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The structure of light antikaon-nuclear quasibound states, which consist of an antikaon (K̄ = K−,K̄0) and a
few nucleons (N = p,n), such as K̄NN , K̄NNN , K̄NNNN , and K̄NNNNNN systems, is studied with full
three- to seven-body calculations. Employing a realistic K̄N potential based on the chiral SU(3) effective field
theory with the SIDDHARTA constraint, we show that the central nucleon densities of these systems increase
when the antikaon is injected, by about factor of 2 at maximum. The K̄NNNN system shows the largest central
density, about 0.74 fm−3 even with the phenomenological K̄N potential, which is not as high as those suggested
in previous studies with approximate treatments of the few-body systems. We find that the spin of the ground
state of the K̄NNNNNN system depends on the strength of the K̄N attraction. Thus, the quantum number of
the ground state can be another constraint on the K̄N interaction.
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I. INTRODUCTION

In recent years, properties of the antikaon(K̄)-nuclear
quasibound states, so-called kaonic nuclei, have been studied
actively. Since the nominal location of the �(1405) mass
is slightly below the K−p threshold [1], the �(1405) is
considered to be a K̄N quasibound state embedded in the
π� continuum [2,3]. Motivated by such a picture, phe-
nomenological K̄N interaction models were constructed so
that they reproduce the �(1405) nominal mass together with
two-body scattering data [4,5]. The strong attraction of the
phenomenological potential models predicts deeply bound K̄
states in light nuclei with binding energy larger than 100 MeV,
and extremely dense systems about ten times higher than
the ordinary nuclear density [4,6–8]. It should, however, be
noted that the few-body problem was not accurately solved
to predict such high-density systems, but the optical potential
model or the g-matrix approach were adopted. The validity of
those approaches should be examined with care, at least in the
few-body systems.

The K̄N interactions are essential for determining the
structure of the kaonic nuclei. The K̄ belongs to a part of
the pseudoscalar octet of Nambu-Goldstone bosons associated
with the spontaneous symmetry breaking of chiral SU(3)L ×
SU(3)R in low-energy QCD. Thus, the chiral SU(3) effective
field theory based on the symmetry breaking mechanism is
a more systematic framework to obtain the K̄N interaction,
and has succeeded in dealing with the K̄N interaction with
K̄N -π� couplings [9–12]. In fact, including the next-to-
leading order (NLO) contributions, the chiral SU(3) approach
reproduces all existing experimental data at the level of
χ2/d.o.f ∼ 1 [13,14]. Among others, the precise measurement
of kaonic hydrogen by the SIDDHARTA Collaboration [15,16]
gives a strong constraint at the K̄N threshold, with which
the uncertainty in the subthreshold extrapolation of the K̄N
amplitude is significantly reduced. The equivalent single-
channel K̄N potential to the NLO chiral dynamics including
the SIDDHARTA constraint is constructed in Ref. [17] based
on the framework presented in Ref. [18]. Thus, the realistic
K̄N potential is now available.

The K̄N -π� scattering amplitude from the chiral SU(3)
dynamics has two poles in the �(1405) energy re-
gion [11,19,20]: one is located around 1420 MeV, while
the other exhibits a broad resonant structure above the π�
threshold. The pole located around 1420 MeV corresponds to
the K̄N quasibound state with a binding energy of 15 MeV,
about a half of the binding energy assumed in the phenomeno-
logical K̄N interactions. This different pole structure comes
from different off-shell properties of the K̄N interactions.
The K̄N interaction based on the chiral SU(3) dynamics is
energy dependent, and that in the subthreshold becomes less
attractive than the one proposed by the energy-independent
phenomenological potential [18]. These different off-shell
properties also appear in how the �(1405) resonance shows
up in the differential cross section of the K−d → π�n reac-
tion [21]. These differences are further enhanced in the light
kaonic nuclei. For the lightest kaonic nuclei, so-called strange
dibaryons in the K̄NN -πYN (Y = �,�) coupled system, the
energy-dependent potential models [22–26] give resonance
energies higher than the energy-independent ones [6,27–32].
How a possible signature of this strange dibaryon resonance
shows up in the resonance production reaction is also of
interest, as it reflects the two-body dynamics of the K̄N
system [33].

Given the background described above, we raise three
questions to be discussed in this paper: (1) What are the
structures of light kaonic nuclei when reliable NN and K̄N
interactions are used? (2) Can the high-density K̄ nuclei be
realized within the accurate few-body treatment? (3) How does
the off-shell dependence of the K̄N interaction affect few-
body systems? To answer these questions, we perform fully
microscopic few-body calculations for three- to seven-body
systems including an antikaon. Here, the systems with a K̄
and (N − 1) nucleons are accurately described by employing
the stochastic variational method (SVM) with correlated
Gaussian (CG) basis [34–36]. We employ the K̄N interaction
based on the chiral SU(3) dynamics with the SIDDHARTA
constraint [17] as a realistic K̄N force. Combining them with
the reliable nuclear forces, we present quantitative predictions
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of the structure of the light kaonic nuclei. Next, we perform
the same few-body calculations with the phenomenological
K̄N interaction, the so-called Akaishi-Yamazaki (AY) poten-
tial [4,27], in order to examine the validity of the many-body
approximations used in the prediction of the high-density
states. Furthermore, the comparison of the results with two
K̄N potentials serves as a study of the off-shell dependence
of the interactions. In this way, we systematically study the
structure of kaonic nuclei and discuss how the nuclear structure
is changed by K̄ .

In Sec. II, we briefly review the two-body interactions used
in this work. The SVM with the CG basis for the N -body
systems is explained in Sec. III. We summarize the quantities
to analyze the structures of the few-body systems in Sec. IV.
Numerical results of the properties of the light kaonic nuclei
are presented in Sec. V. A summary is given in Sec. VI.

II. TWO-BODY INTERACTIONS

A. Hamiltonian and expectation values

The Hamiltonian for (N − 1) nucleons and an antikaon
takes the form

H =
N∑
i=1

Ti − Tcm

+
N −1∑
i<j

V
(NN)
ij +

N −1∑
i=1

V
(K̄N)
iN +

N∑
i<j

V Coul.
ij . (1)

Here Ti is the kinetic energy of the ith particle. The particle
label, i = N , always indicates an antikaon and the others are
for nucleons. Tcm is the energy of the center-of-mass (c.m.)
motion,

Tcm =
(∑N

i=1 pi

)2

2{(N − 1)mN + mK̄} , (2)

where the isospin-averaged nucleon and antikaon masses,
mN = 939 MeV and mK̄ = 496 MeV, are used in this paper.
V

(NN)
ij , V

(K̄N)
ij , and V Coul.

ij are the NN , K̄N , and Coulomb
interactions between the ith and j th particles, respectively. The
NN and K̄N interactions depend on isospin of two-particles,
and they can be written as

Vij = V I=0
ij P̂ I=0

ij + V I=1
ij P̂ I=1

ij

= 1
2

(
V I=0

ij + V I=1
ij

) − 1
2

(
V I=0

ij − V I=1
ij

)
P̂ ij

τ , (3)

where P̂ I=0
ij = 1−τ i ·τ j

4 and P̂ I=1
ij = 3+τ i ·τ j

4 are isospin-

projection operators for I = 0 and 1, and P̂
ij
τ = 1+τ i ·τ j

2 is
the isospin-exchange operator for the ith and j th parti-
cles. The isospin-exchange operator P̂τ acts on the parti-
cle basis as P̂τ |nn〉 = |nn〉, P̂τ |pp〉 = |pp〉 and P̂τ |pn〉 =
|np〉 for NN , and P̂τ |K−n〉 = |K−n〉, P̂τ |K̄0p〉 = |K̄0p〉,
P̂τ |K−p〉 = −|K̄0n〉 and P̂τ |K̄0n〉 = −|K−p〉 for K̄N . We
have to treat the K−p-K̄0n channel coupling explicitly in the
particle basis calculation.

The single-channel K̄N potential V (K̄N) has an imaginary
part which represents the decay processes into the lower energy
π� and π� channels. Because of the complex nature of the

potential, the Hamiltonian is non-Hermite and can have an
eigenstate with a complex eigenvalue, called a quasibound
state. In order to discuss the structure of the quasibound state,
we need to evaluate the expectation values of some operators.
For a stable bound state, the expectation value of an operator
Ô(x) with the wave function �JMMT

(x) is given by (notation
of the wave function will be explained in Sec. III)

〈Ô〉 ≡
∫

dx
[
�JMMT

(x)
]∗Ô(x)�JMMT

(x) (4)

with the normalization of the wave function

1 =
∫

dx
∣∣�JMMT

(x)
∣∣2

. (5)

However, since the eigenfunctions of a non-Hermite Hamilto-
nian do not form an orthogonal set [37], we should introduce
the Gamow states to treat an unstable state. The expectation
value with the Gamow states is

〈Ô〉G ≡
∫

dx �JMMT ,G(x)Ô(x)�JMMT ,G(x) (6)

with the normalization

1 =
∫

dx
[
�JMMT ,G(x)

]2
. (7)

With the normalization of Eq. (7), expectation values are
in general obtained as complex numbers, which are not
straightforwardly interpreted. In some cases, however, we can
extract a real-valued quantity. As explained in the Appendix
of Ref. [17], for a quasibound state whose real part of the
eigenenergy is negative, the damping of the wave function
outside the potential can be extracted from the standard
expectation values with the normalization (4). In this paper,
we calculate the root-mean-square (rms) distances

√
〈r2〉,

density distributions ρ(r), and the probabilities of finding
various channels in the wave functions P by using the
standard expectation value (4). For the other operators such
as Hamiltonian and its decomposition, the expectation values
are calculated by using Gamow state normalization (7).

B. N N interactions

As a nucleon-nucleon interaction V (NN) we employ the
Argonne V4′ potential [38]. The AV4′ potential is obtained
by simplifying the full AV18 potential by suppressing the
small electromagnetic, the spin-orbit, and the tensor terms
and readjusting the central spin- and isospin-dependent inter-
actions. Table I lists the binding energies and radii of two- to
six-nucleon systems calculated with the AV4′ potential. The
AV4′ potential model reasonably reproduces the properties of
light nuclei.

C. K̄ N interactions

As a realistic K̄N interaction, V (K̄N), we employ the
Kyoto K̄N potential, which is the energy-dependent effective
interaction based on the chiral SU(3) dynamics constructed in
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TABLE I. Total binding energies B, point-proton rms radii
√

〈r2
p〉,

point-neutron rms radii
√〈r2

n〉 and rms matter radii
√

〈r2
N 〉 of ordinary

nuclei. The experimental data of the binding energies B are taken
from Ref. [39]. The nuclear charge radii

√
〈r2

ch〉 in Ref. [40] are
converted into point-proton rms radii

√
〈r2

p〉 by using the formula:
〈r2

ch〉 = 〈r2
p〉 + 〈r2

pc〉 + N
Z
〈r2

nc〉 + 3
4m2

p
[41], where 〈r2

pc〉 = 0.8782 fm2,

〈r2
nc〉 = −0.115 fm2, and 3

4m2
p

= 0.0332 fm2 are proton mean-square

charge radius, neutron mean-square charge radius, and Darwin-Foldy
term, respectively.

AV4′ Expt. AV4′ Expt. AV4′

B (MeV)
√

〈r2
p〉 (fm)

√〈r2
n〉 (fm)

√
〈r2

N 〉 (fm)

2H 2.24 2.22 2.02 1.97 2.02 2.02
3H 8.99 8.48 1.59 1.59 1.70 1.67
3He 8.33 7.72 1.73 1.77 1.60 1.69
4He 32.1 28.3 1.39 1.46 1.38 1.39
6He 32.2 29.3 2.00 1.93 2.95 2.67
6Li 35.8 32.0 2.43 2.45 2.42 2.43

Ref. [17]:

V (K̄N)(r,E) = 1

π3/2b3
e−r2/b2 mN

2(E + mN + mK̄ )

× ωK̄ + EN

ωK̄EN

[
10∑
i=0

Ki

(
E

100 MeV

)i
]
, (8)

where E, EN , and ωK̄ are the nonrelativistic two-body energy,
the energy of the nucleon and the energy of the antikaon:

E = √
s − mN − mK̄, (9)

EN = s − m2
K̄

+ m2
N

2
√

s
, (10)

ωK̄ = s − m2
N + m2

K̄

2
√

s
. (11)

The coefficients Ki of the energy-dependent strength and the
range parameter b are determined so as to reproduce the
K̄N amplitude [13,14] calculated based on the NLO chiral
SU(3) dynamics (see Ref. [17]). The Kyoto K̄N potential is
the single channel K̄N interaction model where the meson-
baryon channel coupling effect with strangeness S = −1 is
renormalized, and thus the coefficients Ki are the complex
numbers. The origin of the energy dependence is twofold. The
coupled-channel interaction depends on the energy through the
time derivatives in the chiral Lagrangians, and the construction
of the equivalent single-channel potential introduces additional
energy dependence. By solving the Schrödinger equation, the
pole positions of the K̄N (I = 0) amplitude are found to be
1424 − 26i and 1381 − 81i MeV.

For the use of the energy-dependent potential, it is necessary
to determine the K̄N two-body energies in the N -body
systems. Though the two-body energies in the N -body
systems cannot be determined uniquely, we follow the same
way as used in Refs. [22,23] to determine the K̄N two-body

energies for practical calculations.1 First, we introduce an
“antikaon binding energy” BK̄ as

−BK̄ ≡ 〈H 〉G − 〈HN 〉G, (12)

where HN is the Hamiltonian for (N − 1) nucleons defined
by

HN =
N −1∑
i=1

Ti − T N
cm +

N −1∑
i<j

V
(NN)
ij +

N −1∑
i<j

V Coul.
ij (13)

with

T N
cm =

(∑N −1
i pi

)2

2(N − 1)mN

. (14)

Note that −BK̄ is in general complex. We employ the following
three types of the K̄N two-body energy:

√
s = mN + mK̄ + δ

√
s, (15)

Type I: δ
√

s = −BK̄, (16)

Type II: δ
√

s = −BK̄/(N − 1). (17)

Type I corresponds to the picture in which the K̄ field
collectively surrounds the (N − 1) nucleons, and Type II
corresponds to the picture in which the K̄ energy is distributed
equally to the (N − 1) nucleons [22,23]. The eigenstate is
determined in a self-consistent manner; the two-body energy
calculated by the expectation values in Eq. (15) should equal
to the energy variable in the K̄N interaction in V (K̄N)(r,E).

For comparison, we also examine the Akaishi-Yamazaki
(AY) potential. The potential was originally constructed in the
coupled-channel K̄N -π�-π� system by fitting the old data
of the scattering lengths in Ref. [42] and the nominal pole
position of �(1405) [4]. Here we adopt the single-channel
version presented in Ref. [27] in which the energy dependence
of the potential through the Feshbach projection method is
eliminated by hand.

We note that the imaginary parts of the Kyoto K̄N and AY
potentials represent the decay into the π� and π� channels.
In the few-body kaonic nuclei, there are two types of the
decay processes: the mesonic decays with a pion emission
and the nonmesonic decays with multinucleon absorptions. In
this work, the imaginary part of the eigenenergy corresponds
only to the mesonic decay width, reflecting the imaginary part
of the two-body potential. When the nonmesonic decays are
taken into account, they increase the decay width of the kaonic
nuclei by several tens of MeV [23,43–45].

III. STOCHASTIC VARIATIONAL METHOD WITH
CORRELATED GAUSSIAN BASIS

We investigate the structure of the kaonic nuclei with a
powerful few-body approach, that is, the SVM with the CG
basis [34–36]. The method is flexible to cope with strongly

1We also examine the prescription of the two-body energy suggested
in Ref. [25]. The results of the few-body systems turn out to be in
between the two choices shown in this paper.
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correlated few-particle quantum systems as exemplified in
Ref. [46].

The wave function for the N -body system is expanded as
a combination of the basis functions:

�JMMT
(x) =

K∑
k=1

ck�JMMT
(x,Ak), (18)

where J is the total angular momentum and M (MT ) is the z
component of the total angular momentum (isospin). Since
we employ central NN and K̄N interactions, no channel
coupling occurs between states with different L. In this paper,
we consider total orbital momentum L = 0 state by taking the
basis functions with total spin J (= S) to have the form

�SMSMT
(x,A) = A {exp(−x̃Ax)χSMS

ηMT
}, (19)

where the operator A is an antisymmetrizer for the nucleons;
MS (=M) is the z components of the total spin; x is an (N −
1)-dimensional column vector, whose ith element is a three-
dimensional Jacobi coordinate xi ; the symbol x̃ stands for a
transpose of x; A is an (N − 1) × (N − 1) positive-definite
symmetric matrix. The Jacobi coordinates xi , including the
center-of-mass coordinate xN , are related to the ith single-
particle coordinate r i by a linear transformation:

xi =
N∑
j=1

Uij rj (20)

with

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
1
2

1
2 −1 · · · 0

...
. . .

. . .
...

1
N −1 · · · · · · 1

N −1 −1
mN

(N −1)mN +mK̄
· · · · · · mN

(N −1)mN +mK̄

mK̄

(N −1)mN +mK̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

We can easily apply the CG to the present three- to seven-
body model because the CG keeps its functional form under
any linear transformation between different coordinate sets for
any number of particles. The CG basis in Eq. (19) can only
be applicable to states with total orbital angular momentum
L = 0. It should be noted that the higher partial waves for
each coordinate are taken into account through the cross terms,
xi · xj .

The spin wave function χSMS
is expressed using the basis

of successive coupling:

χSMS
= ∣∣[ · · · [[ 1

2
1
2

]
S12

1
2

]
S123

· · · ]
SMS

〉
. (22)

Here we take all possible intermediate spins (S12,S123, . . . ) for
a given S. For the isospin wave function, ηMT

, we employ the
particle basis, which is given as the product of single-particle
isospin wave functions:

ηMT
= η 1

2 mτ1
· · · η 1

2 mτN
. (23)

The sets of the single-particle isospins (mτ1, . . . ,mτN ) take
the values

mτk
=

{
1
2 (k = 1, . . . ,MT + N

2 − 1,N ),

− 1
2 (otherwise)

(24)

for the states with K̄0 and

mτk
=

{
1
2 (k = 1, . . . ,MT + N

2 ),

− 1
2 (otherwise)

(25)

for the states with K−.
Each basis function has N (N − 1)/2 nonlinear parame-

ters (Ak)ij and also spin and isospin quantum numbers. The

adequate choice of these parameters is crucial to determine
accuracy of the variational calculation. The SVM offers
efficient and economical ways to find optimal sets of the
variational parameters [34–36], in which we increase the basis
size one-by-one by searching for the best among many random
trials for the basis function. For the Hermitian Hamiltonian,
the eigenvalues for the trial wave functions are larger than
or equal to the exact eigenvalue. Since we use the complex
K̄N potential in this work, the eigenvalues of the trial wave
functions give no longer the lower limit. Practically, we apply
the SVM for the real part of the Hamiltonian to obtain the
energy curve, and then we diagonalize the full Hamiltonian
by using the basis optimized for the ground state with the real
Hamiltonian. The validity of this method can be confirmed in
the two-body sector where the exact value of the pole position
can be obtained. Examples of the few-body calculations
for K̄NN (K−pp), K̄NNN (3

K̄
H), K̄NNNN (4

K̄
H), and

K̄NNNNNN [6
K̄

He (Jπ )] are shown in Fig. 1 with the AY
potential. The eigenvalues with the real part of the Hamiltonian
are shown in Fig. 1(a). Corresponding complex energy curves
of the full Hamiltonian are plotted in Figs. 1(b) and 1(c).
We find that if the energy convergence is reached with the
real part of the Hamiltonian, the eigenvalues with the full
Hamiltonian are also converged. The obtained energies in this
method are consistent with other calculations for two- and
three-body systems [4,6,27].

For the K̄NN , K̄NNN , K̄NNNN , and K̄NNNNNN
systems, the basis sizes are 200, 1000, 4000, and 10000,
respectively. The binding energies and widths change less than
0.0001 MeV when the numbers of basis increase by 1 from
these basis numbers.
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FIG. 1. Energy convergence of the ground states of three- to
seven-body systems including an antikaon. (a) Eigenvalues calculated
only with the real part of the Hamiltonian; (b) real part of the full
Hamiltonian eigenvalue; (c) imaginary part of the full Hamiltonian
eigenvalue. The AY potential model is employed as the K̄N

interaction. See text for details.

IV. STRUCTURE OF FEW-BODY SYSTEMS

The internal structure of the the K̄ nuclei is reflected in
the obtained wave function �JMMT

. Here we define several
quantities which are useful to investigate the structure of the
few-body systems.

We first define the NN root-mean-square (rms) distances√
〈r2

NN 〉, K̄N rms distances
√

〈r2
K̄N

〉, N rms radii
√

〈r2
N 〉, and

K̄ rms radii
√

〈r2
K̄
〉 by using the following operators:

r2
NN =

N −1∑
i<j

2|r i − rj |2
(N − 1)(N − 2)

, (26)

r2
K̄N

=
N −1∑

i

|rK̄ − r i |2
(N − 1)

, (27)

r2
N =

N −1∑
i

|r i − xN |2
(N − 1)

, (28)

r2
K̄

= |rK̄ − xN |2, (29)

where r i and rK̄ = rN are the single-particle coordinates
of the ith nucleon and the antikaon, respectively. The rms

distances represent the averaged distance of the two-body
subsystems, and the rms radii measure the averaged distance of
the particle from the center-of-mass of the total system xN .
As discussed in Sec. II, we calculate the expectation values
of these operators

√
〈r2〉 using the standard normalization

condition (4).
To investigate how the nuclear system shrinks by adding an

antikaon, we define the nucleon density distributions

ρNcm
N (r) =

N −1∑
i=1

∫
dx|�JMMT

(x)|2δ(rNcm
i − r

)
, (30)

rNcm
i = r i − (xN −1 + rK̄ ), (31)

where rNcm
i denotes the ith nucleon coordinate measured from

the center-of-mass system of nucleons; ρNcm
N (r) is normalized

as
∫

4πr2ρNcm
N (r) = N − 1. Here, again, we adopt the stan-

dard normalization condition (4). The comparison of ρNcm
N (r)

with the corresponding quantity of the normal nuclei with
N − 1 nucleons shows the effect of the modification of the
distribution of the nucleons by the presence of the antikaon.

We also calculate the nucleon and antikaon density dis-
tribution ρN and ρK̄ measured from the total center-of-mass
system, defined as

ρN (r) =
N −1∑
i=1

∫
dx|�JMMT

(x)|2δ(rcm
i − r

)
, (32)

ρK̄ (r) =
∫

dx|�JMMT
(x)|2δ(rcm

K̄
− r

)
, (33)

where rcm
i(K̄) = r i(K̄) − xN is ith nucleon (antikaon) coordi-

nate from the total center-of-mass coordinate xN .
It is also instructive to estimate the fractions of different

components in the wave functions. We define the projections
onto the component with K− [Eq. (25)] and that with K̄0

[Eq. (24)] as

P̂K− = 1

2

(
1 − τ

(3)
N

)
, (34)

P̂K̄0 = 1

2

(
1 + τ

(3)
N

)
, (35)

with P̂K− + P̂K̄0 = 1. By taking the expectation value of
Eq. (4), we obtain the probability of finding each component
in the wave function:

PK− = 〈P̂K−〉, (36)

PK̄0 = 〈P̂K̄0〉. (37)

The projection operators can also be used to decompose the
eigenenergy into different contributions from each term of
the Hamiltonian. For this purpose, we use the Gamow state
normalization (7). The expectation values of the kinetic energy
and potential energy of the diagonal K− channel, 〈T 〉K−

G and
〈V 〉K−

G , of the diagonal K̄0 channel, 〈T 〉K̄0

G and 〈V 〉K̄0

G , and of
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the off-diagonal K−-K̄0 channel 〈V 〉K−K̄0

G are given by(
〈T + V 〉K−

G 〈V 〉K−K̄0

G

〈V 〉K−K̄0

G 〈T + V 〉K̄0

G

)

≡
(

〈P̂K− (T + V )P̂K−〉G 〈P̂K−V P̂K̄0〉G
〈P̂K̄0V P̂K−〉G 〈P̂K̄0 (T + V )P̂K̄0〉G

)
. (38)

With these definitions, the eigenenergy is decomposed as

− B − i


2
= 〈T 〉K−

G + 〈T 〉K̄0

G + 〈V 〉K−
G + 〈V 〉K̄0

G

+ 2〈V 〉K−K̄0

G . (39)

We also investigate the probability of finding each K̄N isospin
component in the wave function by using the following
expectation values:

P I=0
K̄N

=
N−1∑

i

〈
P̂ I=0

iN
〉

N − 1
, (40)

P I=1
K̄N

=
N−1∑

i

〈
P̂ I=1

iN
〉

N − 1
. (41)

V. RESULTS AND DISCUSSION

A. Structure of strange dibaryon resonances K̄ N N

We proceed now to investigate the structure of the kaonic
nuclei. For the three-body systems, we investigate the structure
of the I = 1/2 quasibound states for the strange dibaryon
resonances K̄NN , K−pp-K̄0pn and K−pn-K̄0nn systems,
with Jπ = 0− and 1− in the charge-basis representation. As
in the previous studies [22–32], we find one quasibound state
below the �(1405) + N threshold for Jπ = 0−, but we could
not find any states below the threshold for Jπ = 1−. We
summarize the detailed properties of the K−pp-K̄0pn and
K−pn-K̄0nn systems with Jπ = 0− in Tables II and III,
respectively.

We first compare the results with different choices of the
two-body energy (Types I and II) discussed in Sec. II C.
The real part of δ

√
s with Type II is about a half of that

of Type I. The binding energy of K−pp-K̄0pn system is
not sensitive to the choice of the two-body energy and the
values are around 27 MeV. Meanwhile, the decay width of
Type I (∼31 MeV) becomes about half of that of Type II
(∼59 MeV). The rms distances

√
〈r2

NN 〉,
√

〈r2
K̄N

〉,
√

〈r2
N 〉, and√

〈r2
K〉 of Type II are slightly smaller than those of Type I.

The probabilities of finding several components, PK− , PK̄0 ,
P I=0

K̄N
, and P I=1

K̄N
are not sensitive to the choice of the two-body

energy.
We obtain the binding energies at 20–30 MeV, which

are consistent with recent experimental measurement of the
3He(K−,�p)n reaction by J-PARC E15 [47] and its theoretical
analysis [48]. The obtained binding energies with the Kyoto
K̄N potential are 5–10 MeV larger than the values obtained
in Refs. [22,23,25] with the chiral potential constructed in
Ref. [18]. This difference mainly comes from the different
treatment of the imaginary part of the potential as well as

TABLE II. Properties of the K−pp-K̄0pn system with J π = 0−.
See text for details.

Model Kyoto AY

Type I Type II

B (MeV) 27.9 26.1 48.7

 (MeV) 30.9 59.3 61.9

δ
√

s (MeV) −61.0 − i25.0 −30.2 − i23.7

PK− 0.65 0.65 0.64

PK̄0 0.35 0.35 0.36√
〈r2

NN 〉 (fm) 2.16 2.07 1.84√
〈r2

K̄N
〉 (fm) 1.80 1.73 1.55√

〈r2
N 〉 (fm) 1.12 1.08 0.958√

〈r2
K̄
〉 (fm) 1.14 1.10 0.988

〈T 〉K−
G (MeV) 117 + i28.8 124 + i53.1 102 + i31.4

〈V 〉K−
G (MeV) −113 − i33.7 −120 − i63.9 −102 − i47.0

〈T 〉K̄0

G (MeV) 74.3 + i18.4 76.3 + i33.1 63.1 + i15.5

〈V 〉K̄0

G (MeV) −62.0 − i19.1 −64.3 − i35.6 −48.6 − i21.6

2〈V 〉K−K̄0

G (MeV) −44.1 − i9.76 −41.9 − i16.4 −64.0 − i9.24

P I=0
K̄N

0.72 0.73 0.73

P I=1
K̄N

0.28 0.27 0.27

TABLE III. Properties of the K−pn-K̄0nn system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 27.6 25.3 48.1

 (MeV) 31.6 59.4 61.6

δ
√

s (MeV) −60.2 − i25.6 −29.4 − i23.8

PK− 0.38 0.38 0.37

PK̄0 0.62 0.62 0.63√
〈r2

NN 〉 (fm) 2.18 2.10 1.85
√

〈r2
K̄N

〉 (fm) 1.82 1.75 1.56√
〈r2

N 〉 (fm) 1.13 1.09 0.963
√

〈r2
K̄
〉 (fm) 1.15 1.11 0.993

〈T 〉K−
G (MeV) 67.6 + i20.6 81.4 + i34.9 65.3 + i16.1

〈V 〉K−
G (MeV) −44.5 − i10.2 −69.9 − i38.0 −51.3 − i22.6

〈T 〉K̄0

G (MeV) 112 + i28.7 118 + i52.2 99.5 + i30.8

〈V 〉K̄0

G (MeV) −107 − i33.3 −112 − i62.2 −97.3 − i45.8

2〈V 〉K−K̄0

G (MeV) −44.5 − i10.2 −42.2 − i16.7 −64.3 − i9.40

P I=0
K̄N

0.72 0.72 0.73

P I=1
K̄N

0.28 0.28 0.27
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FIG. 2. Real part of the Kyoto K̄N potential, Re V I=0
K̄N

(r = 0,E),
on the complex energy plane.

the difference of the potential model. In Refs. [22,23,25],
the Schrödinger equation is solved only with the real part
of Hamiltonian and the decay width is estimated by taking
the expectation value with the imaginary part of the potential,
while we solve the Schrödinger equation by direct diagonal-
ization with the full complex Hamiltonian. If we do not take
into account the energy dependence of the K̄N potential,
the binding energies obtained by direct diagonalization of
the complex potential VK̄N (r,E) become smaller than those
obtained by using the real part of the potential Re[VK̄N (r,E)].
However, the K̄N two-body energy E in the three-body
system also becomes a complex value with the complex
potential VK̄N (r,E). Considering the energy dependence of
the potential, the K̄N interaction VK̄N (r,E) becomes more
attractive than the K̄N interaction VK̄N (r,Re[E]) on the real
energy axis. This is found in Fig. 2, which plots the real
part of VK̄N on the complex energy plane. As a result of
self-consistent calculation, the binding energies of the complex
potential VK̄N (r,E) become larger than those of only the
real part of potential Re[VK̄N (r,E)]. Therefore, we obtain
binding energies 5–10 MeV larger than those obtained in
Refs. [22,23,25].

We then investigate the origin of the binding using the
decomposition in Eq. (39). From Tables II and III, we see
that Re〈T 〉K−,K̄0

G almost cancels out Re〈V 〉K−,K̄0

G in both K−

and K̄0 channels. Therefore the K−-K̄0 channel coupling is
essential for the energy gain. Meanwhile, both of the diagonal
and the off-diagonal components contribute to the decay width.

It is also instructive to decompose the wave function into
the isospin components. The dominant isospin component of
the K̄NN ground state is considered to have INN = 1 and
total isospin I = 1/2. This is because the IK̄N = 0 channel
has stronger attraction than that of the IK̄N = 1 channel, and
the INN = 1 channel gives more IK̄N = 0 component than that
of the INN = 0 channel [6]. This can easily be explained by
recoupling the isospins in the following way:[[

η(N ) 1
2
η(N ) 1

2

]
1η(K̄) 1

2

]
1
2

=
√

3

2

[
η(N ) 1

2

[
η(N ) 1

2
η(K̄) 1

2

]
0

]
1
2

+ 1

2

[
η(N ) 1

2

[
η(N ) 1

2
η(K̄) 1

2

]
1

]
1
2
, (42)[[

η(N ) 1
2
η(N ) 1

2

]
0η(K̄) 1

2

]
1
2

= −1

2

[
η(N ) 1

2
v
[
η(N ) 1

2
η(K̄) 1

2

]
0

]
1
2

+
√

3

2

[
η(N ) 1

2

[
η(N ) 1

2
η(K̄) 1

2

]
1

]
1
2
. (43)

If the ground state is a pure I = 1 NN state, the ratio of the
probabilities of finding the K̄N I = 0 and I = 1 channels is
given by P I=0

K̄N
: P I=1

K̄N
= 3 : 1. We can further decompose this

state by the third component of the isospin of the antikaon as[[
η(N ) 1

2
η(N ) 1

2

]
1η(K̄) 1

2

]
1
2 , 1

2

= −
√

2

3

[
η(N ) 1

2
η(N ) 1

2

]
1,1η(K̄) 1

2 ,− 1
2

+
√

1

3

[
η(N ) 1

2
η(N ) 1

2

]
1,0η(K̄) 1

2 , 1
2
. (44)

where the first (second) term corresponds to K−pp (K̄0pn).
This leads to the ratio of the probabilities of the K−pp and
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FIG. 3. Nucleon density distributions (a) ρNcm
N (r) and (b) r2ρNcm

N (r) for the K−pp-K̄0pn system measured from the center-of-mass of
nucleons. We employ the Kyoto K̄N potential with the Type-I and -II K̄N two-body energies and the AY potential. The dotted-dashed curves
show that of deuteron for comparison. Note that the spin-parity is J π = 0− for K̄NN but J π = 1+ for deuteron.
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FIG. 4. (a) Nucleon density distribution ρN (r) and (b) antikaon density distribution ρK̄ (r) for the K−pp-K̄0pn system measured from the
center-of-mass of the system. The Kyoto K̄N and AY potentials are employed.

K̄0pn components being PK− : PK̄0 = 2 : 1. The obtained
P I

K̄N
’s and PK−,K̄0 in Tables II and III well satisfy these

relations. The small deviations from the ideal ratios 3 : 1 and
2 : 1 come from the contributions of the isospin-singlet NN
component with odd wave and the Coulomb interaction that
induces the isospin mixing.

Because the Coulomb interaction is included in our for-
malism, the energy splitting of the two members of the
isospin doublet, K−pp-K̄0pn and K−pn-K̄0nn, appears. The
splitting between these two systems is very small, �B =
B(K−pp-K̄0pn) − B(K−pn-K̄0nn) ∼ 0.5 MeV. There are
two attractive and one repulsive Coulombic pairs in the K−pp
channel, and one attractive Coulombic pair in the K−pn
channel. Because PK− = 0.65 in K−pp-K̄0pn is much larger
than PK− = 0.38 in K−pn-K̄0nn, the Coulomb interaction
affects more attractively the K−pp-K̄0pn system than the
K−pn-K̄0nn system.

Next, we show the particle density distributions of the
K−pp-K̄0pn system. Figure 3 plots the density distributions
of nucleons ρNcm

N (r) defined in Eq. (30). The density distri-
bution of the deuteron is also plotted for comparison. The
central nucleon density (r � 0.3 fm) is suppressed due to the
repulsive core of the nuclear force employed. The nuclear
system in the K̄NN system becomes more compact than in
the deuteron. The shrinkage effect of nucleons with Type II is
slightly stronger than that with Type I. This is because the K̄N
interactions with Type II is more attractive than those with Type
I due to different δ

√
s. In Fig. 4, we also show the nucleon and

antikaon density distributions ρN and ρK̄ defined in Eqs. (32)
and (33). The nucleon density is suppressed around the origin,
while the antikaon density distribution is not suppressed since
there is no repulsive core in the K̄N potential.

We also perform the same calculations by employing the
phenomenological potential model: the Akaishi-Yamazaki
(AY) potential [4,27]. The results are shown in Tables II and III
and Figs. 3 and 4. The AY potential is more attractive than
the Kyoto K̄N potential in the subthreshold energy region.
The binding energies of the K̄NN systems are approximately
twice those with the Kyoto K̄N potential, and the decay
widths are  ∼ 62 MeV. The particle density distributions
become more compact, and the rms radii are about 0.85 times

smaller than those for the Kyoto K̄N potential. Our results
for AY potential are comparable with the results in Ref. [27].

B. Structure of K̄ N N N quasibound state

Next, we investigate the structure of the four-body system,
the strange tribaryon K̄NNN system with Jπ = 1/2−. We
find a quasibound state in the K−ppn-K̄0pnn coupled system
(≡ 3

K̄
H). Our results are listed in Table IV. We also investigate

the K−ppp-K̄0ppn coupled system (≡ 3
K̄

He) with Jπ =
1/2−, but we do not find any states below the (K̄NN ) + N
threshold.

TABLE IV. Properties of the 3
K̄

H system with J π = 1/2−.

Model Kyoto AY

Type I Type II

B (MeV) 45.3 49.7 72.6

 (MeV) 25.5 69.4 78.6

δ
√

s (MeV) −70.4 − i20.7 −26.1 − i18.6

PK− 0.53 0.53 0.51

PK̄0 0.47 0.47 0.49√
〈r2

NN 〉 (fm) 1.99 1.90 1.87√
〈r2

K̄N
〉 (fm) 1.79 1.68 1.63√

〈r2
N 〉 (fm) 1.17 1.11 1.09√

〈r2
K̄
〉 (fm) 1.17 1.08 1.03

〈T 〉K−
G (MeV) 114 + i17.4 126 + i42.2 107 + i27.6

〈V 〉K−
G (MeV) −118 − i22.4 −135 − i54.0 −114 − i44.6

〈T 〉K̄0

G (MeV) 103 + i15.9 113 + i39.8 101 + i26.1

〈V 〉K̄0

G (MeV) −105 − i20.2 −118 − i50.0 −107 − i42.1

2〈V 〉K−K̄0

G (MeV) −39.0 − i3.56 −36.0 − i12.7 −59.6 − i6.33

P I=0
K̄N

0.50 0.50 0.50

P I=1
K̄N

0.50 0.50 0.50
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FIG. 5. Same as Fig. 3 but for the 3
K̄

H system. The nucleon density distributions for 3He is plotted for comparison.

The dependence of the choice of the two-body energy
(Types I and II) shows a similar trend with that in the
three-body sector. For Type II the real part of δ

√
s is less

than a half of those with Type I. Therefore the K̄N attraction
with Type II is stronger than that with Type I, and the binding
energy with Type II is larger than that with Type I. The decay
width with Type II (∼69 MeV) becomes around three times
as large as that with Type I (∼26 MeV). The obtained binding
energies by using the Kyoto K̄N potential are 15−20 MeV
larger than the values obtained in Ref. [25]. As discussed in
the three-body sector, this difference mainly comes from the
different treatment of the imaginary part of the potential as well
as the difference of the potential model. Since the number
of K̄N pairs is larger, the effects of those differences are
stronger in the four-body systems than those in the three-body
systems.

The rms distances
√

〈r2
NN 〉,

√
〈r2

K̄N
〉,

√
〈r2

N 〉, and
√

〈r2
K〉

with Type II are slightly smaller than those with Type I,
in accordance with the larger binding. The probabilities of
finding the K−ppn (PK−) and K̄0pnn (PK̄0 ) channels are
not sensitive to the choice of the two-body energies. A large
contribution to the real part from 2〈V 〉K−K̄0

G indicates that the
K−-K̄0 channel coupling is essential for gaining the binding

energy for four-body systems, while the diagonal channels also
give contributions to the decay width.

The K−ppn and K̄0pnn channels are isospin mirror states.
Therefore, the probabilities of these two components follow
PK− : PK̄0 = 1 : 1 with the isospin symmetric K̄N and NN
interactions. In fact, the numerical results in Table IV are
consistent with this expectation within a small isospin mixing
by the Coulomb interaction. There are two attractive and one
repulsive Coulombic pairs in the K−ppn channel, while there
are no Coulomb interacting pairs in the K̄0pnn channel. The
Coulomb interaction in total affects attractive in the K−ppn
channel, and PK− becomes slightly larger than PK̄0 .

Figure 5 displays ρNcm
N (r) and r2ρNcm

N (r) of the 3
K̄

H system.
In the K̄NNN system, the nuclear system becomes more
compact, and the central density becomes about two times
larger than that in the 3He. Since the K̄N interaction with
Type II is more attractive than that with Type I due to small
magnitude of the real part of δ

√
s, the shrinkage effect of

nucleons with Type II is slightly stronger than that with
Type I. In Fig. 6, we show the nucleon and antikaon density
distributions, ρN and ρK̄ . Those density distributions are
similar to each other, and the antikaon rms radius

√
〈r2

K̄
〉 is

comparable with the nucleon rms radius
√

〈r2
N 〉. The antikaon
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FIG. 6. Same as Fig. 4 but for the 3
K̄

H system.
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moves in the whole region of the nuclear system in order to
gain the energy from the strong K̄N interaction.

With the AY potential, the binding energy of the K̄NNN
system is about 30 MeV larger than the binding energies with
the Kyoto K̄N potential, and the decay width is  ∼ 79 MeV.
The particle density distributions and the rms radii are similar
to those obtained with the Kyoto K̄N potential with Type
II, although there is about 30 MeV difference between the
binding energies with these two potentials. The tail of the wave
function is considered to be related to the binding energy, but
the central densities and rms radii are not determined only by
the binding energy. It is now clear that the deeply bound (B >
100 MeV in Refs. [6,7]) and high density (8.2 times the normal
density shown in Ref. [7]) K̄NNN state is not realized in the
accurate few-body calculation. Such an extreme result can be
regarded as an artifact due to the approximated treatment of the
few-body systems, e.g., the optical potential or the g-matrix
approach [6,7] which makes the NN repulsive core soft. A
detailed discussion on the effect of the NN repulsive core in the
light kaonic nuclei will be given in the following section V D.
We, however, emphasize that the existence of the bound state
is confirmed also with the realistic Kyoto K̄N interaction, and
the central density of nucleons can be about two times larger
than that in the 3He.

C. Structure of K̄ N N N N quasibound state

Next, we investigate the structure of the five-body systems,
strange tetrabaryon K̄NNNN systems with Jπ = 0−. We find
isospin-doublet quasibound states in the K−pppn-K̄0ppnn
(≡ 4

K̄
He) and K−ppnn-K̄0pnnn (≡ 4

K̄
H) systems. Our results

are listed in Tables V and VI.

TABLE V. Properties of the 4
K̄He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 67.9 72.7 85.2

 (MeV) 28.3 74.1 86.5

δ
√

s (MeV) −67.6 − i23.0 −18.4 − i15.0

PK− 0.08 0.06 0.16

PK̄0 0.92 0.94 0.84√
〈r2

NN 〉 (fm) 1.98 1.91 2.07√
〈r2

K̄N
〉 (fm) 1.83 1.72 1.81√

〈r2
N 〉 (fm) 1.22 1.18 1.27√

〈r2
K̄
〉 (fm) 1.22 1.12 1.14

〈T 〉K−
G (MeV) 32.6 + i6.75 26.7 + i16.2 50.3 + i7.22

〈V 〉K−
G (MeV) −25.1 − i6.74 −20.0 − i15.9 −42.3 − i12.0

〈T 〉K̄0

G (MeV) 214 + i27.8 240 + i66.0 183 + i52.7

〈V 〉K̄0

G (MeV) −265 − i38.4 −300 − i94.3 −232 − i88.3

2〈V 〉K−K̄0

G (MeV) −24.8 − i3.66 −20.2 − i9.13 −43.9 − i2.82

P I=0
K̄N

0.28 0.27 0.31

P I=1
K̄N

0.72 0.73 0.69

TABLE VI. Properties of the 4
K̄H system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.6 75.5 87.4

 (MeV) 28.0 74.5 87.2

δ
√

s (MeV) −68.7 − i22.4 −19.1 − i14.9

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14√
〈r2

NN 〉 (fm) 1.96 1.89 2.04√
〈r2

K̄N
〉 (fm) 1.82 1.71 1.79√

〈r2
N 〉 (fm) 1.21 1.17 1.26√

〈r2
K̄
〉 (fm) 1.21 1.11 1.13

〈T 〉K−
G (MeV) 216 + i28.1 244 + i66.6 188 + i53.4

〈V 〉K−
G (MeV) −269 − i39.1 −306 − i95.7 −241 − i90.0

〈T 〉K̄0

G (MeV) 30.5 + i5.50 25.1 + i14.7 47.0 + i6.54

〈V 〉K̄0

G (MeV) −23.0 − i5.54 −18.5 − i14.2 −38.7 − i10.9

2〈V 〉K−K̄0

G (MeV) −24.4 − i3.00 −19.9 − i8.71 −42.7 + i2.64

P I=0
K̄N

0.28 0.27 0.30

P I=1
K̄N

0.72 0.73 0.70

The binding energy with Type II is 5 MeV larger than that
with Type I. The decay width with Type II (∼75 MeV) is
about three times larger than that with Type I (∼28 MeV).
The rms distances

√
〈r2

NN 〉,
√

〈r2
K̄N

〉,
√

〈r2
N 〉, and

√
〈r2

K〉 with
Type II are smaller than those with Type I. The probabilities
PK− and PK̄0 are not sensitive to the choice of Types I and
II. In contrast to these features, the energy decomposition
of the K̄NNNN exhibits different characteristics from the
three- and four-body systems. The incomplete cancellation
of the kinetic energy and potential energy in the dominant
component (〈T 〉K̄0

G + 〈K〉K̄0

G in 4
K̄

He and 〈T 〉K−
G + 〈K〉K−

G in
4
K̄

H) leaves sizable contributions to the binding energy, which

are comparable with the off-diagonal components 2〈V 〉K−K̄0

G .
For the decay widths, the diagonal channels are also important
as in the four-body systems.

From the results of PK− and PK̄0 , we see that the dominant
component in the 4

K̄
He (4

K̄
H) system is the K̄0ppnn (K−ppnn)

channel, although the K−pppn (K̄0pnnn) channel contains
more K̄N I = 0 components than the K̄0ppnn (K−ppnn)
channel. This is because the nucleon contribution of the
K̄0ppnn (K−ppnn) channel, which can form an α-particle
configuration giving the binding energy about 30 MeV, is
larger than the nucleon contribution of the K−pppn (K̄0pnnn)
channel, and thus the K̄0ppnn (K−ppnn) channel is favored.
It is also for this reason that the K̄0 (K−) diagonal component
gains the binding energy in the 4

K̄
He (4

K̄
H) system, as we see

above.
The Coulomb splitting between these two systems is larger

than that in the K̄NN systems, �B = B(4
K̄

He) − B(4
K̄

H) ∼
2 MeV. There is one repulsive Coulombic pair in the K̄0ppnn
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FIG. 7. Same as Fig. 3 but for the 4
K̄H system. The nucleon density distribution for 4He is plotted for comparison.

channel which is the dominant component of the 4
K̄

He system,
and two attractive and one repulsive Coulombic pairs in the
K−ppnn channel which is the dominant component of the
4
K̄

H system. Therefore, Coulomb interaction is repulsive in the
4
K̄

He system and attractive in the 4
K̄

H system, and the Coulomb
splitting becomes larger than that of the three-body systems.

Figures 7 and 8 plot the particle density distributions in the
4
K̄

H system. The nucleons in the K̄NNNN system become
more compact, and the central density increases to about 1.3–
1.5 times higher than that in the 4He. As in the three- and four-
body systems, the shrinkage effect of nucleons with Type II is
slightly stronger than that with Type I. The antikaon density
distribution is similar to the nucleon density distribution.

When we use the AY potential, the binding energies of the
K̄NNNN system are about 12–24 MeV larger than those with
the Kyoto K̄N potential. Because the quasibound state appears
above the π�NNN threshold, it has a sizable decay width of
about  ∼ 87 MeV, in contrast to the narrow state predicted in
Ref. [4]. The probability PK− (PK̄0 ) in the 4

K̄
He (4

K̄
H) system

becomes larger than the result with the Kyoto K̄N potential
because the AY potential model has more attractive K̄N I = 0
interaction than that in the Kyoto K̄N potential. As a result,
P I=0

K̄N
is enhanced. The rms radius of the antikaon is smaller

than the corresponding result of the Kyoto K̄N potential with
Type I, whereas the nucleon radius is slightly larger.

D. Nuclear force dependence

Here we discuss the NN interaction dependence of our
results by comparing the results with the AV4′ potential
and those with other NN interaction models such as the
Afnan-Tang S3 (ATS3) [49] and Minnesota (MN) potential
models [50]. These potential models are often used in studying
light nuclei, and well reproduce the binding energy of the
s-shell nuclei. It is noted that the strengths of the repulsive core
are quite different between these three models as displayed in
Fig. 9. The AV4′ potential has the strongest repulsive core,
which is comparable to the realistic nuclear forces such as the
Argonne V18 potential model [51]. The ATS3 potential model
has also a strong short-range repulsion at around the origin.
The repulsive core of the MN potential is quite soft. Since the
K̄N interaction is strongly attractive, and the kaonic nuclei
become more compact than ordinary nuclei. Therefore, there
is a possibility that these different repulsive cores affect the
results of the kaonic nuclei.

Figure 10 displays the binding energies and decay widths
of the K−pp-K̄0pn (Jπ = 0−), 3

K̄
H (Jπ = 1/2−) and 4

K̄
H
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FIG. 8. Same as Fig. 4 but for the 4
K̄H system.
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FIG. 9. (a) 3S1 and (b) 1S0 channels of the AV4′, ATS3, and MN NN potentials.

(Jπ = 0−) systems with those three types of nuclear forces.
Here, we use the Kyoto K̄N potential as the K̄N potential,
and the energy dependence of the potential is determined by
Type I. The binding energies and decay widths are almost the
same in those with three nuclear forces as well as the binding
energies of ordinary s-shell nuclei without the antikaon, as
listed in Table VII.

The qualitative difference becomes apparent in the den-
sity distributions. Figures 11 and 12 plot the nucleon and
antikaon density distributions of the K−pp-K̄0pn (Jπ = 0−),
3
K̄

H (Jπ = 1/2−), and 4
K̄

H (Jπ = 0−) systems. The density
distributions with the AV4′ potential model are similar to those
with the ATS3 model, while the central densities with the
MN potential with repulsive core are significantly higher than
those for the other potential models. Since the short-range
repulsive core of the MN potential is not as strong as those
of the other potential models, nucleons can come very close
to each other due to the strong K̄N attraction. In the 3

K̄
H

system, the central density obtained with the MN potential
model becomes ρNcm

N (r = 0) ∼ 1.2 fm−3, approximately two
times larger than those with the AV4′ and ATS3 potential
models. The value is close to 1.4 fm−3 predicted in Refs. [7,8]
by using the antisymmetrized-molecular-dynamics calculation
with the effective treatment of the K̄N and NN interactions
with the g matrix. Since the K̄N interaction is very strong,
the nucleons can be compressed too much with a soft core

potential and form such an unrealistically high density state.
Use of a realistic nuclear force is necessary in order to avoid
such an artificial solution.

E. K̄ N N N N N quasibound state

For the six-body K̄NNNNN systems, we could not
find any states below the strange tetrabaryon and a nucleon
(K̄NNNN ) + N threshold energy in the L = 0 state. Since
the 5He ground state is observed as a resonant state with
Jπ = 3/2−, the orbital angular momentum of the ground state
is expected to be L = 1.

Investigation with L > 0 states is possible by introducing
the global vectors that efficiently describe the rotational motion
of the system with any Lπ [34,36,52,53], but this extension is
beyond the scope of this paper.

F. Structure of K̄ N N N N N N quasibound state

Finally, we investigate the structure of the seven-body
systems, strange hexabaryon K̄NNNNNN . The ground state
of the six-nucleon systems without an antikaon is 6Li with
Jπ = 1+, and the Jπ = 0+ isospin-triplet states, 6He, 6Li and
6Be, are the excited states. By adding an antikaon, we can
construct two isospin doublets with Jπ = 1− and 0−. We find
quasibound states in these quantum numbers, while we do
not find any states below the (K̄NNNN ) + 2N threshold for
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FIG. 10. Energy levels of K−pp(J π = 0−), 3
K̄

H(J π = 1/2−), and 4
K̄H(J π = 0−) systems with the AV4′, ATS3, and MN potentials. The

shaded widths represent the decay widths. The Kyoto K̄N potential with Type I is employed for the K̄N interaction.
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TABLE VII. Total binding energies B and decay widths  of ordinary nuclei and kaonic nuclei. The Kyoto K̄N potential with Type I is
employed for the K̄N interaction.

B (MeV) (B,) (MeV)

AV4′ ATS3 MN AV4′ ATS3 MN

2H 2.24 2.22 2.20 K−pp-K̄0pn (27.9,30.9) (26.6,32.0) (28.4,23.9)
3He 8.33 8.11 7.72 3

K̄
H (45.3,25.5) (44.6,25.0) (45.7,19.3)

4He 32.1 30.8 30.0 4
K̄H (69.6,28.0) (68.7,26.0) (68.6,24.6)

I = 3/2 with Jπ = 0−, such as the K−ppnnnn-K̄0pnnnnn
(≡6

K̄
H) system.

Tables VIII, IX, X, and XI list our results of the
K−ppppnn-K̄0pppnnn (≡ 6

K̄
Li) system with Jπ = 0−,

the K−pppnnn-K̄0ppnnnn (≡ 6
K̄

He) system with Jπ = 0−,
the 6

K̄
Li system with Jπ = 1−, and the 6

K̄
He system with

Jπ = 1−, respectively. The binding energies for the Jπ = 0−
(1−) states with Type II are 9–10 MeV (7–8 MeV) larger
than those with Type I. The decay widths with Type II are
three times larger than those with Type I. The rms distances√

〈r2
NN 〉,

√
〈r2

K̄N
〉,

√
〈r2

N 〉, and
√

〈r2
K〉 with Type II are slightly

smaller than those with Type I. The probabilities PK− and PK̄0

are not sensitive to the choice of Types I and II. As in the
case of four- and five-body systems, the diagonal channels
give important contributions to the decay width. In contrast,
both of the diagonal and the off-diagonal components produce
about a half of the binding energy. The diagonal components
of the channel with 6Li, that is, the K− channel in 6

K̄
He and the

K̄0 channel in 6
K̄

Li, are important especially for the Jπ = 1−
states.

The dominant component of the 6
K̄

Li (6
K̄

He) system with
Jπ = 0− is the K−ppppnn (K̄0ppnnnn) channel, while that
of the 6

K̄
Li (6

K̄
He) system with Jπ = 1− is the K̄0pppnnn

(K−pppnnn) channel. For the spin-singlet states (Jπ = 0−),
the core nuclei in 6

K̄
Li and 6

K̄
He are the isospin-triplet states of

6Be, 6Li, and 6He, and the channels with larger fraction of the
K̄N I = 0 components are favored. Meanwhile, for the spin-
triplet states (Jπ = 1−), the core nucleus with Jπ = 1+ (∼6Li)
is the isospin-singlet state. The spin-triplet 6Li is the ground
state of the six-nucleon systems, while 6Be and 6He with Jπ =
1+ are not bound. Therefore, the nucleons in the K̄0pppnnn
(K−pppnnn) channel feel larger attraction than that in the

other channel. This determines the dominant component in
the Jπ = 1− state. This is also the reason why the K̄0 (K−)
diagonal component gains the large binding energy in the spin-
singlet 6

K̄
Li (6

K̄
He) system, similar to the K̄NNNN system.

The Coulomb splitting between 6
K̄

Li and 6
K̄

He in the
Jπ = 0− channel (0.3–0.8 MeV) is smaller than the splitting
in Jπ = 1− (2.0–3.2 MeV). In the dominant K−ppppnn
component of 6

K̄
Li with Jπ = 0−, there are four attractive and

six repulsive Coulombic pairs, while the dominant K̄0ppnnnn
channel in 6

K̄
He contains one repulsive pair. Therefore, the

Coulomb interaction in 6
K̄

Li system is expected to be slightly
more repulsive than the 6

K̄
He system. On the other hand,

in the dominant K̄0pppnnn component of the 6
K̄

Li system
with Jπ = 1−, there are three repulsive Coulombic pairs,
and the dominant K−pppnnn channel in 6

K̄
He has three

attractive and three repulsive pairs. In the 6
K̄

He system, the rms

distance
√

〈r2
K̄N

〉 is smaller than
√

〈r2
NN 〉, and therefore the

K̄N Coulomb attraction is stronger than the NN repulsion,
and the Coulomb interaction works in total attractively in
the K−pppnnn channel. Therefore, the Coulomb splitting
between 6

K̄
Li and 6

K̄
He in Jπ = 1− becomes larger than the

splitting in Jπ = 0−.
Next, we compare the spin-singlet and triplet states. With

Type I, the binding energy of 6
K̄

Li with Jπ = 1− is 1 MeV
larger than the Jπ = 0− state, and 6

K̄
He with Jπ = 1− is

2.2 MeV larger than in Jπ = 0−. With Type II, the binding
energy of 6

K̄
Li with Jπ = 1− is 2.2 MeV smaller than the

Jπ = 0− state, and 6
K̄

He with Jπ = 1− is 0.8 MeV larger than
the Jπ = 0− state. Except for 6

K̄
Li with Type II, the binding

energies of the spin-triplet states are larger than the spin-singlet
states. This is in accordance with the level structure of the
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FIG. 11. Nucleon density distribution measured from the center-of-mass system of nucleons for (a) K−pp, (b) 3
K̄

H, and (c) 4
K̄H systems

with the AV4′, ATS3, and MN potentials. The Kyoto K̄N potential with Type I is employed for the K̄N interaction.
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six-nucleon systems. With Type II, the magnitude of the real
part of δ

√
s used in the two-body K̄N interaction is smaller,

and the K̄N interaction becomes more attractive than that
with Type I. Because the Jπ = 0− state contains a larger
fraction of the I = 0 K̄N components than the Jπ = 1− state,
as in the case of the strange dibaryon K̄NN systems, the K̄N
interaction with Type II is so strong that the binding energy
of 6

K̄
Li with Jπ = 0− becomes larger than the Jπ = 1− state.

In other words, by adding an antikaon, the spin of the ground
state of the six-nucleon system may change depending on the
strength of the K̄N interaction. The inversion of the level
structure of the ground state and the first excited state by
the antikaon is also seen in the two-nucleon systems (strange
dibaryon K̄NN ). The ground state of the two-nucleon sector
without the antikaon is the spin-triplet deuteron, while the

TABLE VIII. Properties of the 6
K̄

Li system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.8 79.7 103

 (MeV) 23.7 75.6 88.0

δ
√

s (MeV) −76.2 − i18.1 −15.1 − i10.2

PK− 0.70 0.72 0.64

PK̄0 0.30 0.28 0.36√
〈r2

NN 〉 (fm) 2.80 2.75 2.57√
〈r2

K̄N
〉 (fm) 2.52 2.40 2.27√

〈r2
N 〉 (fm) 1.82 1.78 1.66√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 186 + i19.3 213 + i47.9 184 + i34.4

〈V 〉K−
G (MeV) −220 − i28.5 −258 − i69.3 −224 − i61.7

〈T 〉K̄0

G (MeV) 89.5 + i5.08 88.9 + i26.5 110 + i17.5

〈V 〉K̄0

G (MeV) −95.4 − i8.43 −97.6 − i33.4 −121 − i31.7

2〈V 〉K−K̄0

G (MeV) −30.1 + i0.703 −25.6 − i9.55 −52.4 − i2.59

P I=0
K̄N

0.41 0.41 0.41

P I=1
K̄N

0.59 0.59 0.59

spin-singlet channel is unbound. As discussed in Sec. V A,
by injecting an antikaon, the ground state is spin singlet
which maximizes the fraction of the K̄N (I = 0) component.
Recalling that the 6He and 6Li are well approximated by an
α + N + N three-body model (see, for example, Ref. [54] and
references therein), the difference of Jπ = 1− and Jπ = 0−
states of seven-body systems can be essentially caused by the
difference of the K̄NN subsystems. Similar to the three-body
systems, the level inversion can take place also in the seven-
body systems, which is driven by the balance between the
nuclear structure and the attraction in the K̄N system.

This property is more pronounced if the strength of the
K̄N attraction is further increased. For instance, when we use
the AY potential which is more attractive than the Kyoto K̄N
potential, the binding energies of 6

K̄
Li and 6

K̄
He with Jπ = 0−

TABLE IX. Properties of the 6
K̄

He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 70.6 80.0 103

 (MeV) 23.9 75.5 88.0

δ
√

s (MeV) −75.6 − i18.3 −14.9 − i10.2

PK− 0.41 0.41 0.40

PK̄0 0.59 0.59 0.60√
〈r2

NN 〉 (fm) 2.79 2.74 2.56√
〈r2

K̄N
〉 (fm) 2.51 2.40 2.27√

〈r2
N 〉 (fm) 1.81 1.77 1.66√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 115 + i10.5 125 + i31.1 121 + i21.1

〈V 〉K−
G (MeV) −129 − i15.7 −144 − i41.5 −137 − i37.7

〈T 〉K̄0

G (MeV) 161 + i14.2 177 + i43.4 173 + i30.6

〈V 〉K̄0

G (MeV) −188 − i21.3 −211 − i60.9 −208 − i55.4

2〈V 〉K−K̄0

G (MeV) −30.7 + i0.330 −26.2 − i9.77 −52.8 − i2.72

P I=0
K̄N

0.41 0.41 0.40

P I=1
K̄N

0.59 0.59 0.60
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TABLE X. Properties of the 6
K̄

Li system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 70.8 77.5 92.9

 (MeV) 26.4 75.2 88.0

δ
√

s (MeV) −70.2 − i21.5 −13.2 − i10.4

PK− 0.07 0.06 0.16

PK̄0 0.93 0.94 0.84√
〈r2

NN 〉 (fm) 2.95 2.90 2.83√
〈r2

K̄N
〉 (fm) 2.54 2.45 2.37√

〈r2
N 〉 (fm) 1.91 1.88 1.83√

〈r2
K̄
〉 (fm) 1.54 1.45 1.40

〈T 〉K−
G (MeV) 33.3 + i5.24 27.3 + i16.9 57.1 + i8.22

〈V 〉K−
G (MeV) −26.4 − i5.55 −21.1 − i16.8 −50.3 − i13.7

〈T 〉K̄0

G (MeV) 240 + i24.7 268 + i61.3 219 + i46.1

〈V 〉K̄0

G (MeV) −294 − i35.2 −332 − i89.9 −275 − i81.3

2〈V 〉K−K̄0

G (MeV) −23.8 − i2.40 −19.2 − i9.03 −43.3 − i3.31

P I=0
K̄N

0.27 0.27 0.29

P I=1
K̄N

0.73 0.73 0.71

become 10 and 7 MeV larger than those with Jπ = 1−.
Namely, the stronger K̄N attraction leads to more drastic level
inversion in the seven-body systems. In this way, there is a
possibility to extract the information on the K̄N interaction not
only from the binding energies but also from the ground state
quantum number Jπ and from the splitting between Jπ = 0−
and 1− states.

Finally, we show, in Figs. 13, 14, 15, and 16, the particle
density distributions of the 6

K̄
He system with Jπ = 0− and

1−. The nucleon density distributions of the 6He (Jπ = 0+)
and 6Li (Jπ = 1+) systems are also plotted for comparison. In
the K̄NNNNNN system with Jπ = 0−, the central nucleon
density becomes slightly larger than that with Jπ = 1− and

TABLE XI. Properties of the 6
K̄

He system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 72.8 80.7 95.6

 (MeV) 26.0 75.6 88.5

δ
√

s (MeV) −71.6 − i20.8 −13.8 − i10.4

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14√
〈r2

NN 〉 (fm) 2.95 2.89 2.81√
〈r2

K̄N
〉 (fm) 2.53 2.44 2.36√

〈r2
N 〉 (fm) 1.91 1.87 1.82√

〈r2
K̄
〉 (fm) 1.53 1.44 1.39

〈T 〉K−
G (MeV) 242 + i25.0 272 + i61.9 223 + i46.8

〈V 〉K−
G (MeV) −298 − i35.9 −339 − i91.3 −284 − i83.0

〈T 〉K̄0

G (MeV) 31.2 + i3.96 25.6 + i15.4 53.5 + i7.40

〈V 〉K̄0

G (MeV) −24.2 − i4.36 −19.7 − i15.2 −46.5 − i12.4

2〈V 〉K−K̄0

G (MeV) −23.3 − i1.69 −18.8 − i8.64 −42.3 − i3.10

P I=0
K̄N

0.27 0.26 0.29

P I=1
K̄N

0.73 0.74 0.71

about two times larger than that in the 6Li. Meanwhile, the
central antikaon density with Jπ = 0− is slightly smaller than
that with Jπ = 1−.

In Fig. 17, we summarize the nucleon and antikaon density
distributions of various kaonic nuclei from three- to seven-
body systems. The central nucleon densities of the seven-body
systems become about half and antikaon densities become
one third of the densities of the four- and five-body systems.
The central nucleon densities of the five-body systems are
highest in the light kaonic nuclei up to seven-body systems,
while the densities are not as high as those suggested by
using the effective interaction based on the g-matrix approach
in Refs. [7,8]. The large nucleon density in the five-body
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FIG. 13. Same as Fig. 3 but for the 6
K̄

He system with J π = 0−. The nucleon density distributions for 6He with J π = 0+ is plotted for
comparison.
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FIG. 14. Same as Fig. 4 but for the 6
K̄

He system with J π = 0−.

system is mainly caused by the formation of an α-particle
configuration, rather than maximizing the K̄N (I = 0) pairs.
For the antikaon distribution, the central densities become
smaller as the number of nucleons increases. Because the
antikaon feels attraction from all the nucleons, its spatial extent
increases in a large nucleus.

VI. SUMMARY

We have studied structure of the light kaonic nuclei, K̄NN ,
K̄NNN , K̄NNNN , and K̄NNNNNN with a powerful
few-body approach, the correlated Gaussian (CG) method.
Fully converged three- to seven-body solutions are obtained
by the stochastic variational method (SVM). As a realistic
K̄N interaction, we employ the Kyoto K̄N potential con-
structed based on the NLO chiral SU(3) dynamics with the
SIDDHARTA constraint obtained from Refs. [15,16].

We find one quasibound state in the K̄NN , K̄NNN , and
K̄NNNN systems, and two quasibound states with Jπ = 0−
and 1− in the K̄NNNNNN system. All the states are found
above the π� emission threshold. The central densities of
nucleons are enhanced by an injected antikaon, and become
about two times larger than those without an antikaon. The
central nucleon density reaches its maximum in the K̄NNNN

system with Jπ = 0−, where the nucleons can form an α-
particle configuration. The rms radius of the antikaon increases
along with the nucleon rms radius when the mass number is
increased.

By decomposing the eigenenergy into different
contributions, we find that the K−-K̄0 channel coupling
is important for the binding of the light kaonic nuclei. For
the K̄NN , K̄NNN , and K̄NNNNNN with Jπ = 0−, the
core nuclei belong to same isospin multiplet, and the mixing
between K− and K̄0 channels and the energy gains from
the off-diagonal components are large. Meanwhile, for the
K̄NNNN and K̄NNNNNN with Jπ = 1−, the channel
with core nucleus 4He or 6Li is dominant, and the energy
gains from both of the off-diagonal and diagonal components
with 4He or 6Li become large.

To take into account the energy dependence of the Kyoto
K̄N potential, we examine two methods to determine the
K̄N two-body energy in N -body systems (Types I and II).
Quantitatively, the binding energies with Type II become
gradually larger than those with Type I as the number of
particles increase, and the decay widths with Type II become
2–3 times larger than those with Type I. The qualitative features
of the kaonic nuclei are not sensitive to the choice of the
method.
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FIG. 15. Same as Fig. 3 but for the 6
K̄

He system with J π = 1−. The nucleon density distributions for 6Li with J π = 1+ is plotted for
comparison.
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FIG. 16. Same as Fig. 3 but for the 6
K̄

He system with J π = 1−.

In order to examine the predictions of deeply bound and
high-density kaonic nuclei [4,7,8], we also use the AY potential
model. When we employ the AY potential, the binding energies
are about 20–30 MeV larger than those with the Kyoto K̄N
potential for each system, and decay widths become around
60–80 MeV. Even in this case, the obtained binding energies up
to seven-body systems, except K̄NNNNNN with Jπ = 0−,
are smaller than the 100 MeV predicted by using the optical
potential approach [4]. The central density of the K̄NNNN
system is not as high as those suggested by using effective
K̄N and NN interactions based on the g-matrix approach in
Refs. [7,8].

The comparison of the two K̄N potential models (Kyoto
K̄N and AY) leads to interesting results in the seven-body
systems. If the K̄N attraction is not so strong, we see the
spin-triplet ground (Jπ = 1−) and the spin-singlet (Jπ = 0−)
excited states reflecting the lightest core nucleus, 6Li with
Jπ = 1+. If the K̄N interaction is strong enough as the AY
potential, the level ordering of the Jπ = 0− and Jπ = 1− states
is inverted. Therefore, it is possible to extract the information
on the K̄N interaction from the ground state quantum number
Jπ as well as the energy splitting between Jπ = 0− and 1− of
the seven-body kaonic states.

In this work, we employ the single channel K̄N interaction
where the π� channel coupling effect is renormalized into its
imaginary part. While this potential model reproduces the two-

pole structure of �(1405), we could not find two-pole structure
in the kaonic nuclei. One of these poles with the large binding
energy and width originated from the π� resonance pole.
For the K̄NN three-body systems, the π� channel coupling
effect is taken into account explicitly in Refs. [24,29–32], and
the two-pole structure is predicted for the energy-dependent
K̄N interaction [24]. In order to study the effect of the other
pole in the kaonic nuclei, it may be necessary to take into
account the channel coupling effect of K̄N -π� explicitly.

In addition, we employ the orbital angular momentum
independent K̄N interaction, and the hyperon resonances such
as �(1385) except for �(1405) are not taken into account,
although the energy of the kaonic nuclei is close to the
threshold of �(1385) nucleus. However, the coupling effect
to the �(1385) nucleus for these kaonic nuclei is small, as
shown in Ref. [23], since we consider the kaonic nuclei with
the total angular momentum L = 0 where the s-wave K̄N
component may become dominant, and �(1385) is coupled
to the p-wave K̄N system. In the case of the kaonic nuclei
with total angular momentum L > 0, it may be necessary to
consider such resonance effects.
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