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Photoproduction of γ N → K+�∗(1385) in the Reggeized framework
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Photoproduction of K�∗(1385) on the nucleon is investigated within the Regge framework, and the reaction
mechanism is analyzed based on the data existing in the channels γp → K+�∗0 and γ n → K+�∗−. The
Reggeization of the t-channel meson exchanges K(494) + K∗(892) + K∗

2 (1430) is employed to construct the
photoproduction amplitude. The Rarita-Schwinger formalism is applied for the spin-3/2+ strangeness-baryon
�∗ with a special gauge prescription utilized for the convergence of these reaction processes. Within a set of
coupling constants determined from the symmetry argument for K and K∗ and from the duality and vector
dominance for K∗

2 , the data of both processes are reproduced to a good degree. The production mechanism of
these processes is featured by the dominance of the contact term over the K exchange. The role of K∗

2 is found
to be more important than that of K∗.

DOI: 10.1103/PhysRevC.95.065210

I. INTRODUCTION

Kaon photoproduction off the nucleon target has been a
useful tool to investigate baryon spectroscopy and structure
in the strangeness sector. The experimental studies of the
reactions involving hyperons �(1116), �(1190), or their
resonances in the final state have extensively been conducted
recently at the electron or photon accelerator for hadron
facilities [1–4].

Of recent experimental achievements on these reactions
we turn our attention to the measurements of reaction cross
sections for the γp → K+�∗0(1385) process from the CLAS
[4,5], the LEPS [6], and the γ n → K+�∗−(1385) process
from the LEPS [7] Collaborations. In these reactions, one
reason for our interest is to study baryon resonances whose
existences have been predicted by the quark model but are
still missing or remain an indefinite state. On the other
hand, these reactions have their own issues for dealing with
the spin-3/2 baryon resonance because the propagation of
the spin-3/2 resonance would give rise to a divergence
as the reaction energy increases [8,9].

A theoretical investigation of baryon resonances in
the γp → K+�∗0 process was carried out in Ref. [10]
where a set of � and N∗ resonances was considered in the
effective Lagrangian approach. In this pioneering work, the
role of the baryon resonances was analyzed up to the spin-5/2
state in the s- and u-channel contributions to the reaction
process. Meanwhile, as an extension to the high-energy realm,
a Regge plus resonance approach was applied for the γp →
K+�∗0 and γ n → K+�∗− processes in Refs. [11,12] with the
empirical data updated by the recent experiments. However, in
these works, the description of the reactions was complicated
by using a hybrid-type propagation which mixed the pure
Regge pole and the Feynman propagator in the t-channel,
apart from the cutoff functions to suppress the divergence at
high energies as in Ref. [10].
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In this paper, we investigate photoproduction of K�∗ in two
different isospin channels γp → K+�∗0 and γ n → K+�∗−
where the Reggeization of the t-channel meson exchange is
exploited for the photoproduction amplitude at forward angles
and high energies. Our focus here is to describe these reaction
processes up to high energies without fit parameters rather
than to search for baryon resonances because their roles in
these reactions are found to be less important as discussed in
Ref. [10]. Avoiding such complications as mentioned above,
we will utilize the model of γN → π±� in Ref. [8] to apply
to the present processes with the coupling constant fKN�∗

considered from the SU(3) symmetry. Since �∗ of 3/2+ is
the lowest mass hyperon in the baryon decuplet, this will be a
valuable test of the flavor SU(3) symmetry with an expectation
that the production mechanism of K�∗ is essentially identical
to the π� case.

For the analysis of the process involving the spin-3/2
baryon resonance, in particular, it is worth asking how to
describe the process without cutoff functions because they
could sometimes hide the pieces of the reaction mechanism
that are missing or malfunctioning through the adjustment
of the cutoff masses. From the previous studies on the
photoproduction of π� [8] we have learned two important
things as to the dynamical feature of the spin-3/2 baryon
photoproduction: The minimal gauge prescription is one
requisite for a convergence of the reaction cross section, and
the other is the role of the tensor-meson a2(1320) significant in
the high-energy region. Therefore, as a natural extension of the
model in Ref. [8] to the strangeness sector, we here consider the
K(494) + K∗(892) + K∗

2 (1430) exchanges in the t-channel to
analyze the production mechanism of the γp → K+�∗0 and
γ n → K+�∗− processes.

This paper is organized as follows. In Sec. II, we discuss the
construction of the photoproduction amplitude in association
with the gauge-invariant K exchange in the t-channel. This
will include a brief introduction of the minimal gauge and the
new coupling vertex for the tensor-meson interaction K∗

2 N�∗,
which has been missed in previous works. Numerical results
in the total and differential cross sections as well as the beam
polarization asymmetry are presented for both reactions in
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Sec. III. We give a summary and discussion in Sec. IV. The
SU(3) coefficients for the octet and decuplet baryons coupling
to octet mesons are given in the Appendix.

II. FORMALISM

For a description of the reaction,

γ (k) + N (p) → K(q) + �∗(p′), (1)

with the momenta of the initial photon, nucleon, and the
final K and �∗ denoted by k, p, q, and p′, respectively, we
first construct the photoproduction amplitude which is gauge
invariant as to the coupling of a photon with particles in
the reaction process. Then, the Reggeization of the t-channel
meson pole follows as has been performed before.

A. Photoproduction amplitude

Viewed from the t-channel meson exchange the Born
amplitudes in four different isospin channels are read as

Mγp→K+�∗0 = MK + MK∗ + MK∗
2
, (2)

Mγn→K+�∗− =
√

2
(
MK + MK∗ + MK∗

2

)
, (3)

Mγp→K0�∗+ = −
√

2
(
MK∗ + MK∗

2

)
, (4)

Mγn→K0�∗0 = −(
MK∗ + MK∗

2

)
, (5)

where the
√

2 factors and signs result from our convention
of the meson-baryon-decuplet (MBD) coupling of the 10-8-8
type presented in the Appendix. Hereafter, we call the reaction
process in Eq. (2) the γp process and the process in Eq. (3)
the γ n process, respectively.

In experimental studies, the cross sections for totals and
differentials were measured recently for the charged state
Eq. (2) by the CLAS [4] and the LEPS [6] Collaborations, and
the differential cross section and the beam asymmetry were
measured for the process in Eq. (3) by the LEPS Collaboration
[7]. There exist data from the CBCG [13] and the ABBHHM
Collaborations [14,15] from the pre-1970s where the total
cross section for the charged process in Eq. (2) as well as the
total and differential cross sections for the process in Eq. (3)
reported by the ABHHM Collaboration [16]. Therefore, these
data will be of use to constrain the physical quantities, such as
the coupling constants in the reaction once the trajectories of
the Regge poles for K, K∗, and K∗

2 are chosen.

B. K (494) exchange

For nucleon, kaon, and �∗ charges, the current conser-
vation following the charge conservation eN − eK − e�∗ = 0
requires that the γp process includes the proton pole in
the s-channel and the contact term for gauge invariance
of the t-channel K exchange. Similarly the γ n process includes
the u-channel �∗ pole and the contact term in addition
to the K exchange. These are depicted in Fig. 1. Thus,
the gauge-invariant K exchanges in the t-channel for these
reactions are given by

iM
γp
K = uν(p′)i

[
M

νμ
t(K) + M

νμ
s(N) + Mνμ

c

]
εμ(k)u(p), (6)

iM
γn
K = uν(p′)i

[
M

νμ
t(K) + M

νμ
u(�∗) + Mνμ

c

]
εμ(k)u(p), (7)

N(p) Σ∗(p )

K, K∗, K∗
2

γ(k) K(q)

N N Σ∗

γ K

N Σ∗ Σ∗

γ K γ K

N Σ∗

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams for γN → K+�∗. (a) The exchange
of K in the t-channel, (b) the proton pole in the s-channel, (c) the
�∗ pole in the u-channel, and (d) the contact terms are the basic
ingredients for the gauge invariance of the reaction. (a) K∗ and K∗

2

exchanged in the t-channel are themselves gauge invariant.

where

iM
νμ
s(N) = 	ν

KN�∗ (q)
/p + /k + MN

s − M2
N

	
μ
γNN (k), (8)

iM
νμ
t(K) = 	

μ
γKK (q,Q)

1

t − m2
K

	ν
KN�∗ (Q), (9)

iM
νμ
u(�∗) = 	

νμσ
γ�∗�∗ (k)

/p′ − /k + M�∗

u − M2
�∗

��∗
σβ (p′ − k)	β

KN�∗ (q),

(10)

with Qμ = (q − k)μ as the t-channel momentum transfer and
the spin-3/2 projection which is given by

�
μν
�∗ (p) = −gμν + γ μγ ν

3
+ γ μpν − γ νpμ

3M�∗
+ 2pμpν

3M2
�∗

.

(11)

Here uν(p′), u(p), and εμ(k) are the spin-3/2 Rarita-
Schwinger fields for the �∗(1385), the Dirac spinor for the
nucleon, and the spin polarization of the photon, respectively.

The charge-coupling vertices γNN, γ�∗�∗, and γKK
[8] are given as follows:

εμ	
μ
γNN = eN/ε, (12)

εμ	
νμσ
γ�∗�∗ = −e�∗ (gνσ /ε − ενγ σ − γ νεσ + γ ν/εγ σ ),

(13)

εμ	
μ
γKK (q,Q) = eK (q + Q)μεμ, (14)

where eN, e�∗ , and eK are the nucleon, �∗, and kaon charges,
respectively.

For the strong-coupling vertex KN�∗ we use

	ν
KN�∗ (q) = fKN�∗

mK

qν, (15)
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and neglect the off-shell effect of the spin-3/2 Rarita-
Schwinger field for simplicity because the �∗ in the u-channel
is treated as nearly an on-mass shell field. Then, the contact
term is given by

iMνμ
c = −eK

fKN�∗

mK

gνμ. (16)

Note that the charge-coupling terms in Eqs. (12)–(14)
satisfy the Ward identities in their respective vertices [8], and
the full expressions for the spin-3/2 baryon electromagnetic
form factors will be found in Ref. [9].

Since the mass of �∗ lies below the K̄N threshold the
empirical decay channel �∗ → K̄N is not available for the
estimate of the KN�∗ coupling constant, and we follow
the SU(3) symmetry which predicts,

fπ−p�++

mπ

= −
√

6
fK+p�∗0

mK

, (17)

and determine the coupling constant fK+p�∗0 from the empir-
ically known coupling constant fπ−p�++ . (See the Clebsch-
Gordan coefficients with the phase for the SU(3) baryon
decuplet in the Appendix.) Hereafter, we will write fK+p�∗0 as
fKN�∗ for brevity. In our previous work [8] we considered the
coupling constant in the range from fπ−p�++ = 1.7 to 2. From
these we estimate fKN�∗ = −2.46 and −2.83, respectively.
In other model calculations, however, the determination of
fKN�∗ is found to be rather scattered, e.g., fKN�∗ = −3.22
for the γp process in the effective Lagrangian approach by
applying fπ−p�++ = 2.23 to the symmetry relation above [10].
The coupling constant fKN�∗ = −4.74 for the γp process [11]

and −1.22 for the γ n process [12] were obtained from the χ2

fit of data in the Regge plus resonance approach. In this paper
we take the coupling constant fKN�∗ = −2.2 within the range
discussed above for a better agreement with experiment.

Minimal gauge

It is well known that the propagation of the spin-3/2 �∗
baryon in Eq. (10) causes divergence of the reaction at high
energies. However, if we expect that only the peripheral K
exchange in the t-channel should dominate at high energies
and small angles, then the particle exchanges in the reaction
should contribute only to the Coulomb component of the pho-
toproduction currents in Eqs. (6) and (7). This is advocated in
Refs. [8,17,18], which we call the minimal gauge prescription
for the K exchange, and this is physically sensible because the
higher multipoles of �∗ as a resonance are defined uniquely
in the static limit and such a uniqueness can no longer be valid
at high energies.

In the Reggeized model we recall that the u-channel �∗ pole
in Eq. (7) as well as the s-channel proton-pole term in Eq. (6),
respectively, is introduced merely to preserve gauge invariance
for the t-channel K-pole exchange. By the above speculation
at high energies we consider only the Coulomb components
of the s- and u-channel amplitudes that are indispensable for
restoring gauge invariance of the K exchange. Technically
speaking, these correspond to the nongauge invariant terms
in the s- and u-channels after we remove the transverse
component of the production current by redundancy with
respect to gauge invariance.

In the u-channel amplitude in Eq. (10), for instance, the full
expression is now written as [8]

iMu(�∗) = e�∗
fKN�∗

mK

ūν(p′)
[

2ε · p′

u − M2
�∗

gνα + Gνα(p′,k)

]
qαu(p), (18)

where Gνα(p′,k) is the part of the amplitude which collects all the terms that are gauge invariant themselves. Thus, in this
minimal gauge the production amplitude simply consists of the noninvariant terms in three channels, i.e.,

iMK = fKN�∗

mK

ūν(p′)
[
qν 2p · ε

s − M2
N

eN + e�∗
2p′ · ε

u − M2
�∗

qν + eK

2q · ε

t − m2
K

(q − k)ν
]
u + iMc. (19)

With the K exchange given in Eq. (19), we now make it
Reggeized by the following procedure:

MK = MK

(
t − m2

K

)RK (s,t), (20)

where

Rϕ = πα′
ϕ

	[αϕ(t) + 1 − J ]

phase

sin παϕ(t)

(
s

s0

)αϕ (t)−J

(21)

is the Regge pole written collectively for the meson ϕ(=
K,K∗,K∗

2 ) of spin J with the canonical phase 1
2 [(−1)J +

e−iπαJ (t)] taken for the exchange-nondegenerate meson in
general.

For the trajectory of K we use

αK (t) = 0.7
(
t − m2

K

)
. (22)

The phases of the K exchange are taken from the reaction
γp → K+� [19] as a natural extension. As for the γ n →
K+�− process, however, we favor choosing the phase of the
K exchange for a better description of the reaction processes
as will be discussed later.

C. K ∗(892) exchange

The K∗ exchange in the t-channel is one of the ingredients
to consider for the analysis of the production mechanism.

The production amplitude is given by [9]

iMK∗ = −i
gγKK∗

m0
εμρλαεμkρqλūν(p′)

×( − gαβ + QαQβ/m2
K∗

)
	

βν
K∗N�∗ (Q,p′,p)u(p)

×RK∗
(s,t). (23)
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For the K∗N�∗ coupling we consider only the following form:

	
βν
K∗N�∗ (q,p′,p) = fK∗N�∗

mK∗
(qβγ ν − /qgβν)γ5, (24)

and disregard the other nonleading terms simply because the
leading contribution of the K∗ exchange in Eq. (24) itself is not
significant. In our previous work on the γp → π±� process
we used fρN� = 5.5 for Model I and 8.57 for Model II [9].
These values lead to fK∗N�∗ = −2.58 and −4.03, respectively,
according to the SU(3) relation,

fρN�

mρ

= −
√

6
fK∗N�∗

mK∗
. (25)

With these values we try to find which one yields the
better result in the numerical analysis. From the decay width
	K∗→Kγ = 50 keV for the charged state, we estimate gγK∗K =
±0.254 and take the negative sign for an agreement with the
data.

The trajectory for K∗ is taken to be

αK∗ (t) = 0.83t + 0.25, (26)

which is consistent with the previous works [19,20]. The
complex phase for the γp and the constant phase for the γ n
processes are considered for the exchange-degenerate (EXD)
pair K∗-K∗

2 .

D. K ∗
2 (1430) exchange

It is found that the tensor-meson a2(1320) of the spin-2
exchange plays a role at high energies from the previous
studies of the reactions γN → π±N [21] and γN → π±�
[8]. Furthermore the role of K∗

2 in the strangeness sector is
also noticeable in γp → K+� [19]. Therefore, it is quite
reasonable to consider the tensor-meson K∗

2 exchange in these
reaction processes. As an application of the a2N� coupling in
Ref. [8] to the strangeness sector, we write the Lagrangian for
K∗

2 N�∗ as

LK∗
2 N�∗ = i

fK∗
2 N�∗

mK∗
2

�∗λ
(gλμ∂ν + gλν∂μ)γ5NK∗

2
μν

. (27)

Here K∗
2

μν is the tensor field of spin 2 with the coupling
constant assumed to be

fK∗
2 N�∗

mK∗
2

≈ −3
fK∗N�∗

mK∗
, (28)

by a simple extension to the strangeness sector from the ρ
and a2 meson cases which are based on the duality and vector
dominance [22,23]. In the π� photoproduction the tensor-
meson–�-baryon coupling constant determined by such a
relation above yielded a reasonable result in the high-energy
region as illustrated in Ref. [8].

The Lagrangian for the γKK∗
2 coupling was investigated

in Ref. [24] and is given by

LγKK∗
2

= −i
gγKK∗

2

m2
0

F̃αβ

(
∂αK∗

2
βρ − ∂βK∗

2
αρ

)
∂ρK, (29)

where F̃αβ = 1
2εμναβFμν is the pseudotensor field of the

photon. The decay of tensor-meson K∗
2 to Kγ is reported to

be 	K∗
2 →Kγ = (0.24 ± 0.05) MeV by the Particle Data Group

TABLE I. Physical constants from the SU(3) symmetry, Regge
trajectories, and phases for (a)γp → K+�∗0 and (b)γ n → K+�∗−.
The radiative decay constants are gγKK∗ = −0.254 and gγKK∗

2
=

0.276.

Meson (a)Phase (b)Phase Coupling const

K e−iπα (1 + e−iπα)/2 fKN�∗ = −2.2
K∗ e−iπα 1 fK∗N�∗ = −4.03
K∗

2 e−iπα 1 Eq. (28)

and we estimate gγKK∗
2

= 0.276 [19] with the sign determined
to agree with the existing data.

The Reggeized amplitude for the K∗
2 exchange is thus

written as

iMK∗
2

= −i
2gγKK∗

2

m2
0

fK∗
2 N�∗

mK∗
2

εαβμλεμkλQαqρ

×�
βρ;σξ
K∗

2
(Q)ūν(p′)(gνσPξ + gνξPσ )γ5u(p)

×RK∗
2 (s,t), (30)

where P = (p + p′)/2 and the spin-2 projection is given by

�
βρ;σξ
K∗

2
(Q) = 1

2 (ηβσ ηρξ + ηβξηρσ ) − 1
3ηβρησξ , (31)

with ηβρ = −gβρ + QβQρ/m2
a2

.
For the K∗

2 Regge-pole exchange we take the EXD phase
e
−iπαK∗

2 for the γp and the constant phase for the γ n processes,
respectively, as discussed above and choose the trajectory,

αK∗
2
(t) = 0.83

(
t − m2

K∗
2

) + 2 (32)

to be consistent with Ref. [19].
In the model calculations where the Regge poles are

employed to estimate physical observables, the results in shape
and magnitude are, in general, very sensitive to a change in the
phase as well as the trajectory. Therefore, it is of importance
to choose the phase of K exchange which dominates over
other meson exchanges. We take the complex phase for the K
exchange in the γp process as before. In the case of the γ n
process, however, the choice of the constant phase leads to an
overestimation of the total cross section in the resonance peak
while fixing the coupling constant fK+n�∗− = √

2fK+p�∗0 .
Without altering the coupling constant, thus, we take the
canonical phase which is more adaptive to describe the reaction
processes.

In Table I we list the coupling constants and phases used
for the calculation of the γp → K+�∗0 and γ n → K+�∗−
reactions.

III. NUMERICAL RESULTS

In this section we present numerical consequences in the
cross sections for the total, differential, and beam polarizations
for the reactions γp → K+�∗0 and γ n → K+�∗−.

A. γ p → K+�∗0

Given the production amplitudes in Eq. (2) with the
coupling constants in Table I determined from the symmetry
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1 2 3 4 5
Eγ [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ 
[μ

b]

CLAS (2013)
CBCG, ABBHHM
Contact term
K
K*
K2*

FIG. 2. The total cross section for γp → K+�∗0(1385). Contri-
butions of the contact term and meson exchanges are shown with
the dotted, dashed, dashed-dotted, and dashed-dot-dotted curves,
respectively. The dominance of the contact term is shown. The CLAS
Collaboration data are taken from Ref. [4]. The data of the CBCG
and ABBHHM Collaborations are from Refs. [13–15].

consideration, we calculate the total and differential cross
sections for γp → K+�∗0 and present the result to compare
with the existing data. There is a discrepancy between the
recent CLAS Collaboration data and the old ones measured
in the pre-1970s by the CBCG [13] and ABBHHM Collab-
orations [14,15]. The solid curve in Fig. 2 corresponds to
the full calculation of the cross section with the coupling
constants chosen to agree with the CLAS Collaboration data,
and the respective contributions of the meson exchanges are
displayed. As shown in the figure the production mechanism is
understood solely as the dominating role of the contact term in
Eq. (16) plus the pseudoscalar K exchange in Eq. (9), whereas
the tensor-meson K∗

2 exchange in Eq. (30) gives a contribution
gradually growing as the energy increases. The contribution
of the vector-meson K∗ exchange in Eq. (23) is small and
less significant than that of tensor-meson K∗

2 . That the K∗
contribution is small and thus insignificant is consistent with
the observation in other model calculations of the process [10]
and confirms the validity of the leading K∗N�∗ interaction
considered only for the K∗ exchange.

The dependences of differential cross sections on the angle
and energy are presented in Fig. 3. The slope of the CLAS
Collaboration data in the forward direction is reproduced to a
degree in panels (a)–(c). The rise of the cross-sectional data
in the backward angle in (c) may signify the contributions
of the baryon resonances. For the energy dependence of the
differential cross section in (d) our prediction also agrees with
the LEPS Collaboration data as well. The contributions of the
contact term and the respective meson exchanges are analyzed
in panels (b) and (d).

B. γ n → K+�∗−

There are various sorts of data on the γ n → K+�∗−
process in comparison to the former γp process. The total and
differential cross sections are found in the experiment of the

-1 -0.5 0 0.5 1

10-1

100

dσ
/d

co
sθ

 [μ
b]

-1 -0.5 0 0.5 1

10-2

10-1

100

-1 -0.5 0 0.5 1
cosθ

10-2

10-1

100

dσ
/d

co
sθ

 [μ
b]

1 2 3 4 5
Eγ [GeV]

0

0.5

1

1.5

W=2 GeV W=2.2 GeV 

W=2.4 GeV cosθ=0.9

(a) (b)

(d)(c)

FIG. 3. The differential cross sections for γp → K+�∗0(1385).
The angle dependence of the cross sections are shown in the first three
panels (a)–(c) with the data taken from the CLAS Collaboration [4].
The energy dependence is shown in panel (d) with the data from the
LEPS Collaboration [6]. The contributions of the contact terms and
the respective meson exchanges are displayed in (b) and (d) with the
same notations as in Fig. 2.

ABHHM Collaboration in the mid-1970s [16]. Very recently
the angular distribution and beam polarization asymmetry
were measured in the LEPS Collaboration experiment [7].

We calculate the energy dependence of the cross section and
present the result in Fig. 4. There might be room for improving
the accuracy in future experiments as can be seen in Fig. 2. But
the data of the ABHHM Collaboration are enough to test our
model prediction at the present stage, exhibiting the maximum
peak and the slope of the decrease along with the increase in
photon energy. We note that the K∗

2 exchange gives an equal
amount of contribution to K over Eγ ≈ 3 GeV.

1 2 3 4 5
Eγ [GeV]

0

0.2

0.4

0.6

0.8

1

σ 
[μ

b]

ABHHM
Contact term
K
K*
K2*

FIG. 4. The total cross section for γ n → K+�∗−(1385). The
contributions of the contact term and meson exchanges are displayed
with the same notations as in Fig. 2. The dominance of the contact
term is shown. The data are taken from Ref. [16].
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FIG. 5. The differential cross-sectional (s − M2)2dσ/dt for
γ n → K+�∗−(1385) at Eγ = 3–5 GeV. The solid and dotted curves
are the cross sections at Eγ = 3 GeV with and without K∗

2 , showing
the role of the tensor meson. The data are taken from Ref. [16].

Figure 5 shows the differential cross section scaled by
the factor of (s − M2

n)2 so that the −t distribution of the
cross section is energy independent. We reproduced the cross
section at the photon energies 3–5 GeV up to the limit of the
experiment Eγ = 5.3 GeV. It should be pointed out that the
role of K∗

2 is crucial to meet with the data in the region of
−t > 0.5 GeV2/c2.
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2.3 < Eγ < 2.5 GeV2.1 < Eγ < 2.3 GeV

FIG. 6. The dependence of the differential cross sections for
γ n → K+�∗−(1385) on the energy (upper panels) and angle (lower
panels). The model predictions are given by the gray band to cover
the range of the angle denoted. The contributions of the contact terms
and the respective meson exchanges estimated at cos θ = 0.85 are
displayed in the upper right and at Eγ = 2.4 GeV in the lower right
panels with the same notations as in Fig. 4. The dip structure appears
there due to the canonical phase (1 + e−iπαK )/2 of the K exchange.
The data of the LEPS Collaboration (black squares) are taken from
Ref. [7] and those of the CLAS Collaboration (empty circles) are
from Ref. [5].
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FIG. 7. The energy dependence of the beam polarization asym-
metries for γ n → K+�−(1190) from (a) � = dσy−dσx

dσy+dσx
and γ n →

K+�∗−(1385) from (b) � = − dσy−dσx

dσy+dσx
. The beam polarization

asymmetry in (a) is calculated by the model in Ref. [19]. The model
predictions are given by the gray band to cover the range of the angle
denoted. The data are taken from Ref. [7].

Figure 6 shows the energy dependence of the differential
cross section at forward angles and its angle dependence
in two energy bins. The energy dependence of dσ/d cos θ
is shown in the range calculated between two boundaries
cos θ = 0.9 and 0.99 in the first panel, for instance. The
angle dependence of dσ/d cos θ is calculated at Eγ = 2.2 and
2.4 GeV, respectively. These results reproduce quite well the
overall feature of the cross-sectional data. The contributions
of the contact terms and the respective meson exchanges are
analyzed in the upper right and lower right panels where the dip
structures of the K exchange and the contact term are shown
at −t ≈ 0.3 GeV2 due to the zero of the trajectory αK (t) = 0
in the canonical phase of the K exchange.

The energy dependence of the beam polarization asymme-
try � was measured in the LEPS Collaboration experiment of
the reaction γ n → K+�∗−(1385), and the result is compared
with the case of γ n → K+�−(1190) in Fig. 7 in the same
range of angle 0.6 < cos θ < 0.8.

The beam polarization asymmetry � is defined as

� = dσy − dσx

dσy + dσx

, (33)

where dσx(y) = dσx(y)

d�
is the component of the differential cross

section in the xyz system spanned by the photon momentum (z
direction) and two other axes orthogonal to it on the production
plane. We calculated � of the γp → K+� process in Fig. 7(a)
by using the model of Ref. [19] where the production amplitude
consists of K + K∗ + K∗

2 similar to Eq. (3), but the phases for
all the exchanged mesons are taken to be constant, i.e., 1.
As for the case of the γ n → K+�∗− process, however, the
beam polarization � as shown by the gray band in Fig. 7(b)
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is predicted in the present framework with the sign of � in
Eq. (33) reversed. At the present stage, how to reconcile the
sign of � between theory and experiment and suggest that
such an uncertainty in measuring � in the γ n reaction need to
be analyzed more in future experiments.

IV. SUMMARY AND DISCUSSION

In this paper, we have investigated the reaction processes
γp → K+�∗0 and γ n → K+�∗− to analyze the production
mechanism based on the data provided by the CLAS and LEPS
Collaborations as well as those by the CBCG, ABBHHM, and
ABHHM Collaborations. By using a set of coupling constants
common in both reactions total and differential cross sections
as well as the beam polarization asymmetry are analyzed, and
the results in these reactions are quite reasonable to account
for the experimental data, excluding the sign ambiguity in the
beam polarization.

The results obtained in this paper show that the most
important contribution comes from the contact term which
is a feature of the spin-3/2 baryon photoproduction. Then, the
contribution of the pseudoscalar K exchange follows as the
dominant one among the t-channel meson exchanges. The
role of the K∗ exchange from the present analysis turned
out to be of secondary importance as concluded in previous
works. Nevertheless, it cannot be neglected in these processes
because of its relation with K∗

2 , which plays a role crucial for
explaining the data at high energies, as demonstrated in the
scaled differential cross section of the γ n reaction.

A few remarks are in order. First, we note that the size of
the total cross section for the γp process is about the same as
that of γ n, although the amplitude of the latter process differs
by a factor of

√
2 from the former, i.e.,

σγn

σγp

∼ |√2(contact + t-channel K + · · · )|2
|contact + t-channel K + · · · |2 ∼ 1. (34)

This could be understood as the similar size of the contact term
contribution, which is dominant in both reactions as shown in
Figs. 2 and 4.

By comparing the maximum size of the cross-sectional
σ ≈ 10 μb for the γp → π+�0 process [25] with that of
σ ≈ 1 for the γp → K+�∗0 process, their ratio is basically
consistent with the reduction of the leading coupling constant
fKN�∗ by a factor of 36% as compared to fπN� = 1.7 in the
same mass unit, i.e.,

σ (γp → K+�∗0)

σ (γp → π+�0)
≈

∣∣∣∣fKN�∗

fπN�

∣∣∣∣
2

. (35)

Therefore, it is reasonable to assume that both reactions share
the same production mechanism as the members of the baryon
decuplet within the present framework.

For future works, we offer a comment on the study of N∗
resonances, although it is beyond the scope of the present
paper. It is desirable to investigate the role of N∗ in the neutral
processes, such as in Eqs. (4) and (5), because they have only
K∗ + K∗

2 exchanges in the t-channel which are expected to
be small as can be seen in Figs. 2 and 4. In this sense, the
reaction γp → K0�∗+ in Eq. (4), in particular, could provide

a ground more advantageous for identifying N∗ resonances in
the measured cross section of σ = 0.68 ± 0.48 (μb) at Eγ =
1.42–2 GeV and σ = 0.13 ± 0.09 (μb) at Eγ = 2–5.8 GeV
[15], which is on the same order of magnitude as the charged
ones we have presented in this paper.

Finally, it should be pointed out that the beam polarization
asymmetry � gives the result opposite to the experimental data
in the present framework. Thus, the γ n → K+�∗− channel
needs to be explored further in future experiments.
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APPENDIX: SU(3) RELATION OF THE MESON-BARYON
COUPLING CONSTANTS FOR THE INTERACTIONS OF

THE 8-8-8 AND 10-8-8 TYPES

We use the phase and coupling constants of the meson-
baryon-baryon (MBB) interaction of type 8-8-8, which is
defined by the following tensor operators:

B
j
i =

⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

−�− �0 − 2√
6
�

⎞
⎟⎠ (A1)

for the JP = 1
2

+
baryon octet, and

M
j
i =

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠ (A2)

for the JP = 0− pseudoscalar meson octet.
The MBB interaction of the 8-8-8 type can be constructed

from fully contracting the indices as

aB̄i
jB

j
k Mk

i + bB̄i
jB

k
i M

j
k + H.c. (A3)

Therefore, two types of coupling are possible in the SU(3)
limit, which are equivalent to the conventional F and D types.

For the JP = 3
2

+
baryon decuplet, the totally symmetric

tensor Dijk can be identified with the baryon resonances,

D111 = �++, D112 = 1√
3
�+,

D122 = 1√
3
�0, D222 = �−, (A4)

D113 = 1√
3
�∗+, D123 = 1√

6
�∗0,

D223 = 1√
3
�∗−, (A5)

D133 = 1√
3
�∗0, D233 = 1√

3
�∗−, (A6)

D333 = �∗−. (A7)
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The meson-baryon-decuplet baryon interaction of the
10-8-8 type in the SU(3) limit again can be from fully
contracting the indices as

gD̄ijkBl
jM

m
k εilm + H.c., (A8)

where the Levi-Civita tensor εilm is needed because the total
number of the index is odd. Therefore, only one type of
coupling is possible in the SU(3) limit as in Eq. (A8).

After a little algebra, the following relation is obtained:

fπ−p�++

mπ

= −
√

6
fK+p�∗0

mK

= −
√

3
fK+n�∗−

mK

=
√

3
fK0p�∗+

mK

=
√

6
fK0n�∗0

mK

. (A9)
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