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Decay widths of bottomonium states in matter: A field theoretic model for composite hadrons
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We compute the in-medium partial decay widths of the bottomonium states to open bottom mesons (BB̄)
using a field theoretical model for composite hadrons with quark constituents. These decay widths are calculated
by using the explicit constructions for the bottomonium states and the open bottom mesons (B and B̄) and the
quark-antiquark pair creation term of the free Dirac Hamiltonian written in terms of the constituent quark field
operators. These decay widths in the hadronic medium are calculated as arising from the mass modifications
of the bottomonium states and the B and B̄ mesons, obtained in a chiral effective model. The decay amplitude
in the present model is multiplied with a strength parameter for the light quark pair creation, which is fitted
from the observed vacuum partial decay width of the bottomonium state, ϒ(4S) to BB̄. The effects of the
isospin asymmetry, the strangeness fraction of the hadronic matter on the decay widths, arising due to the mass
modifications due to these effects, have also been studied. There is observed to be appreciable effects from
density, and the effects from isospin asymmetry on the parital decay widths of ϒ → BB̄ are observed to be
quite pronounced at high densities. These effects should show up in the asymmetric heavy ion collisions in
Compressed baryonic matter (CBM) experiments planned at the future facility at FAIR. The study of the ϒ states
will, however, require access to energies higher than the energy regime planned at the CBM experiment. The
density effects on the decay widths of the bottomonium states should show up in the production of these states,
as well as in dilepton spectra at the Super Proton Synchrotron (SPS) energies.
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I. INTRODUCTION

The study of medium modifications of properties of hadrons
is a topic of research which has attracted a lot of attention in
recent years in strong interaction physics, in particular because
of its relevance to the heavy ion collision experiments. Matter
at high temperatures and/or densities is produced in ultrarel-
ativistic heavy-ion collision experiments and the properties
of hadrons in such a medium are modified, consequences of
which can show up in the experimental observables of these
high-energy nuclear collisions.

The open-charm (bottom) mesons, D (B̄) and D̄ (B),
are made up of a heavy-charm (bottom) quark (antiquark)
and a light [up (u) or down (d)] antiquark (quark), and
their mass modifications in the hadronic medium are due
to their interaction with the light-quark condensate in the
quantum chromodynamics (QCD) sum rule framework [1,2].
The in-medium properties of the open-charm mesons have
been studied quite extensively by hadronic frameworks, e.g.,
the quark meson coupling (QMC) model [3–6] as well as
the coupled channel approach [7–11]. Within a hadronic
framework using pion exchange [12], a study of the open-
charm and open-bottom mesons is observed to lead to an
attractive interaction of the D̄ and B mesons in the nuclear
matter, suggesting that these mesons can form bound states
with the atomic nuclei. The D̄-nucleon interactions have
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recently been studied using a description of the hadrons with
quark and antiquark constituents [13], where the field operators
of the constituent quarks are written in terms of a constituent
quark mass, which arises from dynamical chiral symmetry
breaking [13–18].

In the effective hadronic model, constructed by generalizing
chiral SU(3) model to the charm and bottom sectors, the
mass modifications of these open-charm mesons [19–21] and
the open-bottom mesons [22] arise due to their interactions
with the light hadrons, namely the baryons (nucleons and
hyperons) and the scalar mesons. On the other hand, the hidden
charm and bottom mesons, i.e., the charmonium [21,23–25]
and bottomonium states [26], have the masses modified in
the hadronic medium due to the interactions with the gluon
condensates in the medium. The gluon condensates of QCD is
mimicked by a scalar dilaton field [21,25], within the effective
hadronic model, and the medium modifications of the heavy
quarkonium states, i.e., the charmonium [21] and bottomonium
states [26], are studied by medium modification of the dilaton
field within the model. Using a field theoretical model for com-
posite hadrons with quark and antiquark constituents [27–29],
the partial decay widths of the charmonium states to DD̄
pair, as well as of the decay D∗ → Dπ , in matter have been
studied [30], using the medium modifications of these hadrons
using the effective hadronic model [21]. These decay widths
were compared with the partial decay widths using the 3P0

model [21,31], where a light quark-aniquark pair is assumed
to be created in the 3P0 state [32–35], and the light quark
(antiquark) combines with the heavy charm antiquark (quark)
of the decaying charmonium state, to produce the DD̄ pair.
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In the present work, we study the medium modification of
the decay widths of the bottomonium states to BB̄ pair in the
strange hadronic medium, due to the mass modifications of
these hadrons calculated in the effective chiral model [22,26].

The outline of the paper is as follows: In Sec. II, we
describe briefly the field theoretical model for the hadrons
with quark constitutents, which is used in the present work to
calculate the partial decay widths of the bottomonium states
to open-bottom mesons (BB̄ pair). The decay widths are
calculated by using explicit constructions of the bottomonium
states [ϒ(1S), ϒ(2S), ϒ(3S), and ϒ(4S)] and the B and B̄
mesons in terms of the quark and antiquark constituents. We
then calculate the matrix element of the S-matrix in the lowest
order to compute the decay widths of the bottomonium states
to BB̄ (B+B− or B0B̄0) pair. The matrix element, however, is
multiplied with a parameter, which is fitted from the observed
vacuum decay width of ϒ(4S) → BB̄. In the present work,
the partial decay widths for the decay of the bottomonium
states, ϒ(NS), N=1,2,3,4, to BB̄, are calculated using the
field theoretic model for composite hadrons and their medium
modifications have been studied as arising from the changes in
the masses of these mesons in the hadronic medium. In Sec. III,
we briefly describe the effective hadronic model, which has
been used to investigate the masses of the open-bottom mesons
(B and B̄) and of the ϒ states. The in-medium masses of the
B and B̄ mesons in the strange hadronic medium arise due to
their interactions with the baryons and the scalar mesons [22].
On the other hand, the mass modifications of the bottomonium
states [26] arise due to the medium modification of the scalar
dilaton field, which is incorporated in the effective hadronic
framework, to simulate the scale symmetry breaking of QCD
through scalar gluon condensate. In Sec. IV, we discuss
the results obtained in the present investigation. Using the
explicit constructions for the bottomonium states (ϒ(NS),
N = 1,2,3,4) and using the quark pair creation term of the
free Dirac Hamiltonian written in terms of the constituent
quark field operators, the decay widths of the bottomonium
states to BB̄ pair are calculated within the present model. In
Sec. V, we summarize the results for the medium modifications
of these decay widths and discuss possible outlook.

II. THE MODEL FOR COMPOSITE HADRONS

The model used in the present work for calculating
the partial decay widths of the bottomonium states to BB̄
describes the hadrons comprising of the quark and antiquark
constituents. In the present section, we shall very briefly
describe the model so as to apply the same for investigating
these decay widths.

The field operator for a constituent quark for a hadron at
rest at time, t = 0, is written as

ψ(x,t = 0) = (2π )−3/2
∫

[U (k)qI (k) exp(ik · x)

+V (k)q̃I (k) exp(−ik · x)]dk

≡ Q(x) + Q̃(x). (1)

In the above, qI (k) = qr (k)ur and q̃I (k) = q̃s(k)vs are the
two component quark annihilation and antiquark creation

operators. The operator qr (k) annihilates a quark with spin
r and momentum k, whereas q̃s(k) creates an antiquark with
spin s and momentum k, and these operators satisfy the usual
anticommutation relations,

{qr (k),qs(k′)†} = {q̃r (k),q̃s(k′)†} = δrsδ(k − k′). (2)

In Eq. (1), U (k) and V (k) are given as

U (k) =
(

f (|k|)
σ · kg(|k|)

)
, V (k) =

(
σ · kg(|k|)

f (|k|)
)

, (3)

where the functions f (|k|) and g(|k|) satisfy the constraint
[27],

f 2 + g2k2 = 1, (4)

as obtained from the equal-time anticommutation relation for
the four-component Dirac field operators. These functions, for
the case of free Dirac field of mass M , are given as

f (|k|) =
(

k0 + M

2k0

)1/2

, g(|k|) =
(

1

2k0(k0 + M)

)1/2

,

(5)
where k0 = (|k|2 + M2)1/2. In the above, M is the constituent
quark mass, which is calculated from dynamical chiral sym-
metry breaking and, in general, can be momentum dependent
[13–17]. Using a four-point interaction for the quark operators,
as in the Nambu-Jona-Lasinio model, the constituent quark
mass turns out to be momentum independent [18]. Also, a
recent study [13] shows the momentum dependence of M(k)
calculated within a color confining model, to be appreciable
only at high momenta. In the present work of the study
of decay widths of the bottomonium states to open-bottom
mesons, we shall assume the constituent quark mass to be
momentum independent. We shall also take the approximate
forms (with a small momentum expansion) for the functions
f (|k|) and g(|k|) of the field operator as given by g(|k|) =
1/[2k0(k0 + M)]1/2 � 1/(2M) and f (|k|) = (1 − g2k2)1/2 ≈
1 − [(g2k2)/2] [30].

The field operator for the constituent quark of hadron with
finite momentum is obtained by Lorentz boosting the field
operator of the constituent quark of hadron at rest, which
requires the time dependence of the quark field operators. As in
the bag model, the time dependence is given by assuming the
constituent quarks to be occupying fixed energy levels [27,28],
so that for the ith quark of a hadron of mass mH at rest, we
have

Qi(x) = Qi(x) exp(−iλimH t), (6)

where λi is the fraction of the energy (mass) of the hadron
carried by the quark, with

∑
i λi = 1. For a hadron in

motion with four-momentum p, the field operators for quark
annihilation and antiquark creation, for t = 0, are obtained by
Lorentz boosting the field operator of the hadron at rest and
are given as [29]

Q(p)(x,0) = (2π )−3/2
∫

dkS[L(p)]U (k)QI (k + λp)

× exp[i(k + λp) · x] (7)
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and

Q̃(p)(x,0) = (2π )−3/2
∫

dkS[L(p)]V (−k)Q̃I (−k + λp)

× exp[−i(−k + λp) · x]. (8)

In the above, λ is the fraction of the energy of the hadron at rest,
carried by the constituent quark (antiquark). In Eqs. (7) and
(8), L(p) is the Lorentz transformation matrix, which yields
the hadron at finite four-momentum p from the hadron at rest
and is given as [28]

Lμ0 = L0μ = pμ

mH

, Lij = δij + pipj

mH (p0 + mH )
, (9)

where, μ = 0,1,2,3 and i = 1,2,3, and the Lorentz boosting
factor S[L(p)] is given as

S[L(p)] =
[

(p0 + mH )

2mH

]1/2

+
[

1

2mH (p0 + mH )

]1/2

�α · �p,

(10)

where, �α = (0 �σ
�σ 0

) are the Dirac matrices.

III. PARTIAL DECAY WIDTHS OF THE BOTTOMONIUM
STATES TO B B̄ PAIR IN THE COMPOSITE MODEL OF

THE HADRONS

The partial decay widths of the bottomonium states, ϒ(1S),
ϒ(2S), ϒ(3S), and ϒ(4S) to BB̄ in the hadronic matter are
studied in the present investigation. The medium modifications
of these decay widths calculated in the present work arise due
to the medium modifications of the decaying bottmonium state
and the outgoing B and B̄ mesons in the hadronic medium. In
vacuum, the masses of the bottomonium states, ϒ(1S), ϒ(2S),
ϒ(3S), ϒ(4S), and the open-bottom mesons, B(B̄), are given
as 9 460.3 MeV, 10 023.26 MeV, 10 355.2 MeV, 10 579.4 MeV,
and 5 279 MeV, respectively. Hence, in vacuum, the lowest ϒ
state, which can decay to BB̄ is ϒ(4S). However, the masses
of the ϒ states as well as B and B̄ mesons are modified
in the hadronic medium, due to which the partial decay
widths of the bottomonium states to BB̄ pair are modified
in the medium. In the hadronic matter, the modification of
the B meson mass turns out to be different from the medium

modification of the B̄ meson mass, due to their difference in
the interactions with the hadronic matter. The modifications
of the masses of the open-bottom mesons arise due to the
interactions with the nucleons, hyperons, as well as scalar
mesons in the strange hadronic matter [22]. These in-medium
masses have been calculated within an effective hadronic
model, where the chiral SU(3) model has been generalized
to SU(5) to derive the interactions of the B and B̄ mesons with
the light hadrons [22]. The bottomonium states are, on the
other hand, modified due to their interactions with the gluon
condensates in the hadronic medium. The in-medium masses
of these states [ϒ(1S), ϒ(2S), ϒ(3S), and ϒ(4S)] have been
calculated within the same effective hadronic model, where
the effect of scale symmetry breaking of QCD through the
scalar gluon condensates are simulated by a scalar dilaton field
within the hadronic model [26]. For the case of the ϒ-state at
rest decaying to B(p)B̄(−p), the magnitude of p is given by

|p| =
(

mϒ
2

4
− mB

2 + mB̄
2

2
+ (mB

2 − mB̄
2)2

4mϒ
2

)1/2

. (11)

In the above, the medium modifications of the masses of the
bottomonium state and the B and B̄ mesons are considered,
so as to calculate the decay width of ϒ → BB̄ in the strange
hadronic medium.

The explicit construct for the state for the bottomonium
state ϒ with spin projection m at rest as

∣∣ϒNl
m (�0)

〉 =
∫

dk1b
i
I (k1)†aNl

m (ϒ,k1)b̃I
i
(−k1)|vac〉, (12)

where i is the color index of the quark (antiquark) operators.
In the present investigation, we shall assume the harmonic
oscillator wave functions for the bottomonium states and shall
study the medium modifications of the decay widths of the
bottomonium states, ϒ(1S), ϒ(2S), ϒ(3S), and ϒ(4S), arising
from the mass modifications of the bottomonium states as well
as of the B and B̄ mesons.

For ϒ(NS) (N = 1,2,3,4) [36],

aNS
m (ϒ,k1) = σmuNS(k1), (13)

where

u1S(k1) = 1√
6

(
R2

ϒ(1S)

π

)3/4

exp

[
−1

2
R2

ϒ(1S)k1
2

]
, (14)

u2S(k1) = 1√
6

√
3

2

(
R2

ϒ(2S)

π

)3/4(2

3
R2

ϒ(2S)k
2
1 − 1

)
exp

[
−1

2
R2

ϒ(2S)k
2
1

]
, (15)

u3S(k1) = 1√
6

√
15

8

(
R2

ϒ(3S)

π

)3/4(
1 − 4

3
R2

ϒ(3S)k
2
1 + 4

15
R4

ϒ(3S)k
4
1

)
exp

[
−1

2
R2

ϒ(3S)k
2
1

]
, (16)

u4S(k1) = − 1√
6

√
35

4

(
R2

ϒ(4S)

π

)3/4(
1 − 2R2

ϒ(4S)k
2
1 + 4

5
R4

ϒ(4S)k
4
1 − 8

105
R6

ϒ(4S)k
6
1

)
exp

[
−1

2
R2

ϒ(4S)k
2
1

]
. (17)

In the above, the factor 1√
6

refers to normalization factor arising from degeneracy factors due to color (3) and spin (2) of the
quarks and antiquarks.
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The B0 and B̄0 states, with finite momenta, are explicitly
given as

|B0(p′)〉 =
∫

d
i2
I (k3 + λ1p′)†uB(k3)b̃I

i2 (−k3 + λ2p′)dk3

(18)
and

|B̄0(p)〉 =
∫

b
i1
I (k2 + λ2p)†uB(k2)d̃I

i1 (−k2 + λ1p)dk2.

(19)
In the above,

uB(k) = 1√
6

(
RB

2

π

)3/4

exp

(
− RB

2k2

2

)
. (20)

To calculate the partial decay widths of the decay process
ϒ → BB̄, we need to know the values of λ1 and λ2, the
fractions of energy of the hadron carried by its constituent
quark and antiquark. These are calculated by assuming that
the binding energy of the hadron as shared by the quark and
antiquark are inversely proportional to the quark and antiquark
masses [28,30]. The energies of d(d̄) and b̄(b) in B̄(B) meson
are then given as [28]

ω1 = Md + Mb

Mb + Md

(mB − Mb − Md ) (21)

and

ω2 = Mb + Md

Mb + Md

(mB − Mb − Md ), (22)

with

λi = ωi

mB

. (23)

The motivation for the assumption that the contributions
from the quark (antiquark) to the binding energy of the hadron
to be inversely proportional to the mass of the quark (antiquark)
as in Eqs. (21) and (22) is as follows. In fact, in general,

the contributions to the binding energy of the bound state
composed of particles of 1 and 2, with masses m1 and m2,
are assumed to be given as μ/mi , i = 1,2, multiplied by the
binding energy of the bound state, where μ is the reduced
mass of the system, calculated from 1/μ = 1/m1 + 1/m2. In
other words, the contributions from the particles to binding
energy are inversely proportional to their masses, and the total
binding energy is the sum of the individual contributions, i.e.,
BE = [(μ/m1) + (μ/m2)] × BE = BE, as it should be. The
reason for making this assumption comes from the example of
hydrogen atom, which is the bound state of the proton and the
electron. As the mass of proton is much larger as compared to
the mass of the electron, the binding energy contribution from
the electron is μ

me
× BE � BE of hydrogen atom, and the

contribution from the proton is μ
mp

× BE, which is negligible
as compared to the total binding energy of hydrogen atom,
since mp >> me. With this assumption, the binding energies
of the heavy-light mesons, e.g., D and D̄ mesons [30], as well
as for B and B̄ mesons, mostly arise from the contribution
from the light quark (antiquark).

We next evaluate the matrix element of the quark-antiquark
pair creation part,

∫ HQ†Q̃(x,t = 0)dx, of the Dirac Hamil-
tonian density, between the initial and the final states for the
reaction ϒ → B̄0(p) + B0(p′). The Dirac Hamiltonian density
is given as

H = ψ(x)†(−i �α · �� + βmQ)ψ(x), (24)

where �α and β are the Dirac matrices, with �α defined following
Eq. (10) and β = diag(I, − I ). In the above, ψ(x) is the field
operator for the constituent quark, Q with mass mQ, which is
given by Eq. (1) for t = 0. The relevant part of the quark pair
creation term for the decay process ϒ → B̄0(p) + B0(p′) is
through the dd̄ creation. From Eqs. (7) and (8), we can write
down Hd†d̃ (x,t = 0) and then integrate over x to obtain the
expression

∫
Hd†d̃ (x,t = 0)dx =

∫
dkdk′di

I (k + λ1p′)†U (k)†S[L(p′)]†δ(−k′ + λ1p + k + λ1p′)

× (α · (k + λ1p′) + βMd )S[L(p)]V (−k′)d̃ i
I (−k′ + λ1p), (25)

where S[L(p)] and S[L(p′)] in the above equation correspond to the hadrons with finite momenta, p and p′, i.e., B̄0 and B0

mesons, and Md is the constituent mass of the d quark. S[L(p)] has already been defined in Eq. (10), and U (k) and V (k) are
given by Eq. (3).

From Eq. (25), we can then evaluate that

〈B̄0(p)|〈B0(p′)|
∫

Hd†d̃ (x,t = 0)dx|ϒ(NS)m(�0)〉 = δ(p + p′)
∫

dk1A
ϒ(NS)
m (p,k1), (26)

using the explicit forms of the ϒ-states and B̄0 and B0 states. We obtain the form of Aϒ
m(p,k1), including summing over color,

Aϒ(NS)
m (p,k1) = 3uB̄0 (k)uB0 (k) · Tr [am(ϒ(NS),k1)U (k)†S(L(p′))†(α · q̃ + βMd )S(L(p))V (−k)], (27)

where, k = k1 − λ2p, q̃ = k1 − p and p′ = − p.
We shall now simplify Aϒ(NS)

m (p,k1). First, since the B(B̄) mesons are completely nonrelativistic, we shall be assuming that
S[L(p)] and S[L(p′)] as identity. The integral in the right-hand side of Eq. (26) can be written as∫

dk1A
ϒ(NS)
m (p,k1) = 3

∫
dk1uB̄0 (k)uB0 (k) · Tr

[
am(ϒ(NS),k1)B(k,q̃)

]
, (28)

065206-4



DECAY WIDTHS OF BOTTOMONIUM STATES IN MATTER: . . . PHYSICAL REVIEW C 95, 065206 (2017)

where

B(k,q̃) = σ · q̃ − (2(k · q̃)g2 + f (k))σ · k. (29)

We use the approximate forms of f and g at small momentum, i.e., f ≈ 1 − g2k2

2 and 2Mdg ≈ 1, for simplifying the integral
given by Eq. (28). After simplification, this integral can be written as∫

dk1A
ϒ(NS)
m (p,k1) = 6cϒ(NS) exp

[(
aϒ(NS)b

2
ϒ(NS) − RB

2λ2
2
)| p|2] ∫

dk1T
ϒ(NS)
m (p,k1), (30)

where, T ϒ(NS)(p,k1), for N = 1,2,3,4, are given as

T ϒ(1S)
m (p,k1) = 1

2
Tr [σmB(k,q̃)],

T ϒ(2S)
m (p,k1) = 1

2
Tr [σmB(k,q̃)] ·

(
2

3
R2

ϒ(2S)k
2
1 − 1

)
,

T ϒ(3S)
m (p,k1) = 1

2
Tr [σmB(k,q̃)] ·

(
1 − 4

3
R2

ϒ(3S)k
2
1 + 4

15
R4

ϒ(3S)k
4
1

)
,

T ϒ(4S)
m (p,k1) = 1

2
Tr [σmB(k,q̃)] ·

(
1 − 2R2

ϒ(4S)k
2
1 + 4

5
R4

ϒ(4S)k
4
1 − 8

105
R6

ϒ(4S)k
6
1

)
. (31)

In the above, the parameters aϒ(NS) and bϒ(NS) are given as

aϒ(NS) = 1

2
R2

ϒ(NS) + R2
B ; bϒ(NS) = R2

Bλ2/aϒ(NS), (32)

with Rϒ(NS) as the radius of the bottomonium state, ϒ(NS) (N = 1,2,3,4), and

cϒ(1S) = 1

6
√

6
·
(

R2
ϒ(1S)

π

)3/4

·
(

R2
B

π

)3/2

, cϒ(2S) = 1

6
√

6

√
3

2

(
R2

ϒ(2S)

π

)3/4

·
(

R2
B

π

)3/2

,

cϒ(3S) = 1

6
√

6

√
15

8

(
R2

ϒ(3S)

π

)3/4

·
(

R2
B

π

)3/2

, cϒ(4S) = 1

6
√

6

(√
35

4

)(
R2

ϒ(4S)

π

)3/4

·
(

R2
B

π

)3/2

. (33)

We now change the integration variable to q in Eq. (28) with the substitution k1 = q + bϒ(NS)p and write∫
Aϒ(NS)

m (p,k1)dk1 = 6cϒ(NS) exp
[(

aϒ(NS)b
2
ϒ(NS) − λ2

2R
2
B

)|p|2] ·
∫

exp(−aϒ(NS)q2)T ϒ(NS)
m dq, (34)

where T ϒ(NS)
m in the above equation is the expression T ϒ(NS)

m (p,k1) given by Eq. (31), rewritten in terms of q. We next proceed to
simplify the above integral, by using the fact that the terms odd in q in Eq. (34) will vanish. Also, using qiqjG(|q|) ≡ 1

3δij q2G(|q|)
and qiqj qkqmG(|q|) ≡ 1

15 (δij δkm + δikδjm + δimδjk)q4G(|q|), where, G(|q|) is an even function of q, T ϒ(NS)
m (p,q) in the above

integrand can be recast into the form

T ϒ(NS)
m (p,q) ≡ pm

[
F

ϒ(NS)
0 (|p|) + F

ϒ(NS)
1 (|p|)|q|2 + F

ϒ(NS)
2 (|p|)(|q|2)2 + F

ϒ(NS)
3 (|p|)(|q|2)3 + F

ϒ(NS)
4 (|p|)(|q|2)4

]
. (35)

The coefficients F
ϒ(NS)
i (i = 0,1,2,3,4,and N = 1,2,3,4) are given as

F
ϒ(1S)
0 = (λ2 − 1) − 2g2|p|2(bϒ(1S) − λ2)

(
3

4
b2

ϒ(1S) −
(

1 + 1

2
λ2

)
bϒ(1S) + λ2 − 1

4
λ2

2

)
,

F
ϒ(1S)
1 = g2

[
−5

2
bϒ(1S) + 2

3
+ 11

6
λ2

]
, F

ϒ(1S)
2 = 0, F

ϒ(1S)
3 = 0, F

ϒ(1S)
4 = 0, (36)

F
ϒ(2S)
0 =

(
2

3
R2

ϒ(2S)b
2
ϒ(2S)|p|2 − 1

)
F

ϒ(1S)
0 , F

ϒ(2S)
1 = 2

3
R2

ϒ(2S)F
ϒ(1S)
0 +

(
2

3
R2

ϒ(2S)b
2
ϒ(2S)|p|2 − 1

)
F

ϒ(1S)
1

− 8

9
R2

ϒ(2S)bϒ(2S)g
2|p|2

[
9

4
b2

ϒ(2S) − bϒ(2S)

(
2 + 5

2
λ2

)
+ 2λ2 + 1

4
λ2

2

]
,

F
ϒ(2S)
2 = 2

3
R2

ϒ(2S)g
2

[
−7

2
bϒ(2S) + 2

3
+ 11

6
λ2

]
, F

ϒ(2S)
3 = 0, F

ϒ(2S)
4 = 0, (37)

F
ϒ(3S)
0 =

(
−1 + λ2 + g2|p|2

2
(bϒ(3S) − λ2)2(3bϒ(3S) + λ2 − 4)

)(
1 − 4

3
R2

ϒ(3S)b
2
ϒ(3S)|p|2 + 4

15
R4

ϒ(3S)b
4
ϒ(3S)|p|4

)
,
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F
ϒ(3S)
1 = 4

3
R2

ϒ(3S)(1 − λ2)

(
1 − 2

3
b2

ϒ(3S)R
2
ϒ(3S)|p|2

)
+ g2

6
(3bϒ(3S) − 7λ2 + 4)

+g2|p|2R2
ϒ(3S)

9

[
(−3bϒ(3S) + 7λ2 − 4)b2

ϒ(3S) + 4(3bϒ(3S) − λ2 − 2)(bϒ(3S) − λ2)(−2bϒ(3S) + 3λ2)
]

+ 2g2|p|4R4
ϒ(3S)b

2
ϒ(3S)

45

[
(3bϒ(3S) − 7λ2 + 4)b2

ϒ(3S) + 4(3bϒ(3S) − 4λ2)(3bϒ(3S) − λ2 − 2)(bϒ(3S) − λ2)
]

F
ϒ(3S)
2 = 4

15
(λ2 − 1)R4

ϒ(3S) − 2

9
g2R2

ϒ(3S)(9bϒ(3S) − 7λ2 + 4)

+ g2R4
ϒ(3S)|p|2
15

[
8b3

ϒ(3S) − 8

3
bϒ(3S)(bϒ(3S) − λ2)(3bϒ(3S) + λ2 − 4) + 2(bϒ(3S) − λ2)2(3bϒ(3S) + λ2 − 4)

+14b2
ϒ(3S)(bϒ(3S) − λ2) − 88

15
b2

ϒ(3S)(3bϒ(3S) − λ2 − 2)

]
,

F
ϒ(3S)
3 = 2g2

45
R4

ϒ(3S)(15bϒ(3S) − 7λ2 + 4), F
ϒ(3S)
4 = 0, (38)

and,

F
ϒ(4S)
0 = 1

2
(bϒ(4S) − 1)(bϒ(4S) − λ2)(3bϒ(4S) + λ2 − 4)g2|p|2

×
(

1 − 2R2
ϒ(4S)b

2
ϒ(4S)|p|2 + 4

5
R4

ϒ(4S)b
4
ϒ(4S)|p|4 − 8

105
R6

ϒ(4S)b
6
ϒ(4S)|p|6

)
,

F
ϒ(4S)
1 = g2

6
[9(bϒ(4S) − 1) − 2(3bϒ(4S) − λ2 − 2)] + g2|p|2R2

ϒ(4S)

3

×
[

(−5bϒ(4S) + 3)(3bϒ(4S) + λ2 − 4)(bϒ(4S) − λ2) − 9b2
ϒ(4S)(bϒ(4S) − 1) + 2bϒ(4S)(3bϒ(4S) − λ2 − 2)(3bϒ(4S) − 2)

]

+ 4g2|p|4R4
ϒ(4S)b

2
ϒ(4S)

15

[
(7bϒ(4S) − 5)(3bϒ(4S) + λ2 − 4)(bϒ(4S) − λ2)

+ 9

2
(bϒ(4S) − 1)b2

ϒ(4S) − bϒ(4S)(5bϒ(4S) − 4)(3bϒ(4S) − λ2 − 2)

]

− 8g2|p|6R6
ϒ(4S)b

4
ϒ(4S)

105

[
1

2
(9bϒ(4S) − 7)(3bϒ(4S) + λ2 − 4)(bϒ(4S) − λ2)

+ 3

2
b2

ϒ(4S)(bϒ(4S) − 1) − 1

3
bϒ(4S)(3bϒ(4S) − λ2 − 2)(7bϒ(4S) − 6)

]
,

F
ϒ(4S)
2 = 1

3
g2R2

ϒ(4S)(−9bϒ(4S) − 2λ2 + 5) + 4

5
g2R4

ϒ(4S)|p|2

×
[
b2

ϒ(4S)(7bϒ(4S) − 5) + 1

6
(3bϒ(4S) + λ2 − 4)(bϒ(4S) − λ2)(7bϒ(4S) − 3)

− 2

15
bϒ(4S)(3bϒ(4S) − λ2 − 2)(21bϒ(4S) − 10)

]

+ 4

5
g2R6

ϒ(4S)|p|4b2
ϒ(4S)

[
− 1

7
b2

ϒ(4S)(9bϒ(4S) − 7) − 4

15
bϒ(4S)(bϒ(4S) − λ2)(3bϒ(4S) + λ2 − 4)

−1

3
(bϒ(4S) − 1)(bϒ(4S) − λ2)(3bϒ(4S) + λ2 − 4) + 2

105
bϒ(4S)(3bϒ(4S) − λ2 − 2)(45bϒ(4S) − 28)

]
,

F
ϒ(4S)
3 = 2g2

15
R4

ϒ(4S)(15bϒ(4S) + 2λ2 − 5) + 4

5
g2R6

ϒ(4S)|p|2
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×
[

− 4

5
b3

ϒ(4S) − (bϒ(4S) − 1)b2
ϒ(4S) − 2

21
bϒ(4S)(bϒ(4S) − λ2)(3bϒ(4S) + λ2 − 4)

− 1

21
(bϒ(4S) − 1)(bϒ(4S) − λ2)(3bϒ(4S) + λ2 − 4)) + 2

105
bϒ(4S)(3bϒ(4S) − λ2 − 2)(27bϒ(4S) − 10)

]
,

F
ϒ(4S)
4 = −4g2R6

ϒ(4S)

35 × 9
(21bϒ(4S) + 2λ2 − 5). (39)

On performing the integration over q, Eq. (34) yields∫
Aϒ(NS)

m (p,k1)dk1 = Aϒ(NS)(|p|)pm, (40)

where Aϒ(NS)(|p|) is given as

Aϒ(NS)(|p|) = 6cϒ(NS) exp
[(

aϒ(NS)b
2
ϒ(NS) − R2

Bλ2
2

)|p|2] ·
(

π

aϒ(NS)

)3/2

×
[
F

ϒ(NS)
0 + 3

2aϒ(NS)
· F

ϒ(NS)
1 + 15

4a2
ϒ(NS)

· F
ϒ(NS)
2 + 105

8a3
ϒ(NS)

· F
ϒ(NS)
3 + 105 × 9

16a4
ϒ(NS)

· F
ϒ(NS)
4

]
. (41)

With < f |S|i >= δ4(Pf − Pi)Mf i , we then have for bottomonium state, ϒ(NS) of spin m,

Mf i = 2π · ( − iAϒ(NS)(|p|))pm. (42)

In the present work, we shall be studying the in-medium decay widths of the bottomonium state, ϒ(NS) to BB̄ pair, arising due
to the mass modifications of the bottomonium state and the B and B̄ states.

The expression obtained for the partial decay width of the bottomonium state decaying at rest to B0B̄0 pair, after averaging
over spin, is given as [30]

�[ϒ(NS) → B0B̄0] = γ 2
ϒ

1

2π

∫
δ
(
mϒ(NS) − p0

B0 − p0
B̄0

)|Mf i |2av · 4π |pB0 |2d|pB̄0 |

= γ 2
ϒ

8π2

3
|p|3 p0

B0p
0
B̄0

mϒ(NS)
Aϒ(NS)(|p|)2. (43)

In the above, p0
B0 = (m2

B0 + |p|2)1/2, p0
B̄0 = (m2

B̄0 + |p|2)1/2, and |p| is the magnitude of the momentum of the outgoing B0(B̄0)
mesons. The decay of ϒ(NS) to B+B− proceeds through a uū pair creation and the decay width Eq. (43) is modified to

�(ϒ(NS) → B+B−) = γ 2
ϒ

8π2

3
· |p|3 p0

B+p0
B−

mϒ(NS)
Aϒ(NS)(|p|)2. (44)

In the above, p0
B± = (m2

B± + |p|2)1/2, and |p| is the magni-
tude of the momentum of the outgoing B± mesons. The param-
eter γϒ has been introduced in the expressions for the decay
widths of ϒ(NS) → B0B̄0(B+B−), which is a measure of
the production strength of the BB̄ pair from the ϒ-state
through light quark antiquark pair (dd̄ or uū) creation. To study
the decay width of quarkonia using a light quark pair creation
model, namely, 3P0 model, such a pair creation strength
parameter, γ has been introduced in Refs. [31,35], which was
fitted to the observed decay width of the meson. In the present
investigation of the bottomonium decay widths, the parameter
γϒ is fitted from the vacuum decay width for the channel
ϒ(4S) → BB̄ [ϒ(4S) is the lowest ϒ-state which decays to
BB̄ in vacuum]. In the present work, we study the effects of the
medium effects on the decay widths of the ϒ → BB̄, arising
from the medium modifications of the masses of ϒ as well
as the B and B̄ mesons and explore the possibility whether
the decays of the lower (excited) states of bottomonium can
become kinematically possible with the medium effects.

IV. IN-MEDIUM MASSES OF OPEN-BOTTOM MESONS
(B AND B̄) AND BOTTOMONIUM STATES

The partial decay widths of the bottomonium states, ϒ(NS)
(N = 1,2,3,4), to BB̄ pair, in the hadronic medium, are
calculated in the present work. The medium modifications
of these decay widths arise due to the mass modifications
of the decaying ϒ-state and the open-bottom (B and B̄)
mesons. The in-medium masses of the heavy-light B and B̄
mesons are calculated within an effective hadronic model,
which is a generalization of a chiral SU(3) model [37],
based on a nonlinear realization of chiral symmetry [38–41]
and broken scale invariance [42–44], to charm and bottom
sectors, so as to derive the interactions of these mesons
with the hadronic medium. The mass modifications of the
open-bottom mesons (B and B̄) arise from their interactions
with the nucleons, hyperons, and the scalar mesons in the
strange hadronic matter [22]. The medium modifications of
the bottomonium masses, on the other hand, arise from the
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medium modifications of the gluon condensate in the hadronic
medium. The gluon condensate of QCD is simulated by a
scale-breaking term [37,45], written in terms of a scalar dilaton
field within the effective hadronic model [20,21]. Matching
the trace of the energy momentum tensor in QCD to that
corresponding to the scale-breaking term in the effective
hadronic model gives the expression for the gluon condensate
in terms of the dilaton field [20,21,25,46]. The medium
modification of the gluon condensate in the hadronic matter is
thus calculated from the modification of the dilaton field, using
which the in-medium masses of the bottomonium states are
calculated [26]. Using a QCD sum rule approach [24,47], the
mass modifications of the charmonium states were calculated
using the medium modifications of the gluon condensates,
obtained from the medium change of the dilaton field within
the effective hadronic model [25]. The leading-order pertur-
bation calculations [48] and the framework of QCD sum rule
yield the relation between medium modifications of the heavy
quarkonium states (charmonium and bottomonium states) to
the medium modifications of the gluon condensates [23]. The
in-medium charmonium masses have been computed using
the medium modifications of the gluon condensates calculated
from the dilaton field in the hadronic medium, within the
effective hadronic model [21]. Using the medium changes of
the masses of the charmonium states, and the D and D̄ mesons,
the partial decay widths of the charmonium states to DD̄
have been investigated using 3P0 model [21] as well as using
the model for composite hadrons with quark and antiquark
constituents [30]. In Ref. [31], using a quark-antiquark pair cre-
ation model, namely 3P0 model, the in-medium decay widths
of the charmonium states, ψ(3686), ψ(3770), χc0(3417), and
χc2(3556) to DD̄ pair were studied, assuming the mass drops
to be the same for D as well as D̄ mesons in the medium and
without accounting for medium modifications of the masses
of the charmonium sates. There were observed to be nodes for
the in-medium decay widths for ψ(3686), ψ(3770), as well as
χc0(3417), with decrease in the masses of D and D̄, whereas
the decay width of the charmonium state χc2(3556) showed a
monotonous increase with the drop in D and D̄ masses. Using
the mass modifications of the D and D̄ mesons as calculated in
a chiral effective model also showed nodes for the in-medium
decay widths of the charmonium states, ψ(3686) and ψ(3770),
within the 3P0 model, as well as in the model for composite
hadrons, similar to as observed in Ref. [31]. However, the
decay width of J/ψ → DD̄ showed a monotonous increase
with the increase in density. The observed behavior of the
decay widths of the charmonium states to DD̄ in the medium
is due to the competing effects from a polynomial part and an
exponential part through the center of mass momentum, |p| of
the outgoing D(D̄) meson. Accounting for the effects of the
medium modifications of the charmonium states was observed
to decrease the contribution from the exponential part, as the
center of mass momentum |p| decreases when the mass of
the charmonium state drops in the medium. With the mass
modifications of the charmonium states, as well as D and D̄
mesons, there were no nodes observed up to a density of 6ρ0. In
the following section, using the model for composite hadrons,
we shall investigate the medium effects of the bottomonium
decay widths for the channel ϒ → BB̄, as arising from the

medium modifications of the masses of the B, B̄ mesons [22]
as well as of the masses of the bottomonium states [26].

V. RESULTS AND DISCUSSIONS

In the present paper, we investigate the medium changes
of the partial decay widths of the bottomonium states
[ϒ(NS),N = 1,2,3,4] to BB̄ in hadronic matter, arising due
to the modifications of the masses of these hadrons calculated
in an effective hadronic model. The parameters chosen for the
study of these decay widths are as follows. The masses of the
u and d quarks are assumed to be 330 MeV and the mass of b
quark is taken to be 4 180 MeV [49] in the present work. The
values of the parameters λ1 and λ2 are then calculated using
Eqs. (21), (22), and (23) and using the mass of the B(B̄) meson
(in vacuum) as 5 279 MeV. These values turn out to be 0.1975
and 0.8025, respectively.

The parameters corresponding to the strengths of the
harmonic oscillator wave functions for the ϒ(NS) states are
evaluated from the decay width ϒ(NS) → e+e−, given by the
formula [50,51]

�ϒ(NS)→e+e− = 16πα2

9m2
ϒ(NS)

|ψϒ(NS)(0)|2, (45)

where, α = 1/137 is the fine structure constant, mϒ(NS) is the
mass of ϒ(NS) in vacuum, and ψϒ(NS)(0) is the wave function
of the bottomonium state, ϒ(NS) at the origin. Using the
experimental values of the leptonic decay widths of 1.34 keV,
0.612 keV, 0.443 keV, and 0.272 keV for the ϒ-states, ϒ(1S),
ϒ(2S), ϒ(3S), and ϒ(4S) [49], we obtain the values of the
harmonic oscillation strength, R−1

ϒ(NS) of the bottomonim states
ϒ(NS) to be 1309.2, 915.4, 779.75 and 638.6 MeV for N =
1,2,3,4 respectively [26]. For the study of the charmonium
partial decay widths to DD̄ pair in matter, the value of the
wave function parameter, RD of the D(D̄) meson and the light
quark pair production parameter, γ were fitted from the decay
widths of ψ ′′ → DD̄ and the partial decay widths of ψ(4040)
to DD̄, D∗D̄, D̄∗D, and D∗D̄∗ [23,30]. The value of R−1

D was
obtained as 310 MeV [23,30]. In the present work, we assume
the wave function parameter for the B(B̄) meson, RB to be
given in terms of the parameter RD of the D(D̄) meson wave
function, as RB = RD(mD/mB), which yields the value of R−1

B

to be 875.6 MeV. The value of the strength of the light quark
pair creation γϒ in the expression for the partial decay width
of the ϒ state to BB̄ is fitted from the vacuum decay width of
ϒ(4S) → BB̄. The experimental values of the decay widths
of ϒ(4S) → B+B− and ϒ(4S) → B0B̄0 as 10.516 MeV and
9.984 MeV, respectively, yield the value of γϒ to be 5.6.

We next calculate the decay widths of the ϒ states to BB̄
pair in matter and show the density dependence of these decay
widths in Figs. 1, 2, 3, and 4, for ϒ(1S), ϒ(2S), ϒ(3S)
and, ϒ(4S), respectively. The effects of isospin asymmetry
as well as strangeness of the hadronic matter on these
decay widths are also illustrated in these figures. The partial
decay widths for ϒ(NS) → B0B̄0 and ϒ(NS) → B+B− are
given by Eqs. (43) and (44), where Aϒ(NS)(|p|) is given
by Eq. (41). The decay widths thus have an exponential
as well as polynomial dependence on the center of mass
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FIG. 1. The partial decay widths of ϒ(1S) calculated using the present model for composite hadrons, to (i) B+B−, (ii) B0B̄0, and (iii) the
sum of the two channels [(i)+(ii)] in the isospin symmetric (asymmetric) nuclear matter and strange hadronic matter. In (a) and (c), the decay
widths are shown for isospin symmetric (η = 0) matter, where the channels (i) and (ii) are observed to overlap due to the (almost) degenerate
masses for the B mesons (mB+ � mB0 ), and, for the B̄ mesons (mB− � mB̄0 ) in the medium, the negligible mass difference arising due to the
very small difference in their vacuum masses. The threshold density above which the decay widths become nonzero (with the center of mass
momentum, |p| attaining a nonzero value) is observed to be higher for nuclear matter [shown in (a)] as compared to hyperonic matter [shown
in (c)]. For the case of isospin asymmetric nuclear matter, the partial decay widths are seen to remain zero even up to a density of 6ρ0 [shown
in (b)], whereas for isospin asymmetric hyperonic matter [shown in (d)], the threshold densities for the decay channels (i) and (ii) are observed
to be around 4.9ρ0 and 3.9ρ0, respectively.

momentum, |p|. To understand the observed behavior of
these decay widths in matter, as obtained in the present
investigation, it is useful to write these decay widths in terms
of the exponential and polynomial parts, as �(ϒ(NS) →
BB̄) = exp(2CF

ϒ(NS)|p|2) × �polynomial(ϒ(NS) → BB̄), where
CF

ϒ(NS) = (aϒ(NS)b
2
ϒ(NS) − R2

Bλ2
2) is the coefficient of |p|2 in

the exponential part of Aϒ(NS)(|p|) given by Eq. (41). In Fig. 1,
the partial decay widths of ϒ(1S) → B+B−, ϒ(1S) → B0B̄0,
as well as the sum of these two channels are shown as functions
of the baryon density in units of the nuclear matter saturation

density, ρ0. These are shown for the isospin symmetric as
well as asymmetric nuclear and hyperonic matter cases. The
decay width for ϒ(1S) → BB̄ in symmetric nuclear matter is
observed to be zero up to a density of about 5.2ρ0, above which
there is observed to be a sharp rise with density. The sharp
rise of this decay width with density can be understood from
the contributions of the exponential and polynomial parts as
follows. With the values of Rϒ(1S) and RB as already mentioned
to be (1309.2 MeV)−1 and (875.6 MeV)−1, and the value of
the parameter λ2 as 0.8025, the values of aϒ(1S) and bϒ(1S)
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defined by Eq. (32) are calculated, using which the value of
CF

ϒ(1S) is obtained as −0.15 × 10−6 MeV−2. The value for the
exponential part of the decay width is observed to vary very
less with density (from a value of around 0.995 at a density
of 5.2ρ0 to about 0.48 at 6ρ0). In the polynomial part, the
contributions are from the first two terms of the expression for
Aϒ(NS)(|p|) given by Eq. (41), along with the |p| dependent
terms (modulo the exponential part) multiplying Aϒ(NS)(|p|)2

in the expressions for the decay widths of ϒ(NS) → B0B̄0 and
ϒ(NS) → B+B− given by Eqs. (43) and (44), respectively.
For ϒ(1S) → BB̄, it is observed that the second term within
the square bracket in the expression for Aϒ(NS)(|p|) (with a
value of 1.075) dominates over the first term (|p| dependent,
which is negative and is of the order of −0.124 for a density of
6ρ0). Hence, the value of the sum of the two terms within the
square bracket in the expression for Aϒ(NS)(|p|) stays close to
unity. With increase in density, since the dependence on the
exponential as well as the polynomial part of Aϒ(NS)(|p|) are
very small, the dependence of the decay widths of ϒ(1S) →
BB̄ is proportional to |p|3p0

Bp0
B̄

, which is observed as a
sharp rise in the decay width of ϒ(1S) → BB̄. For symmetric
nuclear matter, for ρB = 5.2ρ0, the values of the polynomial
part and the exponential part are observed to be 24.3 MeV
and 0.9946 (obtained from the value of |p| as 129 MeV),
with their product (the decay width of ϒ(1S) → B+B−) as
24.17 MeV. For a density of 5.24ρ0, the value of |p| as
343 MeV, gives the contributions from the polynomial and
exponential parts as 456 MeV and 0.965, giving the value of
the decay width of ϒ(1S) → B+B− as 440 MeV. So there is
observed to be a sharp rise of the decay width with density in
symmetric nuclear matter. The threshold density above which
these decay widths become nonzero is observed to be smaller
(� 4.4ρ0), with inclusion of hyperons in the medium, as seen
from Fig. 1(c). This is because the masses of the B(B̄) mesons
have a larger drop in nuclear matter as compared to the mass
drop in hyperonic matter. Also, the medium modifications
of the open-bottom mesons dominate over the modification
of the ϒ(1S), leading to a smaller value of the center of
mass momentum, |p| in hyperonic matter, as can be seen
from the expression of |p| given by Eq. (11). For symmetric
hyperonic matter (fs=0.5), the contributions of the polynomial
and the exponential parts to the decay width are observed to
be 60.74 MeV and 0.99 (with |p| as 177 MeV) leading to the
partial decay width of ϒ(1S) → B+B− as 60.13 MeV, and
for a density of 4.55ρ0, the value is observed to increase to
630 MeV (with 661 MeV and 0.953 from the polynomial and
exponential parts of the decay width). The isospin asymmetry
in the hadronic matter leads to a smaller drop in the masses
of the B and B̄ mesons, thus shifting the threshold density for
the decay width to a larger value of density. For asymmetric
nuclear matter, the decay width remains zero even up to a
density of around 6ρ0, as can be seen from Fig. 1(b). With
inclusion of hyperons in the medium, the threshold densities
for ϒ(1S) → B+B− and ϒ(1S) → B0B̄0 are observed to be
around 4.9ρ0 and 3.9ρ0, respectively, for fs=0.5, as shown in
Fig. 1(d). A similar trend is observed for the in-medium partial
decay widths of the bottomonium states, ϒ(2S) and ϒ(3S),
plotted in Figs. 2 and 3, respectively. The threshold density

above which the decay of ϒ(2S) to BB̄ becomes possible
in the symmetric nuclear matter is around 2.6ρ0, which is
observed to become smaller (� 2.4ρ0) when hyperons are
included in the hadronic medium. As has been observed for
the case of the partial decay width of ϒ(1S) → BB̄, for ϒ(2S)
decaying to BB̄, there is observed to be a sharp rise in the
decay width, again predominantly due to the polynomial part
(proportional to |p|3p0

Bp0
B̄

) multiplying the Aϒ(NS)(|p|)2 in
the expression for the decay widths of ϒ(2S) → BB̄. This is
again due to the reason that the contribution from Aϒ(NS)(|p|)
from the terms in the square bracket is observed to vary
from 0.83 at 2.7ρ0 (with a value of |p| to be 179 MeV) to
about 0.78 at 4ρ0 (with a value of |p| to be 1121 MeV), and
the exponential part is seen to vary from 0.983 at 2.7ρ0 to
0.515 at 4ρ0, due to the small value of the coefficient CF

ϒ(2S)

as −0.264 × 10−6 MeV−2. For isospin asymmetric nuclear
matter (with η=0.5), the threshold densities for the decay
channels ϒ(2S) → B+B− and ϒ(2S) → B0B̄0 are observed
to be 2.6ρ0 and 3.5ρ0, respectively, as shown in Fig 2(b).
These values are observed to be modified to 2.1ρ0 and 2.5ρ0

for isospin asymmetric hyperonic matter (with η = 0.5 and
fs = 0.5) as shown in Fig. 2(d). From Figs. 3(a) and 3(c),
the threshold densities for the decay process of ϒ(3S) → BB̄
are observed to be around 1.45ρ0 and 1.35ρ0 for symmetric
nuclear matter and symmetric hyperonic matter. The density
dependence of the contribution from the exponential part of the
decay width in symmetric nuclear matter is observed to be very
small (0.966 at 1.45ρ0 corresponding to |p| as 229 MeV, to
0.79 at 1.75ρ0 corresponding to |p| to be around 652 MeV) and
the value of the expression in the square bracket of Aϒ(NS)(|p|)
is observed to vary from 0.21 at 1.45ρ0 to 0.5 at 1.75ρ0. Hence,
the density dependence (through |p|) of the decay widths of
ϒ(3S) → B0B̄0 and ϒ(3S) → B+B− given by Eqs. (43) and
(44), respectively, are due to the factor |p|3pBpB̄ , multiplying
the Aϒ(NS)(|p|)2 in the expression for the decay widths of
ϒ(3S) → BB̄. This is the reason for the sharp rise of the
ϒ(3S) → BB̄ decay width with density. With inclusion of
isospin asymmetry in the medium, the densities above which
the decay processes ϒ(3S) → B+B− and ϒ(3S) → B0B̄0

become possible, are 1.7ρ0 and 1.35ρ0 for nuclear matter,
as can be seen from the Fig. 3(b), and 1.45ρ0 and 1.25ρ0 for
hyperonic matter, as can be seen from Fig. 3(d).

In Fig. 4, we show the density dependence of the decay
width ϒ(4S) → BB̄ for isospin asymmetric as well as isospin
asymmetric nuclear and hyperonic matter. As has already been
mentioned, the production strength of the light quark-antiquark
pair for this decay, γϒ , is fitted from the experimental (vacuum)
decay widths of ϒ(4S) → B+B− and ϒ(4S) → B0B̄0 of
10.516 MeV and 9.984 MeV, respectively [the small difference
is due to the small difference in the vacuum masses of B+(B−)
and B0(B̄0)]. In isospin symmetric nuclear matter, as can be
seen from Fig. 4(a), the decay width of ϒ(4S) → B+B−
[which is almost identical to the decay width of ϒ(4S) →
B0B̄0 in the symmetric matter] is observed to increase with
density reaching a value of around 70 MeV at a density of
around 1.1ρ0. Above this value of density, there is seen to be
a drop in the decay width with further increase in density, and
it is observed that the decay width vanishes at a density of
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FIG. 2. The partial decay widths of ϒ(2S) calculated using the present model for composite hadrons, to (i) B+B−, (ii) B0B̄0, and (iii) the
sum of the two channels [(i)+(ii)] in the isospin symmetric (asymmetric) nuclear matter (fs = 0) and strange hadronic matter (fs = 0.5). The
channels (i) and (ii) overlap in the isospin symmetric (η = 0) nuclear and hyperonic matter [shown in (a) and (c)] due to the mass of the B+

(B−) (almost) coinciding with the mass of the B0 (B̄0). In the symmetric (asymmetric) matter, the threshold densities, above which the decay
channels for (i) and (ii) are nonzero, are observed to be higher for nuclear matter, shown in (a) and (b), as compared to hyperonic matter, shown
in (c) and (d).

around 2.1ρ0. As the density is further increased, the decay
width is also seen to increase, again reaching a maximum
value of around 35 MeV at a density of around 3ρ0 for both
the channels ϒ(4S) → B+B− and ϒ(4S) → B0B̄0. There
is again seen to be a drop and ultimately vanishing of the
decay width at a density of around 3.8ρ0. Above this density,
there is observed to be a sharp rise in the value of the decay
widths. For symmetric nuclear matter, the contribution of the
exponential part of the decay width is observed to vary from
0.92 at zero density to around 0.11 at density of 4ρ0. The
density dependence of the part of decay width corresponding
to the terms in the square bracket in the expression for
Aϒ(NS)(|p|) given by Eq. (41), is observed to be as follows.

Its value of 0.045 at zero density, is observed to increase
slowly up to a value of 0.0466 at a density of around 0.5ρ0,
and decreases with further increase in density, becoming very
small (∼ 6.4 × 10−6 at around 2.1ρ0). There is observed to be
a rise in its value with density up to a density of around 3ρ0,
followed by a drop and again reaching a value of around 6.63
×10−6 at around 3.8ρ0. As the density is further increased,
there is observed to be a steady increase in its value reaching a
value of around 1.12 at a density of 5.9ρ0. The value of |p| is
observed to increase from a value of 323 MeV at zero density
to around 1630 MeV at 4ρ0. The density dependence of the
decay width is thus due to combined effects of the contributions
from the exponential term (decreasing with density), the factor
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FIG. 3. The partial decay widths of ϒ(3S) calculated using the present model for composite hadrons, to (i) B+B−, (ii) B0B̄0, and (iii)
the sum of the two channels [(i)+(ii)] in the isospin symmetric (asymmetric) nuclear matter and strange hadronic matter. The overlap of the
values of the decay widths in channels (i) and (ii) in isospin symmetric matter (η = 0) in nuclear and hyperonic matter [shown in (a) and (c),
respectively], are due to the mass of B+ (B−) being (almost) identical with the mass of B0 (B̄0) in the medium, with the negligible difference
in the mass arising due to the very small difference in the vacuum masses. In panels (b) and (d), the decay widths are plotted for the isospin
asymmetric nuclear and hyperonic matter. In both the symmetric and asymmetric matter, the decay widths are observed to be nonzero above a
threshold value, which is observed to be larger for the case of nuclear matter [shown in (a) and (b)] as compared to hyperonic matter [shown in
(c) and (d)].

|p|3pBpB̄ , multiplying the Aϒ(NS)(|p|)2 in the expression for
the decay width of ϒ(4S) → BB̄, as well as the contribution
from the terms within the square bracket in the expression
of Aϒ(NS)(|p|) given by Eq. (41). The observed behavior of
the decay width for the process ϒ(4S) → BB̄ in symmetric
nuclear matter is thus dominantly due to the contribution of
the polynomial part of the decay width, arising from the terms
within the square bracket in the expression of Aϒ(NS)(|p|). The
behavior of the decay width of ϒ(4S) → BB̄ with density,
is observed to remain similar, with inclusion of hyperons
in the medium, as shown in Fig. 4(c), but the densities at

which the decay widths reach maximum values (at densities
of 0.9ρ0 and 2.5ρ0) and vanish (at densities of 1.8ρ0 and 3ρ0)
are observed to be smaller than those for isospin symmetric
nuclear matter. The isospin asymmetry effects on the partial
decay widths of the process ϒ(4S) → BB̄ in nuclear matter
and hyperonic matter are also shown in Figs. 4(b) and 4(d).
In asymmetric nuclear matter, the difference in the decay
widths of ϒ(4S) → B+B− and ϒ(4S) → B0B̄0 are quite
pronounced at high densities as can be seen in Fig. 4(b),
even though the qualitative features remain the same as for
symmetric nuclear matter. The decay width ϒ(4S) → B+B−
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FIG. 4. The partial decay widths of ϒ(4S) calculated using the present model for composite hadrons, to (i) B+B−, (ii) B0B̄0, and (iii) the
sum of the two channels [(i)+(ii)] in the isospin symmetric (asymmetric) nuclear matter and strange hadronic matter. The decay widths for the
channels (i) and (ii) are observed to overlap for the isospin symmetric (η = 0) for nuclear matter and hyperonic matter [as shown in (a) and
(c)] due to the mass of B+ (B−) to be close to the mass of B0 (B̄0). There is observed to be a rise with density followed by a drop, with the
decay widths reaching a value close to zero (the node), at a value of around 2.1ρ0 (1.8ρ0) for nuclear (hyperonic) matter. With further increase
in density, the value of the decay width is observed to rise, reaching a peak, followed by a drop, leading again to a value close to zero (the
second node) at a density of around 3.8ρ0 (3ρ0) for nuclear (hyperonic) matter. With further increase in density, there is observed to be a sharp
rise in the decay widths. In isospin asymmetric (η = 0.5) nuclear matter (fs = 0) shown in (b), the behavior of the decay widths in both the
channels remain similar, but the peaks and nodes are observed to be at larger densities for channel (i) as compared to channel (ii). With the
inclusion of hyperons in the isospin asymmetric medium, these peaks and nodes are observed at smaller densities [as shown in (d)] as compared
to asymmetric nuclear matter [as shown in (b)].

[ϒ(4S) → B0B̄0] is observed to rise with increase in density
up to a density of around 1.5ρ0 (ρ0) followed by a drop with
further increase in density up to around 2.9ρ0 (2ρ0) when the
decay width is observed to vanish. Above the density at which
there is a node, i.e., the decay width attains zero value, with
further increase in density, the decay width is observed to
again attain a maximum at around 4.4ρ0 (2.8ρ0) followed by
another node at density of 6ρ0 (3.5ρ0) for the decay process
ϒ(4S) → B+B− (ϒ(4S) → B0B̄0). The effects of isospin
asymmetry are observed to be smaller for hyperonic matter
[shown in Fig. 4(d)], as compared to the case of nuclear matter
[shown in Fig. 4(b)], even though qualitative bahavior remains
the same. The values of densities at which the decay widths of

ϒ(4S) → B+B− [ϒ(4S) → B0B̄0] have maxima are 1.2ρ0

(0.8ρ0) and 2.6ρ0 (2.1ρ0) and the values where nodes are
observed are 1.9ρ0 (1.6ρ0) and 3.2ρ0 (2.5ρ0), respectively.

As has already been mentioned the in-medium decay widths
of the bottomonium states to BB̄ have contributions of a
polynomial part and an exponential part, in terms of the
center of mass momentum, |p| defined through Eq. (11).
This can be seen from the expressions of the partial decay
widths of ϒ(NS) → B0B̄0 and ϒ(NS) → B+B− given by
Eqs. (43) and (44), with Aϒ(NS)(|p|) as in Eq. (41). For the
decay of ϒ(1S), ϒ(2S), and ϒ(3S), there is observed to be
a sharp rise in the decay width with density, predominantly
due to the factor |p|3p0

Bp0
B̄

multiplied to Aϒ(NS)(|p|)2 in the
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expressions of the partial decay widths of ϒ(NS) → B0B̄0

and ϒ(NS) → B+B−. For the decay of ϒ(NS) → BB̄, N =
1,2,3, the effects of density arising from the exponential part
as well as from the expression within the square bracket in the
expression for Aϒ(NS)(|p|) are observed to be very small. For
the partial decay width of ϒ(4S) → BB̄, there is seen to be an
initial rise in the decay width with increase in density, followed
by a decrease with further increase in the density leading to a
node. As the density is further increased there is a drop again
after initial increase in the decay width leading to observation
of a second node. The observed behavior of the decay width
of ϒ(4S) → BB̄ is dominantly due to the behavior of the
contribution of the terms within the square bracket of the
expression for Aϒ(NS)(|p|). In the present investigation of
the in-medium decay widths of the bottomonium states, we
have accounted for the medium modifications of the masses of
the bottomonium states as well as the open-bottom mesons (B
and B̄ mesons). The finding of nodes for ϒ(4S) → BB̄ mesons
should have observable consequences on the production of the
hidden as well as open-bottom mesons in haevy-ion collision
experiments.

VI. SUMMARY

In the present paper, we have investigated the partial
decay widths of ϒ → BB̄ within a field theoretical model
of composite hadrons. The medium modifications of these
decay widths arise from the medium changes of the masses
of the bottomonium and open-bottom mesons. The masses

of the B and B̄ mesons, calculated in an effective chiral
model, arise due to their interactions with the baryons and
the scalar mesons. On the other hand, the mass modifications
of the bottomonium states in the hadronic medium are due
to the medium modification of a scalar dilaton field, which
is introduced in the effective hadronic model to simulate the
gluon condensates of QCD. The effects of isospin asymmetry,
strangeness on the bottomonium decay widths for decays
ϒ(NS) → BB̄, N = 1, 2, 3, 4, have also been studied in the
present work. The density effects are seen to be the dominant
medium effects, which should have observable consequences
from the dense hadronic matter created in heavy-ion collision
experiments. The decay width of ϒ(4S) → BB̄ is observed to
show nodes at specific densities, similar to what was observed
for the partial decay widths of the excited charmonium
states to DD̄ pair within 3P0 model, as well as, within a
field theoretical model of composite hadrons with quark and
antiquark constituents. The isospin asymmetry effects are
observed to be quite pronounced at high densities, leading to
quite different values for the decay widths of ϒ(4S) → B+B−
and ϒ(4S) → B0B̄0. These isospin asymmetry effects at high
densities on these partial decay widths should show in the
asymmetric heavy-ion collision experiments in CBM planned
at FAIR. However, the study of the bottomonium states will
require access to energies higher than the energy regime
planned at CBM experiment. The density effects on the partial
decay widths ϒ → BB̄ should show up in observables, e.g.,
the yield of the bottomonium states and the open-bottom
mesons, as well as, in the dilepton spectra at the Super Proton
Synchrotron (SPS) energies.
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