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In the present work, the critical temperature, critical pressure, and critical density, known as the critical
parameters related to the liquid-gas phase transition are calculated for 34 relativistic mean-field models,
which were shown to satisfy nuclear matter constraints in a comprehensive study involving 263 models. The
compressibility factor was calculated and all 34 models present values lower than the one obtained with the van
der Waals equation of state. The critical temperatures were compared with experimental data and just two classes
of models can reach values close to them. A correlation between the critical parameters and the incompressibility
was obtained.
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I. INTRODUCTION

The understanding of nuclear matter properties is of
fundamental importance as a guide towards more specific
subjects, such as nuclear and hadron spectroscopy, heavy-
ion collisions, caloric curves and negative heat capacities,
nuclear multifragmentation and distillation effects, neutron
stars and the possible existence of the pasta phase in its core,
and even the QCD phase diagram and its phase transitions.
At low densities and relatively low temperatures (below
20 MeV), nuclear matter can evolve through different phase
separation boundaries and the construction of binodals depicts
this problem very well. Another important aspect is the
investigation of instability boundaries and the spinodals are
used to separate unstable from stable matter. These sections
(binodals and spinodals) are just a reflex of the well-known
fact that at low densities, nuclear matter undergoes a first-order
phase transition, which belongs to the liquid-gas universality
class [1–3].

A seminal work on the use of relativistic models to describe
multicomponent systems (in nuclear matter, the components
are protons and neutrons) is [2]. This extremely didactic paper
clearly shows how the geometrical Maxwell construction can
be used to determine the amount of particles (proton fraction)
and the related chemical potentials in the coexistence phase
and the construction of the binodal section. As far as unstable
matter is concerned, the instabilities a system may present are
related to the possible phase transitions it can undertake [3].
Spinodal sections are obtained from the derivative of the free
energy of the system with respect to the chemical potentials of
its components. The spinodal instability is known to lead to a
liquid-gas phase transition with the restoration of the isospin
symmetry at a certain density.

In Ref. [2], a three-dimensional plot (see Fig. 7) shows
the phase coexistence boundary in a pressure-temperature-
proton fraction plane, from where it is seen that the critical
temperature always takes place in the symmetric matter.
Analogously, in [4], it was shown that the instability region
decreases with the increase of the temperature up to a certain
critical temperature, which is related to a critical pressure
and critical density. For temperatures larger than the critical

temperature, the system is stable. Once again, these critical
parameters always take place at proton fraction 0.5, i.e.,
symmetric nuclear matter (see Table IV).

Nevertheless, the values of these critical parameters are
model dependent and there are many nonrelativistic [5] and
relativistic models [4] in the market, which can be used to
calculate binodals and spinodals. The references just given
show only a few of them. In the present work we restrict our
investigation to specific relativistic mean-field (RMF) models,
which were shown to satisfy important nuclear matter bulk
properties in Ref. [6]. They are named here as consistent
relativistic mean field parametrizations (CRMF) and in the
next section a more detailed explanation on this choice is
made.

After the presentation of 34 CRMF models, we show
how the critical parameters are obtained and their values
are displayed and compared with experimental results. The
conclusions are drawn in the last section of the present work.

II. CONSISTENT RELATIVISTIC MEAN-FIELD MODELS

The analysis performed in Ref. [6] pointed out to only
35 parametrizations, out of 263 investigated, simultaneously
approved in seven distinct nuclear matter constraints. These
consistent RMF parametrizations had their bulk and ther-
modynamical quantities compared to respective theoreti-
cal/experimental data from symmetric nuclear matter (SNM),
pure neutron matter (PNM), and a mixture of both, namely,
symmetry energy and its slope evaluated at the saturation
density ρ0, and the ratio of the symmetry energy at ρ0/2 to its
value at ρ0 (MIX). These detailed constraints are specified in
Table I.

As a remark, we remind the reader that SET2a was the
set used in Ref. [6] in order to select the parametrizations
consistent with the nuclear matter constraints. Between them
are those based on heavy-ion collision analysis, namely, SM3a
and SM4. The former relies on a proper description of pressure
gradients for describing the flow. About the latter one, kaon
production is controlled by the in-medium potential of kaons,
which may not be necessarily translated to a corresponding
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TABLE I. Set of updated constraints (SET2a) used in Ref. [6].
See that reference for more details concerning each constraint.

Constraint Quantity Density region Range of constraint

SM1 K0 at ρ0 190–270 MeV
SM3a P (ρ) 2 < ρ

ρ0
< 5 Band region

SM4 P (ρ) 1.2 < ρ

ρ0
< 2.2 Band region

PNM1 EPNM/ρ 0.017 < ρ

ρo
< 0.108 Band region

MIX1a J at ρ0 25–35 MeV
MIX2a L0 at ρ0 25–115 MeV
MIX4 S(ρ0/2)

J
at ρ0 and ρ0/2 0.57–0.86

equation of state, according to some authors. As an example,
in Ref. [7], the authors pointed out that the modeling of
particles flow in transport simulations is a complex process
and, therefore, constraints derived from such analysis should
be considered with caution. Such a consideration justified
the analysis of models of the NL3 family in Ref. [7], even
being such parametrizations not consistent with SM3 and SM4
constraints, see their Fig. 2 and respective discussion.

In Ref. [6], the models were divided into seven different
categories and only three of these categories included models
that satisfies the imposed constraints. Among the 35 CRMF
parametrizations, 30 of them are of type 4 [6], i.e., the
Lagrangian density comprises nonlinear σ and ω terms and
cross terms involving these fields. They are: BKA20 [8],
BKA22 [8], BKA24 [8], BSR8 [9], BSR9 [9], BSR10 [9],
BSR11 [9], BSR12 [9], BSR15 [9], BSR16 [9], BSR17 [9],
BSR18 [9], BSR19 [9], BSR20 [9], FSU-III [10], FSU-IV [10],
FSUGold [11], FSUGold4 [12], FSUGZ03 [13], FSUGZ06
[13], G2* [14], IU-FSU [15], Z271s2 [16], Z271s3 [16],
Z271s4 [16], Z271s5 [16], Z271s6 [16], Z271v4 [16], Z271v5
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FIG. 1. Pressure as a function of density, both in units of their
respective critical values, for the CRMF parametrizations at T = Tc.
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FIG. 2. Critical temperature of CRMF parametrizations com-
pared with experimental data (circles) collected from the following
references: Karnaukhov 1997 [39], Natowitz et al. 2002 [40], Kar-
naukhov et al. 2003 [41], Karnaukhov et al. 2004 [42], Karnaukhov
et al. 2006 [43], Karnaukhov 2008 [44], and Elliott et al. 2013 [45].
The parametrization families are indicated as in Fig. 1.

[16], and Z271v6 [16]. The Lagrangian density that describes
such parametrizations is

LNL = ψ(iγ μ∂μ − M)ψ + gσσψψ − gωψγ μωμψ

− gρ

2
ψγ μ �ρμ�τψ + 1
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σ σ 2) − A

3
σ 3
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σ 4 − 1

4
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ωωμωμ)2

− 1
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α′

3g
2
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(
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2
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)

+ gσg2
ρσ �ρμ �ρμ

(
α2 + 1

2
α′

2gσσ

)
(1)

with Fμν = ∂νωμ − ∂μων and �Bμν = ∂ν �ρμ − ∂μ �ρν . The nu-
cleon mass is M and the meson masses are mj , for j = σ,ω,
and ρ.

The other four CRMF approved parametrizations present
density dependent (DD) coupling constants. Two of them are
standard DD parametrizations: DD-F [17] and TW99 [18], and
the remaining two also present the δ meson in their structures:
DDHδ [19] and DD − MEδ [20]. The Lagrangian density of
all of them is expressed as

LDD = ψ(iγ μ∂μ − M)ψ + �σ (ρ)σψψ − �ω(ρ)ψγ μωμψ

− �ρ(ρ)

2
ψγ μ �ρμ�τψ + �δ(ρ)ψ �δ�τψ − 1

4
FμνFμν

+ 1
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∂μσ∂μσ − m2

σ σ 2) + 1

2
m2

ωωμωμ − 1

4
�Bμν �Bμν

+ 1

2
m2

ρ �ρμ �ρμ + 1

2

(
∂μ�δ∂μ

�δ − m2
δ
�δ2

)
, (2)
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where

�i(ρ) = �i(ρ0)fi(x); fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(3)

for i = σ,ω, and x = ρ/ρ0. The Lagrangian density describing
the DD-F and TW99 [18] parametrizations is the same as the
one in Eq. (2) when the meson δ is not taken into account.

The last CRMF parametrization is a point-coupling model
[21–27]: FA3 [28]. Here, we do not investigate such model
since in a previous work [29] we have showed it is not capable
of generating, already in the zero temperature regime, a mass
radius curve for neutron stars, due to a very particular behavior
in the high-density regime, namely, a fall in the pressure versus
energy density (ε) curve near ε = 4.1 fm−4. For that reason,
we have decided to discard this particular parametrization from
our finite temperature analysis.

III. RESULTS FROM FINITE TEMPERATURE REGIME

We next present only the main formulas for the calculation
of the critical parameters. All other calculations and the
complete equations of state are given in detail in Ref. [6]
and we do reproduce them here.

A. Critical parameters and model dependence
in the liquid phase

The CRMF critical parameters are obtained directly from
the thermodynamical pressure (P ) of these models once the
following conditions in the P × ρ plane are imposed:

Pc = P (ρc,Tc),
∂P

∂ρ

∣∣∣∣
ρc,Tc

= 0,
∂2P

∂ρ2

∣∣∣∣
ρc,Tc

= 0, (4)

where Pc, ρc, and Tc are, respectively, the critical pressure,
density, and temperature. These three critical parameters
define a unique critical point. Such constraints can be used
because hadronic mean-field models present the same features
exhibited by the van der Waals model, i.e., a liquid gas phase
transition at temperatures smaller than Tc, see Refs. [2,30–37],
for instance.

From the Lagrangian density in Eq. (1), one can derive the
expression for symmetric nuclear matter (γ = 4) pressure, by
following, for example, the steps indicating in Ref. [38]. The
result is

PNL = −1

2
m2

σ σ 2 − A

3
σ 3 − B

4
σ 4 + 1

2
m2

ωω2
0 + C

4

(
g2

ωω2
0

)2

+ gσg2
ωσω2

0

(
α1 + 1

2
α′

1gσσ

)

+ γ

6π2

∫ ∞

0

dk k4

(k2 + M∗2)1/2
[n(k,T ,μ∗) + n̄(k,T ,μ∗)],

(5)

where

n(k,T ,μ∗) = 1

e(E∗−μ∗)/T + 1
and

n̄(k,T ,μ∗) = 1

e(E∗+μ∗)/T + 1
(6)

are the Fermi-Dirac distributions for particles and antiparticles,
respectively. The effective energy, nucleon mass, and chemical
potential are E∗ = (k2 + M∗2)1/2, M∗ = M − gσσ , and μ∗ =
μ − gωω0, respectively. Furthermore, the (classical) mean-
field values of σ and ω0 are found by solving the following
system of equations:

m2
σ σ = gσρs − Aσ 2 − Bσ 3 + gσg2

ωω2
0(α1 + α′

1gσσ ), (7)

m2
ωω0 = gωρ − Cgω(gωω0)3 − gσg2

ωσω0(2α1 + α′
1gσσ )

(8)

with

ρ = γ

2π2

∫ ∞

0
dk k2[n(k,T ,μ∗) − n̄(k,T ,μ∗)

]
, (9)

ρs = γ

2π2

∫ ∞

0

dk M∗k2

(k2 + M∗2)1/2
[n(k,T ,μ∗) + n̄(k,T ,μ∗)].

(10)

It is worth noticing in these derivations that 〈 �ρμ〉 ≡ ρ̄0(3) and
〈�δ〉 ≡ δ(3) are vanishing, since we are restricted to the symmet-
ric nuclear matter system, in which ρp = ρn and ρsp = ρsn.
For that reason, terms in Eq. (1) involving specifically these
fields do not contribute to the thermodynamical quantities
of the model, or in any other calculations in the mean-field
approximation.

The same procedures exposed in Ref. [38] are also used in
order to generate the pressure for the density dependent model
described by Eq. (2). Once again, the fields ρ̄0(3) and δ(3) do not
contribute for the calculations. Therefore, the thermodynamics
of DD-F and TW99 parametrizations is exactly the same of
the DDHδ and DD − MEδ ones. In particular, the symmetric
nuclear matter pressure reads

PDD = ρ�R(ρ) − 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0

+ γ

6π2

∫ ∞

0

dk k4

(k2 + M∗2)1/2
[n(k,T ,μ∗) + n̄(k,T ,μ∗)]

(11)

with the rearrangement term defined as

�R(ρ) = ∂�ω

∂ρ
ω0ρ − ∂�σ

∂ρ
σρs. (12)

The mean fields σ and ω0 are given by

σ = �σ (ρ)

m2
σ

ρs and ω0 = �ω(ρ)

m2
ω

ρ (13)

with the functional forms of ρ and ρs given as in the nonlinear
model, Eqs. (9) and (10), with the same distributions functions
of Eq. (6), and the same form for the effective energy
E∗. The effective nucleon mass and chemical potential are
now given, respectively, by M∗ = M − �σ (ρ)σ and μ∗ =
μ − �ω(ρ)ω0 − �R(ρ).

Since the expressions given in Eqs. (5) and (11) are
completely determined, we are able to apply the conditions
to calculate the critical point given in Eq. (4) and then obtain
Pc, ρc, and Tc for each of the CRMF parametrizations. These
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TABLE II. Critical parameters (Tc, ρc and Pc), and compressibil-
ity factor (Zc = Pc/ρcTc) of CRMF parametrizations.

Model Tc (MeV) ρc (fm−3) Pc(MeV/fm3)
ρc

ρ0
Zc

BKA20 14.92 0.0458 0.209 0.314 0.306
BKA22 13.91 0.0442 0.178 0.300 0.290
BKA24 13.83 0.0450 0.177 0.306 0.284

BSR8 14.17 0.0440 0.185 0.300 0.297
BSR9 14.11 0.0450 0.185 0.305 0.291
BSR10 13.90 0.0439 0.176 0.297 0.288
BSR11 14.00 0.0442 0.179 0.301 0.289
BSR12 14.15 0.0448 0.185 0.304 0.292
BSR15 14.53 0.0456 0.199 0.313 0.300
BSR16 14.44 0.0454 0.196 0.311 0.299
BSR17 14.32 0.0451 0.191 0.308 0.296
BSR18 14.25 0.0451 0.189 0.309 0.294
BSR19 14.28 0.0451 0.190 0.308 0.295
BSR20 14.41 0.0464 0.197 0.318 0.295

FSU-III 14.75 0.0461 0.205 0.311 0.301
FSU-IV 14.75 0.0461 0.205 0.311 0.301
FSUGold 14.75 0.0461 0.205 0.311 0.301
FSUGold4 14.80 0.0456 0.204 0.309 0.302
FSUGZ03 14.11 0.0450 0.185 0.305 0.291
FSUGZ06 14.44 0.0454 0.196 0.311 0.299
IU-FSU 14.49 0.0457 0.196 0.295 0.296

G2* 14.38 0.0468 0.192 0.305 0.285

Z271s2 17.97 0.0509 0.303 0.343 0.331
Z271s3 17.97 0.0509 0.303 0.343 0.331
Z271s4 17.97 0.0509 0.303 0.343 0.331
Z271s5 17.97 0.0509 0.303 0.343 0.331
Z271s6 17.97 0.0509 0.303 0.343 0.331
Z271v4 17.97 0.0509 0.303 0.343 0.331
Z271v5 17.97 0.0509 0.303 0.343 0.331
Z271v6 17.97 0.0509 0.303 0.343 0.331

DD-F 15.24 0.0505 0.245 0.343 0.318
TW99 15.17 0.0509 0.241 0.332 0.312
DDHδ 15.17 0.0509 0.241 0.332 0.312
DD − MEδ 15.32 0.0491 0.235 0.323 0.312

results are presented in Table II. Also in this Table, we furnish
the compressibility factor, defined as Zc = Pc/ρcTc. For the
van der Waals (vdW) equation of state (EOS), for example,
this quantity has a value of 0.375, independent of the fluid
described by it. This is a direct consequence of the universality
of the vdW EOS. We have divided the 34 CRMF models into
six families. Notice that all CRMF parametrizations present
Zc < 0.375.

In Fig. 1, we present the density dependence of the pressure
for the CRMF parametrizations, in units of Pc and ρc, all
of them at T = Tc. In this figure, we notice an interesting
feature also reported for the Boguta-Bodmer models analyzed
in Ref. [33] (see Fig. 1 of this reference), namely, the scaled
curves are indistinguishable in the gaseous phase (ρ/ρc < 1)
and distinct from each other, i.e., model dependent, in the
liquid phase region (ρ/ρc > 1). The authors of Ref. [33]
claimed that in the latter region, the nucleons are confined to
a smaller phase space, approaching each other progressively

and allowing the interactions to take place more substantially.
This phenomenology is reflected by the scaling, exhibited
for ρ/ρc < 1, and absent in the remaining region. As the
structure of the parametrizations analyzed in Ref. [33] was
restricted to RMF models presenting only third- and fourth-
order self-interactions in the scalar field σ (Boguta-Bodmer
model), it was difficult to generalize such result to any
RMF parametrization. However, here we investigate more
sophisticated RMF models, including that one where the
couplings are density dependent, and the phenomenology
of the liquid phase presented in the Boguta-Bodmer model
was showed again, indicating the general trend of RMF
parametrizations of any kind in presenting a model dependence
in the liquid phase, and a scaling in the gaseous one, at
symmetric nuclear matter environment.

B. Comparison with experimental data

As a further analysis of the CRMF critical parameters,
we compared such quantities with known experimental data.
Firstly, we compare the critical temperature in Fig. 2.

We can see that only a few parametrizations reach some
of experimental points. The density dependent TW99, DD-F,
DDHδ, and DD − MEδ [20] present Tc inside the range
of 15 � Tc � 19 MeV [42], and the family Z271, that
encompasses all 8 related parametrizations, has the critical
temperature compatible with five of the eight experimental
points, including the more recent one of Ref. [45].

In this latter work [45], the authors were able to experimen-
tally determine all three critical parameters, unlike previous
studies focusing only in Tc. For that purpose, they have
used two types of experiments, namely, compound-nucleus
and nuclear multifragmentation. In the former, two different
nuclei collide with each other and form a single compound
system, with excitation energy obtained from the energy and
masses of the subsystems. They have analyzed results from the
following compound-nucleus reactions: 58Ni + 12C → 70Se
and 64Ni + 12C → 76Se, performed at the 88-Inch Cyclotron
of the Lawrence Berkeley National Laboratory (LBNL) [46].
In the latter experiment in that study, a beam of relativistic
incident light particles was used to heat a particular target
nucleus. The intermediate-mass fragments emitted in this
multifragmentation process are essential for determination
of thermal quantities. In Ref. [45], the authors also studied
the multifragmentation reactions, performed by the Indiana
Silicon Sphere Collaboration at the Alternating Gradient
Synchrotron at Brookhaven National Laboratory [47], and by
the Equation of State Collaboration at LBNL. The studied reac-
tions were 1 GeV/c π + 197Au, 1 GeV/nucleon 197Au + 12C,
1 GeV/nucleon 139La + 12C, and 1 GeV/nucleon 84Kr + 12C.
The yields of all these reactions were analyzed within a Fisher
droplet model, modified to take into account asymmetry,
Coulomb and finite-size effects, and angular momentum
arising from the collisions. The analyzed results from all these
compound-nucleus and multifragmentation reactions, pointed
out to Tc = 17.9 ± 0.4 MeV, Pc = 0.31 ± 0.07 MeV/fm3,
and ρc = 0.06 ± 0.01 fm−3, for the critical parameters of
symmetric nuclear matter.
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FIG. 3. Critical (a) pressure and (b) density for all CRMF
parametrizations, compared with the corresponding experimental
values extracted from Ref. [45].

As mentioned before, the family of parametrizations named
as Z271 has exactly the same experimental value of Tc

from Ref. [45], as we can see in Fig. 2. For the sake of
completeness concerning Pc and ρc, we have also compared
these particular critical values of the CRMF parametrizations
to those experimental ones of Ref. [45], namely, Pc = 0.31 ±
0.07 MeV/fm3 and ρc = 0.06 ± 0.01 fm−3. The results are
depicted in Fig. 3. As we can see, once more the set of Z271
parametrizations completely agrees with the data. Specifically
for these critical parameters, we also notice agreement of the
density dependent model with the experiments. The remaining
CRMF parametrizations are not inside the boundaries.

By analyzing in detail the Z271 family [16], we observe
that in all eight parametrizations the couplings α1 and α′

1 are
vanishing, and C 
= 0 is the only constant that differs these
parametrizations from those of the Boguta-Bodmer model,
see Eq. (5). There are no interactions between mesons in
this case for symmetric nuclear matter, only self-interactions.
In some sense, the density dependent model has a similar
structure, since the nonlinear behavior of the σ field can be
represented somehow in the thermodynamical quantities, by
the density dependent constant �σ (ρ). The same occurs with
the ω0 field, i.e., the strength of the repulsive interaction is
also a density dependent quantity, �ω(ρ). Therefore, the DD
model can be seen as an effective model in which the nonlinear
behavior of the scalar and vector fields are included in the den-
sity dependence of the respective couplings. Such a nonlinear
behavior of the fields seems to help the model in reaching the
experimental values of the critical parameters of Ref. [45]. In
the case of the Z271 family, the matching is for all three quanti-
ties and for the DD parametrizations, only the Tc experimental
value is not reached, with the exception of the DD − MEδ
model in which only Pc data matches. A systematic investiga-
tion involving a larger number of parametrizations is needed in
order to definitely confirm our findings. However, the CRMF
models strongly suggest such a phenomenology.

C. Correlations with the incompressibility

As a last investigation concerning the critical parameters,
we discuss here whether the correlations found in Ref. [48] also

apply to the CRMF parametrizations. In that work, a strong
correlation between Tc, Pc, and ρc and the incompressibility,
K0, obtained at zero temperature regime and at the saturation
density, was found. For symmetric nuclear matter, the incom-
pressibility of the nonlinear model is given by

KNL = 9

(
gωρ

∂ω0

∂ρ
+ k2

F

3E∗
F

− gσρ
M∗

E∗
F

∂σ

∂ρ

)
(14)

with

∂σ

∂ρ
= a1b2 + a2b3

a1b1 − a3b3
and

∂ω0

∂ρ
= a2b1 + a3b2

a1b1 − a3b3
, (15)

where

a1 = m2
ω + 3Cg4

ωω2
0 + gσg2

ωσ (2α1 + α′
1gσσ ), (16)

a2 = gω, (17)

a3 = −2gσg2
ωω0(α1 + α′

1gσσ ), (18)

b1 = m2
σ + 2Aσ + 3Bσ 2 − g2

σ g2
ωω2

0α
′
1

+ 3g2
σ

(
ρs

M∗ − ρ

E∗
F

)
, (19)

b2 = gσM∗

E∗
F

, and b3 = −a3. (20)

The Fermi momentum is kF , and E∗
F = (k2

F + M∗2)1/2. For
the density dependent model, KDD reads

KDD = 9

(
ρ

∂�R

∂ρ
+ 2�ωρ2

m2
ω

∂�ω

∂ρ
+ �2

ωρ

m2
ω

+ k2
F

3E∗
F

+ ρM∗

E∗
F

∂M∗

∂ρ

)
(21)

with

∂M∗

∂ρ
= −

(
�σ

∂σ

∂ρ
+ σ

∂�σ

∂ρ

)
and (22)

∂σ

∂ρ
=

[
ρs − 3

(
ρs

M∗ − ρ
E∗

F

)
�σσ

]
∂�σ

∂ρ
+ �σ M∗

E∗
F

m2
σ + 3

(
ρs

M∗ − ρ
E∗

F

)
�2

σ

, (23)

observing the definitions of Eq. (13). In the above expressions,
ρ and ρs are obtained at T = 0 regime by discarding in
Eqs. (9) and (10) the antiparticles distribution functions, and
by replacing the particle distribution ones by the step function
θ (k − kF ).

In Ref. [48], 128 Boguta-Bodmer parametrizations were
analyzed and the critical parameters showed an increasing
behavior with K0 (see Fig. 4). Along that work, it was
found that parametrizations with fixed values for the nucleon
effective mass present Tc, Pc, and ρc as clear functions of Ko

(see Fig. 5).
Here, we proceed in the same direction by displaying

the critical parameters of the CRMF parametrizations as a
function of K0 in Fig. 4. We separate the points concerning
models with different structures, namely, the nonlinear model
(circles) and the density dependent one (squares). If we
consider only the model with more available data, i.e., the
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FIG. 4. Critical (a) temperature, (b) pressure, and (c) density of
CRMF parametrizations. Circles: nonlinear model. Squares: density
dependent model.

nonlinear one, we also verify an indication of Tc, Pc, and ρc

as increasing functions of K0, as found in Ref. [48] for the
less sophisticated Boguta-Bodmer model. Such general trends
are also in line with recent results on classical models for
real gases augmented with quantum statistical effects in the
description of symmetric nuclear matter, see Ref. [34]. In that
work, the author provided the critical temperature of van der
Waals, Redlich-Kwong-Soave, Peng-Robinson, and Clausius
models. Models with higher values of K0 also presented higher
values of Tc (see Fig. 3).

We have checked that there is no correlation between the
critical parameters and other important nuclear matter bulk
properties, as the symmetry energy and its slope.

IV. SUMMARY AND CONCLUSIONS

In the present work we have recalculated the critical
parameters Tc, Pc, and ρc, which define the limiting point
of the phase transition from a gas to a liquid phase with
34 models, which have shown to satisfy important nuclear
matter constraints [6] and reasonably describe stellar matter
macroscopic properties [29]. We have divided these models
into six categories and just two of them (Z271) and (DD)
approaches the experimental critical temperature values. By
comparing these observations with the neutron star main
properties calculated in Ref. [29], we see that only density
dependent models seem to behave well both at low and high
densities, but this statement requires a more consistent analyses
and further experimental and observational data.

We have also verified that the critical parameters present a
correlation with the incompressibility, but the same is not true
for other important nuclear matter bulk quantities, such as the
energy symmetry and its slope.

Finally, we would like to mention that instabilities in
neutron-� matter are also worth examining. The existence of
hypernuclei as bound systems [49] might imply that a similar
phase transition in an extended diagram with strangeness as an
extra degree of freedom is also present. In Ref. [32], spinodal
sections were obtained for matter with couplings fixed so
that realistic potentials were reproduced. In Refs. [5,50] the
emergence of different phases was studied in the hyperonic
matter environment. Hence, investigations about the influence
of strangeness on the liquid-gas phase transition and the related
critical points are under way.
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