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We investigate the effect of nontrivial spatial correlations between proton constituents, considered in this
work to be gluonic hot spots, on the initial conditions of proton-proton collisions from ISR to Large Hadron
Collider energies, i.e.,

√
s = 52.6, 7000, and 13 000 GeV. The inclusion of these correlations is motivated by

their fundamental role in the description of a recently observed new feature of pp scattering at
√

s = 7 TeV,
the hollowness effect. Our analysis relies on a Monte Carlo Glauber approach including fluctuations in the hot
spot positions and their entropy deposition in the transverse plane. We explore both the energy dependence
and the effect of spatial correlations on the number of wounded hot spots, their spatial distribution, and the
eccentricities, εn, of the initial state geometry of the collision. In minimum bias collisions we find that the
inclusion of short-range repulsive correlations between the hot spots reduces the value of the eccentricity (ε2)
and the triangularity (ε3). In turn, upon considering only the events with the highest entropy deposition, i.e., the
ultracentral ones, the probability of having larger ε2,3 increases significantly in the correlated scenario. Finally,
the eccentricities show a quite mild energy dependence.

DOI: 10.1103/PhysRevC.95.064909

I. INTRODUCTION

Ultrarelativistic heavy-ion collisions at the Relativistic
Heavy Ion Collider have provided strong indications of the
formation of drops of quark-gluon plasma (QGP) [1]. One of
the most important observables supporting the discovery of
the QGP is the high value of the elliptic flow v2. It quantifies
how the initial spatial anisotropy of the nuclear overlap region
is converted into a final state momentum space anisotropy
via large collective pressure gradients during the evolution of
the system. The Large Hadron Collider (LHC) has confirmed
the appearance of a collective flow in the expanding fireball
at even higher energies

√
sNN = 2.76 and 5.02 TeV [2,3].

Originally, elementary collisions such as proton-proton (pp) or
proton-nucleus (pA) collisions were supposed to provide the
binary collisions/cold nuclear matter baseline for heavy-ion
collisions. However, the analyses of particle correlations in
very high multiplicity pp collisions at the LHC at

√
s = 7 TeV

have revealed striking similarities to the AA case. Suggestive
signals of collective behavior such as non-negligible elliptic
flow and long-range azimuthal correlations, the ridge, have
been measured [4]. Recently, similar flowlike features have
also been observed in the Run II data of the LHC at

√
s =

13 TeV [5,6]. It is worth mentioning that nonzero values of
v2 and v3 for inclusive charge particles for low multiplicity
events have been recently reported [6].

The nonzero value of v2 in pp collisions have led to
intense theoretical interest in the initial geometry in such
systems. Although the initial state dynamics may be respon-
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sible for this observation, hydrodynamical evolution [7] or
a combination of both cannot be discarded [8]. Focusing
on the initial state geometry in pp collisions, so far it has
been parametrized mainly in very simplistic ways: black-disk
protons or a Gaussian density distribution. These ideas are
being replaced by much more sophisticated models that take
into account subnucleonic degrees of freedom and both density
and geometrical fluctuations [9–19]. While current initial
condition models differ in many aspects all assume that
the subnucleonic components of each colliding proton are
completely independent from each other.

However, the analyses of the pp elastic differential cross
section data from the TOTEM experiment at

√
s = 7 TeV

[20] are suggestive of a new and counterintuitive feature of
hadronic interactions: the maximum of the inelasticity profile
is reached in noncentral collisions [21–24]. This phenomenon,
not observed before at lower energies, has been referred to
as the hollowness effect in the literature [25]. The physical
interpretation is that peripheral collisions are more effective at
producing new particles, i.e., are more inelastic, than head-on
ones. A microscopic realization of the hollowness effect based
on a geometrical picture has been offered in Ref. [26]. In this
work, the proton is envisaged as a system of three hot spots, i.e.,
the gluon clouds that surround the valence quarks, whose po-
sitions are subject to nontrivial spatial correlations and whose
radii grow with increasing collision energy. The elastic scat-
tering amplitude is then computed using the Glauber multiple
scattering theory. Within this model, the dynamical mechanism
underlying the onset of the hollowness effect is the transverse
diffusion of the hot spot radius with increasing collision en-
ergy. Furthermore, the hollowness effect cannot be described in
terms of uncorrelated proton structures [25]. The main goal of
this paper is to explore further consequences of subnucleonic
spatial correlations on the properties of the initial state in
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pp collisions. For that purpose, we have used a Monte Carlo
Glauber approach with fluctuations in the hot spot positions
in the transverse plane and in their entropy deposition. The
origin of the fluctuations is intimately related to the quantum
mechanical nature of the system and their importance inside
the proton has been pointed out in different contexts [9,14,27].

Although the debate on the necessity of spatial correlations
inside the proton is very timely it has been previously discussed
and analyzed in the case of nuclei [28,29]. In particular, it
has been shown that their effect on the initial condition of
heavy-ion collisions leads to a non-negligible reduction of the
eccentricities [30]. The sensitivity of smaller systems such
as pp collisions to the fine details of the initial geometry is
expected to be larger than in the nucleus-nucleus case. As we
explain thoroughly in the following sections we find sizable
differences in the calculation of properties of the initial state
such as the eccentricities arising from the inclusion of short-
range repulsive correlations. In line with our expectations the
net effect of considering correlated constituents depend on
the centrality of the collision. In this work we characterize
the centrality of an event by its deposited entropy that is
tightly related to the event multiplicity. In other words, the
more entropy is deposited by the wounded hot spots, the more
central the event. When no cuts on the entropy deposition
are applied, i.e., considering minimum bias events, the values
of the ellipticity and triangularity obtained with correlated
constituents are systematically smaller than those obtained
within the uncorrelated scenario. Moreover, motivated by
the phenomenological interest in very-high-multiplicity pp
collisions we have computed the probability distributions
P(ε2,(3)) for the 0–1% centrality class. After selecting the most
entropic events we find that the presence of correlations boosts
the probability of having larger values of ε2 and ε3, in contrast
to the minimum bias case.

This paper is organized as follows. In the next section, a
detailed description of the building blocks of our Monte Carlo
Glauber calculation is presented. Next, in Sec. III the influence
of the repulsive correlations on properties of the initial state
is studied. In particular, we focus our attention on the mean
number of wounded hot spots, on their spatial distribution in
the transverse plane, and, especially, on the values of ε2 and
ε3 for different centrality classes. All these observables are
affected by the inclusion of repulsive correlations. Finally, we
show the energy dependence of the spatial eccentricities from
ISR (

√
s = 52.6 GeV) to LHC (

√
s = 7, 13 TeV) energies.

II. SETUP

To compute the spatial eccentricities and have access to
event-by-event fluctuations we have developed a Monte Carlo
Glauber event generator inspired by Refs. [31,32] adapted to
pp collisions. Its main ingredients based on Ref. [26] are
revisited in this section. The study of the effect of spatial
correlations in other initial state models such as the IP-Glasma
[33] or the MC-rcBK [34,35] is left for future work.

First of all, the impact parameter of the collision is chosen
randomly from the distribution

dNev/db ∝ b (1)

up to bmax = 2 fm � 2Rp. In our picture, the impact parameter
is the distance between the centers of the two protons in the
x direction. Thus, the centers of the colliding protons are
located at (x,y) = (−b/2,0) and (b/2,0). Furthermore, the z
component is neglected in the whole calculation; i.e., we work
exclusively in the transverse plane. We checked that beyond
b = 2 fm the number of events with at least one collision is
negligible.

We describe pp interactions as a collision of two systems,
each one composed of three hot spots. The positions of the
three hot spots (�si) in each proton are sampled from the
distribution [26]

D(�s1,�s2,�s3) = C

3∏
i=1

e−s2
i /R2

δ(2)(�s1 + �s2 + �s3)

×
3∏

i < j
i,j = 1

(
1 − e−μ|�si−�sj |2/R2)

. (2)

The constant C ensures that the probability distribution
is normalized to unity:

∫ {d2si}D({si}) = 1. The next term
corresponds to the product of three uncorrelated probability
distributions for a single hot spot, where R is the average
radius. The δ function in Eq. (2) guarantees that the hot spot
system is described with respect to the proton center of mass.
The last term implements repulsive short-range correlations
between all pairs of hot spots controlled by an effective
repulsive core r2

c ≡ R2/μ. In the limit μ → ∞, or equivalently
rc = 0, we recover the uncorrelated case. The inclusion of
this repulsive distance is the main novelty of this work with
respect to others in the literature where the subnucleonic
structure was already considered [11–13]. It should be noted
that we do not impose any kind of minimum distance between
the hot spots as it is done in other works in the literature
to mimic the short-range correlations [31]. We generate the
polar coordinates of the three hot spots, which are next easily
converted into Cartesian ones, sampling D(�s1,�s2,�s3) for each
proton.

Once the hot spots of projectile and target are located in the
transverse plane, the probability of two hot spots to collide is
sampled from the inelasticity density

Gin(d) = 2e−d2/2R2
hs − (

1 + ρ2
hs

)
e−d2/R2

hs , (3)

where d is the transverse distance between a pair of hot spots
with radius Rhs, and ρhs is the ratio of real and imaginary parts
of the hot spot–hot spot scattering amplitude. This collision
probability results from a Gaussian parametrization of the
elastic scattering amplitude [26]. We evaluate this probability
for all pairs of hot spots and refer to them as wounded [36,37]
if they have suffered at least one collision. Thus, the maximum
number of wounded hot spots, Nw, in one event is six. Another
possibility that has been studied in the literature is to consider
the number of binary collisions instead of the wounded hot
spots scenario or a combination of both. We tested that our
main conclusions are not affected by this choice and take the
wounded hot spot approach for simplicity. For each event,
we keep track of the position of each wounded hot spot,
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TABLE I. Parameters of the hot spot distribution and the inelas-
ticity profile in Eqs. (2) and (3) for various pp collision energies with
(rc = 0.4 fm) and without (rc = 0) short-range repulsive correlations.
Rp stands for the proton radius defined as Rp ≡

√
R2 + R2

hs. We set
ρhs = 0.1 in all cases. In the last column, the values of R for the “〈s1〉
fixed” case are shown.

rc = 0.4 fm rc = 0 〈s1〉 fixed
√

s (GeV) Rhs (fm) Rp (fm) Rhs (fm) Rp (fm) R (fm)

52.6 0.19 0.68 0.23 0.67 0.84
7 000 0.3 0.75 0.39 0.76 0.83
13 000 0.32 0.8 0.41 0.86 0.87

(xw,yw), for later use in the calculation of spatial distributions,
eccentricities, or any other quantity of interest.

Our model has four free parameters {Rhs,R,rc,ρhs}. For a
given value of rc we constrain {Rhs,R,ρhs} to reproduce the
measured values of the total pp cross section (σtot) and the ratio
of real and imaginary parts of the scattering amplitude (ρ) at
each collision energy [20,38]. For the LHC at

√
s = 13 TeV

no experimental measurements of these quantities are yet
available so we rely on the extrapolated values provided
by the COMPETE Collaboration [39]. Upon imposing these
constraints we ensure that our results are phenomenologically
compatible. Regarding the correlation structure of the hot
spots, Eq. (2), we considered two extreme scenarios: the
uncorrelated case labeled as rc = 0 and a repulsive core
of 0.4 fm labeled as rc = 0.4. Because the main goal of
this work is to explore the net effect of correlations, we
have considered a third situation, rc = 0,nc, in which we
set the repulsive distance to zero but choose the values of
{Rhs,R,ρhs} as in the rc = 0.4 case, not reproducing though the
experimental values of σtot and ρ. The main reason to consider
this additional possibility is that differences between the results
of rc = 0.4 and rc = 0,nc are then only attributable to the
presence of short-range repulsive correlations as the rest of the
parameters remain identical. However, for the same values of
{Rhs,R,rc,ρhs} the hot spots of the correlated distribution have
a larger mean transverse position, 〈s1〉, defined as

〈s1〉 =
∫

s1d �s1d �s2d �s3D(�s1,�s2,�s3), (4)

where D(�s1,�s2,�s3) is given by Eq. (2), than in the uncorrelated
case. To avoid this artificial swelling we included one last
scenario, labeled as 〈s1〉 fixed, in which {Rhs,rc,ρhs} are the
same as in the rc = 0.4 case but R is chosen to reproduce the
〈s1〉 of the correlated distribution. The values of R for this
case are shown in Table I. It should be noted that we compute
σtot and ρ using the Glauber multiple scattering framework as
described in Ref. [26]. Then, the values of the parameters
of our model that fulfill the phenomenological conditions
are not unique but rather conform to a whole region of the
parameter space. In Table I we show representative values of
those allowed regions. For the repulsive distance we also chose
an intermediate value of the ones considered in Ref. [26]. In
addition, the parameters are compatible with the hollowness

effect at the pair of LHC energies considered in the rc = 0.4
case.

A quantitative measurement of the initial anisotropy of the
geometry in a collision is given by the spatial eccentricities
that are defined as

εn =
√〈 ∑Nw

i=1 rn
i cos(nφi)

〉2 + 〈 ∑Nw

i=1 rn
i sin(nφi)

〉2
〈∑Nw

i=1 rn
i

〉 , (5)

where the sum runs over all wounded hot spots. The polar
coordinates (ri,φi) entering Eq. (5) are obtained from the
original ones, (xw,yw), by applying two transformations. First,
we shift coordinates such that (0,0) coincides with the center of
mass (c.m.) of the participant system, i.e., (xi

pp = xi
w − xc.m.

w ,
yi

pp = yi
w − yc.m.

w ). Next we determine the angular orientation
of the εn plane from

ψn = 1

n
arctan 2

( ∑Nw

i=1 ri
pp sin

(
nφi

pp

)
∑Nw

i=1 ri
pp cos

(
nφi

pp

))
(6)

and explicitly rotate the coordinates by ψn. The shifted and
rotated coordinates are the ones involved in the calculation
of the eccentricities in Eq. (5). In this new reference frame,
often called participant plane in the literature [40,41], 〈x〉 =
〈y〉 = 0. In our calculation εn are defined on an event-by-event
basis. Finally, 〈·〉 in Eq. (5) denotes the average weighted by
the entropy deposition.

To characterize the entropy deposition we rely on a very
similar approach to the one recently proposed in Ref. [12].
Essentially, entropy deposition is directly related to the number
of charged particles produced in pp collisions. The charged
hadron probability distribution in an incoherent description of
the particle production process can be written as

P(Nch) =
Nw∑
i=2

Pw(i)
∑

n1,n2,...,ni

Phw(n1)Phw(n2) · · ·Phw(ni)

× δ(Nch − n1 − n2 − · · · − ni), (7)

where Pw is the probability distribution of i hot spots to be
wounded and Phw is the distribution of the number of hadrons
produced by a single wounded hot spot. According to Eq. (7)
each wounded hot spot contributes independently to the total
charged hadron multiplicity distribution in pp collisions. An
important comment is in order at this point. Particle production
is treated incoherently, since we assume that each hot spot
contributes in the same way to the multiplicity distribution
independent of the number of interactions. However, it seems
reasonable to think that a certain degree of coherence should
be included in a realistic model for particle production. By
coherence we refer to the fact that an event where, e.g., one
hot spot in the projectile undergoes simultaneous scattering
with three constituents in the target may not contribute in the
same way to P(Nch) as the incoherent superposition of three
one-versus-one interactions. For instance, in the IP-Glasma
model the saturation scale is used as a degree of freedom to
describe coherence [33]. Exploring a more realistic coherent
description of the charged hadron multiplicity distribution is
left for future work.
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FIG. 1. Fit to the charged particle multiplicity distributions for
different collision energies in the wounded hot spot model, Eqs. (7)
and (8). The experimental data from top to bottom are taken from the
ATLAS Collaboration [43], the ALICE Collaboration [44], and ISR
[45]. Note that each experiment has a different rapidity acceptance
window, η, that influences the shape of the data. Also, the ALICE (red)
and ISR (blue) curves are multiplied by 0.1 and 0.01, respectively.

Up to this point there is still one missing element in
Eq. (7): the precise functional form for the hadron multiplicity
distribution from each wounded hot spot Phw(Nch). The latest
analysis of experimental data on charged hadron multiplicities
by the LHC collaborations has revealed that a double negative
binomial function provides a better description of the data than
just a single one [42]. This is the choice adopted in this work
to parametrize Phw:

Phw(Nch) = α

(Nch + κ1)nNch

1 κ
κ1
1


(κ1)Nch!(n1 + κ1)Nch+κ1

+ (1 − α)

(Nch + κ2)nNch

2 κ
κ2
2


(κ2)Nch!(n2 + κ2)Nch+κ2
, (8)

where 
(x) is the Euler gamma function, the averages are
given by ni , larger κi means smaller fluctuations, and α is
a mixing parameter. The parameters {ni,κi,α} are adjusted
to reproduce the observed multiplicity distributions at all the
collision energies considered in this work, independently. We
achieve a good description of the data, χ2/DOF ∼ 1.2–2
(where DOF stands for degrees of freedom), for all cases as it
is shown in Fig. 1. Nevertheless, there are small departures at
low values of Nch at

√
s = 13 TeV and we overshoot the tail

of the ISR data. We have not included in the fit the last five
points of the experimental data of the ATLAS Collaboration
at

√
s = 13 TeV due to the large systematic uncertainties

and their tiny contribution to the probability distribution. The
results shown in Fig. 1 correspond to the rc = 0.4 case. Good
quality fits were found in the other scenarios as well.

Within the current context, the main purpose of an accurate
description of the charged hadron multiplicity distribution is
to provide phenomenological guidance to a nonmeasurable
quantity, the shape of the entropy distribution. In general,
the negative binomial distribution can be expressed as a
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FIG. 2. The histogram of the integrated entropy deposition for the
rc = 0.4 fm case at

√
s = 7 TeV. Vertical red lines labeled by black

numbers define centrality classes as fractions of the total number of
events.

convolution of gamma and Poisson distributions. Following
the usual assumption that the particle emission is given by a
Poissonian process with the mean proportional to the entropy
deposited in the fluid element, the entropy distribution can be
written as a double gamma distribution:

P(s0) = α
s
κ1−1
0 κ

κ1
1


(κ1)nκ1
1

exp (−κ1s0/n1)

+ (1 − α)
s
κ2−1
0 κ

κ2
2


(κ2)nκ2
2

exp (−κ2s0/n2). (9)

The parameters {ni,κi,α} in Eq. (9) are identical to the ones of
the negative binomial distribution, Eqs. (7) and (8), that yield a
precise description of the measured multiplicity distributions,
as it is depicted in Fig. 1. Furthermore, the entropy deposition
of each wounded hot spot located at (xw, yw) is smeared
around the center of the wounded hot spot following a Gaussian
prescription

s(x,y) = s0
1

πR2
hs

exp

(
− (x − xw)2 + (y − yw)2

R2
hs

)
(10)

in order to avoid unphysical spiked entropy deposition and
endowing our model with a more realistic description. In our
calculation, s0 fluctuates independently according to Eq. (9)
for each wounded hot spot. In Fig. 2 we show the integrated
entropy deposition distribution for the rc = 0.4 fm case at√

s = 7 TeV where S is computed in each event as

S =
Nw∑
i=2

si
0 (11)

and s0 is given by Eq. (9). We superimposed the division of
the events in centrality classes depending on their contribution
to the integrated entropy.

In the following sections we present the results obtained
within the framework of the Monte-Carlo Glauber model
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discussed above for different centrality classes: [0–1%],
[1–5%], [5–10%], [10–20%], [20–30%], . . . , [90–100%].

III. RESULTS

All the results presented in this section have been obtained
after generating 5 × 105 events. The averages were performed
over the number of events with at least one hot spot–hot spot
collision.

A. Impact of correlations

We present our results in two different cases: all the events
are selected (minimum bias) and only the events on the 0–1%
centrality class (ultracentral collisions) as defined in Fig. 2 are
considered.

1. Minimum bias

We begin our analysis by computing the average number of
wounded hot spots in pp collisions as a function of the impact
parameter b for the four different scenarios introduced above.
The results are shown in Fig. 3. We note that the qualitative
behavior of the impact parameter dependence of 〈Nw〉 is not
affected by the inclusion of correlations. For instance, the
number of wounded hot spots is larger in central collisions
(b = 0) than in peripheral ones, as expected. However, in
central to moderately peripheral collisions, 0<b<0.8 fm,
the average number of wounded hot spots is smaller in the
correlated scenario (squares versus open circles and solid
triangles in Fig. 3). We also computed the mean number of
wounded hot spots in a proton-proton interaction defined as

Nw =
(

Nev∑
i=1

Ni
w

)/
Nev, (12)

where Nev is the total number of events with at least one
collision. We find that Nw is slightly reduced ∼5% in the
rc = 0.4 case with respect to fixing 〈s1〉. We find that a very

b[fm]
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N
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FIG. 3. Average number of wounded hot spots for different
impact parameter bins of the collision. The horizontal lines indicate
the width of the bins.
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FIG. 4. Normalized radial distribution of the wounded hot spots
before shifting and rotating to the participant plane.

basic element of all Monte Carlo Glauber calculations, i.e.,
the mean number of wounded objects, hot spots in our case, is
already affected by the modification of the initial geometry of
the collision as it is illustrated in Fig. 3.

Another important feature of the presence of repulsive
correlations is their effect on the spatial distribution of the hot
spots. In Fig. 4 we compare the normalized radial distribution
of the wounded hot spots, characterized by their polar coor-
dinate rw = √

x2
w + y2

w, resulting from the uncorrelated and
correlated scenarios. One sees that for rc = 0.4 fm, the radial
distribution gets broader and its mean value is shifted to larger
values than in the uncorrelated case. Therefore, a plausible
interpretation in a geometrical picture is that when including
repulsive correlations the probability to find wounded hot spots
on the edges of the interaction region is increased.

The main result of this section is shown in Fig. 5: the
eccentricity, ε2, is reduced in the correlated scenario compared
to the rest of the cases including the one with 〈s1〉 fixed.

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

) 2
P

(
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0.04

0.06

0.08
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=0,nccr
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> fixed1<s

0-100%

FIG. 5. Probability distribution of the eccentricity, ε2, for rc = 0
(short-dashed blue line), rc = 0.4 fm (long-dashed red line), rc = 0,nc

(dotted grey line), and 〈s1〉 fixed (solid purple line).
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FIG. 6. Probability distribution of the triangularity, ε3, for
rc = 0 (short-dashed blue line), rc = 0.4 fm (long-dashed red line),
rc = 0,nc (dotted grey line), and 〈s1〉 fixed (solid purple line).

We hence conclude that the probability of having smaller
values of the eccentricity in a proton-proton interaction is in-
creased when repulsive short-range correlations are included.
In essence the eccentricity is a direct measurement of the
anisotropy of the interaction region between the x and y
directions. Thus, the results presented in Fig. 5 suggest that
the characteristic ellipsoidal shape of the interaction region
between the two protons is replaced by a more round one (with
smaller eccentricity) in the correlated scenario. However, all
cases exhibit a broad probability distribution of ε2 due to the
highly fluctuating nature of the system. In addition, the effect
of correlations between the constituents of the proton is shown
to be qualitatively the same as in the nucleus case [30] but has
a stronger impact on the numerical values of ε2. This is not a
surprising result as smaller systems are expected to be more
sensitive to the fine details of the geometry than the complex
AA case, where the net effect of these subtleties is washed
out by the accumulation of uncorrelated nucleon-nucleon
collisions. However, this study being a multiparametric one,
the magnitude of the eccentricity’s depletion could vary
depending on the values of {Rhs,R,rc,ρhs} provided that
it will always decrease when including correlations among
subnucleonic degrees of freedom in the proton.

To conclude this section we show in Fig. 6 the probability
distribution for the triangularity, P(ε3). The origin of odd
eccentricity moments, in our model, is not driven by the
geometry of the collision but rather by the fluctuations in
both the entropy deposition and the positions of the hot
spots. The main reason is that our spatial distributions are
symmetric with respect to the y axis, 〈y〉 = 0, so in absence
of fluctuations all the odd eccentricity moments would exactly
vanish. Compared to ε2, we observe that ε3 is smaller and
the role of spatial correlations is weaker. Nevertheless, the
triangularity of the proton-proton interaction in our model
shows the same qualitative behavior as the eccentricity; i.e., it
is reduced in the correlated scenario.
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FIG. 7. Probability distribution of the eccentricity, ε2, for rc = 0
(short-dashed blue line), rc = 0.4 fm (long-dashed red line), rc = 0,nc

(dotted grey line), and 〈s1〉 fixed (solid purple line) after selecting the
1% most entropic events.

2. Ultracentral collisions

In Figs. 7 and 8 we present the calculation of the probability
distributions P(ε2,3) after imposing a cut on the entropy
deposition S, i.e., only considering the events of the 0–1%
centrality class as given by Fig. 2. Two remarkable results
can be extracted by comparing Figs. 5 and 6 (minimum bias)
with Figs. 7 and 8 (ultracentral collisions). First, we observe
how the probability distributions P(ε2,3) are shifted towards
larger values when selecting ultracentral events in both the
uncorrelated and correlated scenarios. Next, focusing on the
role of correlated constituents in this high-entropy context we
observe that it turns out to favor higher values of ε2 and ε3

when compared to the uncorrelated scenario. Thus, we find
that the consequence of having correlated constituents inside

3
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FIG. 8. Probability distribution of the triangularity, ε3, for rc = 0
(short-dashed blue line), rc = 0.4 fm (long-dashed red line), rc = 0,nc

(dotted grey line), and 〈s1〉 fixed (solid purple line) after selecting the
1% most entropic events.
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FIG. 9. Average values of the eccentricity, ε2, for rc = 0 (open
blue circle), rc = 0.4 fm (open red square), rc = 0,nc (solid grey
triangle), and 〈s1〉 fixed (solid purple circle) as a function of the
centrality range.

the proton is the opposite in ultracentral collisions than in
minimum bias. To sum up, in the 0–1% centrality class the net
effect of correlations is to increase the probability of having
larger values of ε2,3 whereas in the minimum bias case this
probability is diminished.

The difference in the effect of spatial correlations between
the minimum bias case and the ultracentral case can be neatly
deduced from Figs. 9 and 10. We represent the average
values of ε2,3 for different centrality classes. A common
trend is observed in both the correlated and uncorrelated
cases: while 〈ε2,3〉 is barely centrality dependent in the
midcentral to peripheral collisions it increases significantly in
the very central region, i.e., in the events with higher entropy
deposition. Regarding the effect of spatial correlations we
notice that they increase 〈ε2,3〉 for the higher entropic events
with respect to the uncorrelated cases as we already showed in
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FIG. 10. Average values of the triangularity, ε3, for rc = 0 (open
blue circle), rc = 0.4 fm (open red square), rc = 0,nc (solid grey
triangle), and 〈s1〉 fixed (solid purple circle) as a function of the
centrality range.
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,<
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FIG. 11. Average values of ε2 (solid markers) and ε3 (open
markers) for

√
s = 52.6 GeV (solid and open blue circles), 7 TeV

(solid and open red squares), and 13 TeV (solid and open grey
triangles) as a function of their standard deviation. These energies
correspond to ISR and runs I and II of the LHC, respectively.

Figs. 7 and 8. Minimum bias collisions are not dominated by
these infrequent extremely entropic events but by the ones with
a smaller entropy production. In this case, we see in Figs. 9 and
10 how the net effect of correlations in the peripheral or less
entropic bins is to reduce 〈ε2,3〉. Furthermore, the quantitative
difference in 〈ε2,3〉 between the correlated and uncorrelated
scenarios is larger in the ultracentral events than in minimum
bias events. Thus, we conclude that the net effect of correlated
constituents is larger in ultracentral collisions.

B. Energy scan in minimum bias

Before presenting our results for the energy dependence
of the spatial eccentricities, it is worth mentioning that, in
agreement with Ref. [12], we find moderate variations in the
mean number of wounded hot spots as the energy increases.
Indeed, for the rc = 0.4 case we obtain Nw = 2.3, 2.74, 2.75
at

√
s = 52.6 GeV, 7 TeV, and 13 TeV, respectively. The rising

behavior of Nw with increasing collision energy can be directly
attributed to the growth of Rhs as depicted in Table I. In other
words, in a geometrical framework as it is the Monte-Carlo
Glauber model, bigger hot spots translate into more collisions
between them.

In Fig. 11 we represent the average values of ε2 and ε3

as a function of their standard deviation for three different
collision energies, namely,

√
s = 52.6, 7000, and 13 000 GeV.

All the curves refer to the rc = 0.4 case and take into account
all the events. It should be noted that the energy dependence
of the parameters of the model (see Table I) comes from
the requirement of reproducing the total pp cross section,
this being a quite soft condition. Endowing our model with
a more rigorous and precise energy dependence is left for
future work. The main goal of Fig. 11 is to show that
there are no significant differences in the values of 〈ε2〉
and 〈ε3〉 for different collision energies. The fact that the
spatial eccentricities do not drastically deviate with increasing
energy was also observed in Ref. [46], where a different
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parametrization of the initial state was used. Furthermore, the
purpose of representing the average values as a function of the
standard deviation is to emphasize the width of the probability
distributions that we obtain as we have seen in the previous
sections (see Figs. 5–8).

IV. CONCLUSIONS

To conclude, in this work we present a quantitative
analysis of the effect of nontrivial spatial correlations between
constituents of the proton on the features of the initial
state geometry in proton-proton collisions. The inclusion
of correlations between subnucleonic degrees of freedom is
motivated by their essential role in a plausible dynamical
explanation of a new feature of pp scattering observed at√

s = 7 TeV at the LHC, namely, the hollowness effect. Our
approach is based on a Monte Carlo Glauber calculation
that allows us to compute observables on an event-by-event
basis. We follow similar steps to the ones in previous works
without the aforementioned correlations. We focus on the role
of the repulsive correlations and leave the improvement of
the physical description of processes such as the coherent
particle production for future work. Essentially, the presence
of correlations affects the geometry of the collision, leading to
variations in the basic elements of the Monte Carlo Glauber
model such as the mean number of wounded hot spots or
their radial distribution in the transverse plane. In particular,
we show that these correlations may produce a notorious
reduction both of the eccentricity and of the triangularity in
minimum bias events. However, when a cut in the entropy
deposition is applied to select the 1% of most entropic events
the effect of correlations is the opposite: larger eccentricities

and triangularities are expected in the correlated scenario than
in the uncorrelated one in ultracentral collisions. We attribute
this result to the fact that in our model the entropy deposition
is computed as an incoherent superposition [see Eq. (12)] of
the individual contributions of each wounded hot spot; the
more wounded hot spots the larger the entropy deposited.
Then, upon imposing this high-entropy cut we are implicitly
selecting events with a large number of wounded hot spots.
In these configurations the spatial correlations increase the
values of ε2 and ε3 with respect to the uncorrelated cases. In
addition to the effect of correlations on the properties of the
initial state, we explored their energy dependence from ISR
to the LHC, finding small deviations in the values of ε2 and
ε3. The results presented in this article are regarded as the
first step for future studies in which we would like to address
the hydrodynamic evolution of the obtained initial entropy
densities and the extension of the model to bigger collision
systems such as pA and AA.
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