

ψi(r) = 1

(2πCW )3/4
exp

[
− (r − Ri)2

4CW

+ i r · Pi

]
, (1)

where Ri and Pi denote the centers of the position and
momentum of the wave packet i, respectively, with the
corresponding width CW . Then the total wave function for
the N -nucleon system is obtained by taking the direct product
of single-nucleon wave functions,

�({r}) =
N∏
i

ψi(r). (2)

Here we adopt the QMD Hamiltonian developed by Maruyama
et al. [24] to simulate the nuclear matter at subsaturation
densities. The Hamiltonian consists of several terms:

H = T + VPauli + VSkyrme + Vsym + VMD + VCoul, (3)

where T is the kinetic energy, VPauli is the Pauli potential,
which phenomenologically incorporates the Pauli exclusion
principle, VSkyrme represents the nucleon-nucleon potential
similar to Skyrme-like interactions, Vsym is the isospin-
dependent potential related to the symmetry energy, VMD is
the momentum-dependent potential included as Fock terms of
Yukawa-type interactions, and, finally, VCoul is the Coulomb
potential. The explicit expressions for all the terms are given
as [24,29]

T =
∑

i

P2
i

2mi

, (4)

VPauli = CP

2

(
1

q0p0

)3 ∑
i,j (�=i)

exp

[
− (Ri − Rj )2

2q2
0

− (Pi − Pj )2

2p2
0

]
δτiτj

δσiσj
, (5)
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VSkyrme = α

2ρ0

∑
i,j (�=i)

ρij + β

(1 + τ ) ρτ
0

∑
i

⎡
⎣∑

j (�=i)

ρ̃ij

⎤
⎦

τ

, (6)

Vsym = Cs

2ρ0

∑
i,j (�=i)

(1 − 2|τi − τj |) ρij , (7)

VMD = C(1)
ex

2ρ0

∑
i,j (�=i)

1

1 + [Pi−Pj

μ1

]2 ρij

+ C(2)
ex

2ρ0

∑
i,j (�=i)

1

1 + [Pi−Pj

μ2

]2 ρij , (8)

VCoul = e2

2

∑
i,j (�=i)

(
τi + 1

2

) (
τj + 1

2

)

×
∫∫

d3r d3r′ 1

|r − r′| ρi(r)ρj (r′), (9)

where ρ0 = 0.165fm−3 is the normal nuclear matter density, σi

and τi (1/2 for protons and −1/2 for neutrons) are the nucleon
spin and isospin, respectively, and ρij and ρ̃ij represent the
overlap between single-nucleon densities and are defined as

ρij ≡
∫

d3rρi(r)ρj (r), ρ̃ij ≡
∫

d3rρ̃i(r)ρ̃j (r), (10)

whereas the single-nucleon densities are given by

ρi(r) = |ψi(r)|2 = 1

(2πCW )3/2
exp

[
− (r − Ri)2

2CW

]
, (11)

ρ̃i(r) = 1

(2πC̃W )3/2
exp

[
− (r − Ri)2

2C̃W

]
, (12)

with

C̃W = 1
2 (1 + τ )1/τ CW . (13)

The modified width C̃W of the Gaussian wave packet is
introduced to adjust the effect of density-dependent terms [24].
The Hamiltonian has 12 parameters shown in Table I. They are
determined to reproduce the saturation properties of nuclear
matter as well as ground-state properties of finite nuclei.

TABLE I. Parameter set for the interaction [24].

CP (MeV) 207
p0 (MeV/c) 120
q0 (fm) 1.644
α (MeV) −92.86
β (MeV) 169.28
τ 1.33333
Cs (MeV) 25.0
C(1)

ex (MeV) −258.54
C(2)

ex (MeV) 375.6
μ1(fm−1) 2.35
μ2(fm−1) 0.4
CW (fm2) 2.1

To obtain the equilibrium configuration we adopt the QMD
equations of motion with damping terms [24]:

Ṙi = ∂H

∂Pi
− μR

∂H

∂Ri
,

(14)

Ṗi = − ∂H

∂Ri
− μP

∂H

∂Pi
,

where the damping coefficients μR and μP are positive definite
and relate to the relaxation time scale.

As the QMD Hamiltonian used here contains momentum-
dependent interactions (VPauli and VMD), we cannot use the
usual expressions for the instantaneous temperature given as

3

2
T = 1

N
N∑

i=1

P2
i

2mi

, (15)

whereN is the number of particles. Instead we use the effective
temperature defined as [30]

3

2
Teff = 1

N
N∑

i=1

1

2
Pi · ∂H

∂Pi

, (16)

which reduces to the usual definition of Eq. (15) if the Hamil-
tonian does not contain momentum-dependent interactions.
Performing Metropolis Monte Carlo simulations it was shown
in Ref. [25] that Teff is consistent with the temperature in the
Boltzmann statistics.

To perform simulations at a specified temperature (Tset)
we adopt the Nosé-Hoover thermostat [31–33] after suitably
modifying it to adapt to the effective temperature [25]. The
Hamiltonian including the thermostat is given by

HNose =
N∑

i=1

P2
i

2mi

+ U({Ri},{Pi)} + s2p2
s

2
+ g

ln s

β
, (17)

where U({Ri}),{Pi}) = H − T is the potential depending on
both positions and momenta, s is the extended variable
for the thermostat, ps is the momentum conjugate to s,
Q is the effective “mass” associated with s taking a value
∼108 MeV fm2, g = 3N needed to generate the canonical
ensemble, and β = 1/Tset. The equations of motion for the
extended system are written as

Ṙi = Pi

mi

+ ∂U
∂Pi

, (18)

Ṗi = − ∂U
∂Ri

− ξPi , (19)

ξ̇ = 1

Q

[ N∑
i=1

(
Pi

mi

+ Pi · ∂U
∂Pi

)
− g

β

]
, (20)

ṡ/s = ξ, (21)

where ξ (= sps/Q) acts as thermodynamic friction coef-
ficient. When the system is evolved according to the
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FIG. 1. Snapshots from simulations showing distribution of nucleons at 0.1ρ0 ,Yp = 0.3, T = 0 with (a) and without (b) the Coulomb
interaction. Green (red) spheres represent neutrons (protons).

above equations HNose remains conserved and Teff fluctuates
around Tset.

III. SIMULATION

Adopting the theoretical framework outlined in the previous
section we perform QMD simulations of nuclear matter for a
wide range of density (ρ = 0.1 − 0.775ρ0) and temperature
(T = 1 − 9 MeV) relevant for the study of the liquid-gas
phase transition. We investigate symmetric nuclear matter
(proton fraction Yp = 0.5) important for heavy-ion collisions
as well as asymmetric nuclear matter with Yp = 0.3, typical
for supernova environment and Yp = 0.1, relevant for neutron
stars. We take into account 2048 nucleons for Yp = 0.5 and
0.3, and 16 384 nucleons for Yp = 0.1 in a cubic box the
size of which is determined from the number of particles and
the chosen density. Periodic boundary conditions are imposed
to simulate infinite matter. The number of protons (neutrons)
with spin-up is taken to be equal to that of protons (neutrons)
with spin-down. To calculate the Coulomb interaction we
employ the Ewald method [26,33], where electrons are
considered to form a uniform background and make the system
charge neutral. To study the nuclear matter at subsaturation
densities several authors [34–36] have considered the Coulomb
interaction as a Yukawa-type interaction where the choice of
screening length (λ) is not very well defined. However, in a
recent study [37] it was shown that the results may depend on
λ, significantly. The Ewald method used here does not suffer
from this shortcoming.

As an initial configuration we distribute nucleons randomly
in phase space. Then with the help of the Nosé-Hoover
thermostat we equilibrate the system at T ∼ 20 MeV for about
2000 fm/c. To achieve the ground-state configuration we then
slowly cool down the system in accordance with the damped
equations of motion [Eq. (14)] until the temperature reaches
a value below 1 keV. To obtain nuclear matter configuration
at a finite temperature Tset we cool down the system until T
reaches ∼5 MeV. Then the system is relaxed for 5000 fm/c at
the desired temperature Tset with the help of the thermostat and
finally, it is further relaxed without the thermostat for another
5000 fm/c. All the measurements are taken at this last stage
of simulation.

IV. RESULTS

In Fig. 1 we show simulation snapshots for the nucleon
distributions of asymmetric matter with Yp = 0.3, at ρ =
0.1ρ0 and T = 0. The snapshot in the left (right) panel is
obtained when the Coulomb interaction is (not) taken into
account. As expected, we get a single large cluster with several
dripped neutrons in the absence of the repulsive Coulomb
interactions. On the other hand, in the presence of the Coulomb
interaction we observe several smaller clusters arranged in a
lattice.

For the analysis of nucleon distribution in space we
calculate the two-point correlation function ξii for the nucleon
density fluctuation defined as [26,29]

�(i) = ρ(i)(x) − ρ(i)
av

ρ
(i)
av

, (22)

where i = n,p,N denotes neutrons, protons, and nucleons,
respectively, and ρ(i)

av = N (i)/V . Then the correlation function
is given by

ξii(r) = 〈�i(x) �i (x + r)〉, (23)

where the average is taken over the position x and the direction
of r.

A. Symmetric nuclear matter

To investigate the role of the Coulomb interaction on
the liquid-gas phase transition of symmetric nuclear matter
we perform simulations for the whole range of density and
temperature mentioned earlier with and without Coulomb
interaction. We take 2048 nucleons and obtain the ground-
state configurations following the procedure described in the
previous section. The phase transition region is determined by
calculating the two-point correlation functions. In Fig. 2 we
plot the two-point correlation functions for nucleons around
the phase transition density at T = 0, with [Fig. 2(a)] and
without [Fig. 2(b)] Coulomb interaction. It is clear from
the figure that the long-range correlation of the nucleon
distribution vanishes between 0.7–0.725ρ0 when Coulomb
interaction is considered. This value is in agreement with that
of an earlier calculation [26] with the same model. On the
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FIG. 2. Two-point correlation function ξNN around the liquid-gas phase transition region at T = 0 with (a) and without (b) Coulomb
interaction for symmetric nuclear matter.

other hand, if the Coulomb interaction is not considered the
long-range correlation disappears between 0.725 and 0.75ρ0.
In other words, the Coulomb interaction shifts the transition
from the liquid phase to the gas phase to lower density.

In Fig. 3 the two-point correlation function ξNN is shown
for the cases with (a) and without (b) Coulomb interaction
at ρ = 0.4ρ0, as a typical example. The figures in the

bottom panel [Figs. 3(c) and 3(d)] are the zoomed version
of the corresponding figures in Figs. 3(a) and 3(b). From the
figures we find that although with increasing temperature the
amplitude of ξNN decreases, its first zero point that corresponds
to the size of the clusters doesn’t change much. This behavior
was also seen in earlier calculations [25,26]. However, in the
absence of repulsive Coulomb interaction between protons,

(a)

(c) (d)

(b)

FIG. 3. Two-point correlation function ξNN at ρ = 0.4ρ0 with (a) and without (b) Coulomb interaction for symmetric nuclear matter. The
figures in the bottom panel (c) and (d) are zoomed versions of the corresponding figures in the top panel (a) and (b).
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FIG. 4. Phase diagram for symmetric nuclear matter with (a) and without (b) Coulomb interaction. The dashed line indicates the phase
transition line.

nucleons are expected to form larger clusters. This is exactly
seen here as the first zero in ξNN is reached at larger values of r
when the Coulomb interaction is not considered. Interestingly,
one can also observe that the disappearance of long-range
correlations that marks the transition from inhomogeneous to
homogeneous matter takes place between T = 4 and 5 MeV
in the presence of the Coulomb interaction and between T = 6
and 7 MeV without Coulomb interaction.

Following the same procedure we determine the phase
transition temperatures for the whole range of densities con-
sidered here for both with and without Coulomb interaction.
Accumulating all the results we obtain the phase diagrams
shown in Fig. 4. Comparing the results of two cases we can
see that the phase transition temperature is always larger by �
1–2 MeV for the case without Coulomb interaction [Fig. 4(b)]
than when including Coulomb [Fig. 4(a)]. From the phase
diagrams it can also be observed that in the Coulomb case the
critical end point of the liquid-gas phase transition is located
at ρc 	 0.225–0.25ρ0 and Tc � 5 MeV. This value is similar
to the result obtained in an earlier calculation with the same
QMD Hamiltonian [25]. On the other hand, the critical point
is located at ρc ∼ 0.225 and Tc � 7.5 MeV when Coulomb

interaction is not taken into consideration. The important point
to note is that the Coulomb interaction reduces the critical
temperature Tc by ∼2 MeV but the critical density ρc remains
unchanged. This behavior was also seen in the calculation of
Jaqaman et al. [9] for symmetric nuclear matter described by
Skyrme interactions.

B. Asymmetric nuclear matter with Yp = 0.3

Next, we investigate the liquid-gas phase transition region
for asymmetric nuclear matter with Yp = 0.3, a value typical
for supernova environments. We take 2048 nucleons (608
protons and 1440 neutrons) for this calculation. In this case also
we calculate the two-point correlation functions to determine
the phase boundary of the liquid-gas transition. In Fig. 5,
we plot the correlation function ξNN at densities close to
the phase transition region for nuclear matter with Yp = 0.3
and T = 0, with (a) and without (b) Coulomb interaction.
As in the case of symmetric matter here we also find that
the Coulomb interaction decreases the liquid-gas transition
density. With the Coulomb interaction the transition happens
within the density range between 0.625 and 0.65ρ0 (reported
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FIG. 5. Same as Fig. 2 but for asymmetric nuclear matter with Yp = 0.3.
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FIG. 6. Two-point correlation functions at ρ = 0.35ρ0 with (a)–(c) and without (d)–(f) Coulomb interaction for asymmetric nuclear matter
with Yp = 0.3.

earlier in Ref. [29]), whereas without Coulomb interaction the
same happens between 0.675 and 0.7ρ0.

We plot the two-point correlation functions ξpp,ξnn, and
ξNN with and without considering the Coulomb interaction at a
typical example density ρ = 0.35ρ0, in Fig. 6. The amplitudes
of ξnn are found to be lower than those of ξpp because of the
presence of uniformly distributed dripped neutrons. The higher
amplitudes of ξii in the absence of the Coulomb interaction
point to the fact that the particles are more clustered in this
case as is also seen in Fig. 1. Likewise in symmetric matter here

also the first zero point of all ξii does not change much with
temperature. Moreover, the first zero point of ξpp coincides
with the one of ξnn for all temperatures showing a strong
correlation between the density fluctuations of neutrons and
protons even at Yp = 0.3. From the figure we similarly find that
the phase transition line lies between T = 3–4 MeV and T =
5–6 MeV for the cases with and without Coulomb interaction,
respectively.

We continue the determination of the phase transition line
for all other densities and obtain the phase diagram shown
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FIG. 7. Same as Fig. 4, for Yp=0.3.
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FIG. 8. Two-point correlation as in Fig. 5 for Yp = 0.1.

in Fig. 7. When we do not consider the Coulomb interaction
the transition temperature is always higher by �1–2 MeV
compared to the case including Coulomb interaction, analo-
gously to the results for symmetric matter. The critical point
of the transition is located at Tc � 7 MeV, ρc ∼ 0.225ρ0

without the Coulomb interaction and at Tc � 4.5, ρc ∼ 0.2ρ0

with Coulomb. As for Yp = 0.5 the critical density is not

much affected by the Coulomb interaction but the critical
temperature is decreased by �3 MeV. A comparison of the
results for Yp = 0.5 and 0.3 reveals that the critical point
is similar in the absence of Coulomb interactions. However,
including Coulomb the critical point gets shifted slightly to
lower density and temperature.
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FIG. 9. Two-point correlation functions at ρ = 0.25ρ0 with (a)–(c) and without (d)–(f) Coulomb interaction for asymmetric nuclear matter
for Yp = 0.1.
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FIG. 10. Phase diagrams as in Fig. 2, but for Yp = 0.1.

C. Asymmetric nuclear matter with Yp = 0.1

Finally, we investigate the liquid-gas phase transition with
and without Coulomb interaction for even more asymmetric
nuclear matter with Yp = 0.1 which is close to values relevant
for the neutron star interior. To have enough numbers of
protons that play a crucial role in generating long-range
correlations we use 16 384 nucleons (1600 protons and 14 784
neutrons) in our simulations for this case. The ground-state
configurations are obtained following the same procedure
as earlier. To determine the phase boundary of liquid-gas
transition we again calculate two-point correlation functions.

In Fig. 8, we plot the correlation function ξNN at densities
close to the phase transition region for nuclear matter with
Yp = 0.1 and T = 0, with (a) and without (b) Coulomb
interaction. Unlike the cases of Yp = 0.5 and 0.3 here we find
that the Coulomb interaction slightly increases the transition
density. Including Coulomb interactions the transition happens
at a density range between 0.475 and 0.5ρ0 whereas, without
the Coulomb interaction this happens to be in the interval from
0.45 to 0.475ρ0.

Next, we plot different two-point correlation functions with
and without considering the Coulomb interaction at a typical
example density ρ = 0.25ρ0, in Fig. 9. The difference between
ξpp and ξnn is even higher than that for Yp = 0.3, because the
number of dripped neutrons also increases with decreasing Yp.
Even in this highly asymmetric matter neutrons and protons
are found to be highly correlated as the locations of first zero
point of ξii coincide. It is also seen from the figure that the
long-range correlation vanishes between T = 2–3 MeV and
T = 3–4 MeV for the cases with and without the Coulomb
interaction, respectively.

After determining the phase transition line for all other
densities we obtain the phase diagram shown in Fig. 10. From
the figure we can see that the phase transition temperatures
for the two cases differ by T ∼ 1 MeV at low densities
(< 0.3ρ0). However, at higher densities the difference van-
ishes. The critical point of the transition is located at Tc �
4 MeV, ρc ∼ 0.125ρ0 without the Coulomb interaction and
at Tc � 3, ρc ∼ 0.125ρ0 with the Coulomb interaction. As
in the cases of Yp = 0.5 and 0.3 the critical density is not
much affected by the Coulomb interaction but the critical
temperature is decreased by only ∼1 MeV in this case. If

the results of Yp = 0.3 and 0.1 are compared one can observe
that the shift in critical point is larger when the Coulomb
interaction is not considered.

To investigate whether the reduction of the critical tem-
perature in the presence of the Coulomb interaction depends
on the nuclear force, especially on the surface energy we
also perform simulations with another QMD model [30] that
includes a surface term. In this case we also found that the
Coulomb interaction reduces the critical temperature whereas
the critical density remains largely unchanged. For this model,
the critical point of the liquid-gas phase transition of nuclear
matter with Yp = 0.3 is given by Tc = 10 MeV, ρc ∼ 0.25ρ0,
without Coulomb and by Tc = 8 MeV, ρc ∼ 0.225ρ0, with
Coulomb. The values of the critical temperature and density
found here in the presence of the Coulomb interaction are
very similar to the values obtained by Sonoda et al. [38] in
an earlier study. With increasing density and/or temperature
the surface energy that depends on the gradient of density
across the surface, becomes smaller. Therefore, the reduction
in critical temperature happens mainly because of the Coulomb
energy and holds for all nuclear models.

V. SUMMARY AND CONCLUSION

We have investigated the effect of the Coulomb inter-
action on the liquid-gas phase transition of nuclear matter
using molecular dynamics simulations. We have performed
simulations for a wide range of density and temperature
with and without Coulomb interaction for this purpose. We
have considered both symmetric nuclear matter, relevant for
heavy-ion physics as well as asymmetric matter with Yp = 0.3
and 0.1, important for supernova and neutron star matter,
respectively. To determine the phase transition region we
have calculated the two-point correlation functions of the
fluctuations of nucleon densities. The temperatures at which
the transition from the liquid phase to the gas phase take
place at various densities are obtained by determining the
location where the long-range correlations vanish. We also
determine the critical point of the liquid-gas phase transition
of nuclear matter for all three Yps considered here. We found
that although the Coulomb interaction lowers the critical
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temperature by ∼2–3 MeV for nuclear matter with Yp = 0.5
and 0.3 and by ∼1 MeV for Yp = 0.1, the critical density
remains more or less unchanged. It could also be observed
that the densities at which the liquid-gas transition takes place
at T = 0, is higher if the Coulomb interaction is not considered
for the cases of Yp = 0.5 and 0.3. However, for Yp = 0.1, there
is not much difference in the transition density. For this highly
asymmetric matter the difference between the phase diagrams
with and without Coulomb is much smaller than for the other
two values of Yp. This is the case because the Coulomb energy
becomes less important for highly asymmetric matter. We also
showed that the main conclusion that the Coulomb interaction

reduces the critical temperature but the critical density remain
unchanged, is independent of nuclear model specifics.

Based on these findings we plan to investigate suscepti-
bilities of particle numbers around the phase transition line
and critical end point, as such studies are directly related to
the more general search for observable signals of structures in
the phase diagram of strongly interacting matter comparing to
observables from heavy-ion collisions.
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