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In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find
Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response
functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward
identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We
find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions
provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate
the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λφ4

theory. We derive a respective integral equation which enables us to compute ητπ and then we extract the shear
relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
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I. INTRODUCTION

Relativistic viscous hydrodynamics seems to be perfectly
suited to investigate and understand collective phenomena
characteristic of strongly interacting matter produced in
heavy-ion collisions at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC); see Refs. [1,2]
and references therein. Transport coefficients are inherent
ingredients of the hydrodynamic description. They control the
dynamics of a fluid and to find any of the coefficients we need
to employ a microscopic theory. Due to the multiple-scale
nature of the problem, determination of the full set of the
transport coefficients is not a trivial task. Since the shear
and the bulk viscosity have already been examined in many
papers, our particular interest is in the kinetic coefficients of the
second-order hydrodynamics, namely the shear and the bulk
relaxation times. These relaxation times fix the characteristic
time scales at which the dissipative currents relax to their
first-order solutions. In this study, we use field theoretical
approach to investigate the relaxation times.

To understand the microscopic dynamics of plasma con-
stituents and determine the values of any transport coefficient
one needs to use either kinetic theory or quantum field theory
in the weakly coupled limit. Nevertheless, the quark-gluon
plasma, studied experimentally at RHIC and LHC, is believed
to achieve this limit only at sufficiently high temperatures.
It was just the investigation of the shear and bulk viscosities
that established numerous methods of evaluation of transport
coefficients in general. Within the imaginary-time formalism
of the scalar field theory, shear and bulk viscosities were
calculated [3,4] which showed how to properly handle the
contributing diagrams to obtain the leading order contribution.
In short, in any diagrammatic approach, the ladder diagrams
have to be resummed to get the leading order transport
coefficients due to the pinching pole effect arising when

small frequency and long-wavelength limits of the correlation
function are taken.

With this knowledge transport coefficients of QED [5,6] and
of QCD at leading log order [7] were obtained. The kinetic
theory approach has appeared, in turn, to be very effective,
as in the case of scalar field theory [8], and also successful
in determining transport coefficients of QCD medium in the
leading order [9,10]. The latter study shows, in particular,
the effectiveness of the kinetic theory to find leading order
results and, at the same time, some difficulties to go beyond it
[11].

To date, many approaches to the relaxation times have been
developed within kinetic theory. In Ref. [12] it was shown
that the ratio of the shear viscosity over its relaxation time is
proportional to the enthalpy density and the proportionality
factor is slightly different in QCD than in the φ4 theory. A
similar relation for the ratio was established within the so-
called 14-moment approximation to the Boltzmann equation.
And generally the method of moments, first proposed by Grad
and then further developed by Israel and Stewart, has been
examined comprehensively in Refs. [13–16]. The moment
approaches show, in particular, that in order to compute the
viscosity coefficients it is necessary to invert the collision
operator and to determine the relaxation times one has to find
the eigenvalues and eigenvectors of the operator.

There exist also field-theoretical studies on the shear
relaxation time [17,18], where a general form of a retarded
Green function is considered. This work actually shows the
microscopic origin of the shear relaxation time, which is found
to be inversely proportional to the imaginary part of the pole
of the particle propagator. The Kubo formula engaging shear
relaxation time was found for conformal systems [19,20] via
the response of a system to small and smooth perturbations
of a background metric. The projection operator method was
used in Ref. [21] to obtain the shear relaxation time.
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As for the bulk relaxation time, the projection operator
method was used in Ref. [22] to obtain it. Kubo formula for
the product of the bulk viscosity and the bulk relaxation time,
ζ τ�, can be also deduced from response functions studied in
Ref. [23] using a mixture of the effective kinetic theory and
metric perturbations.

Our goal here is to figure out, through a standard formu-
lation of quantum field theory, how the shear and the bulk
relaxation times are related to microscopic quantities. In order
to obtain any transport coefficient on this ground, one needs
to know the corresponding Kubo-type relation. In this study,
by studying both the sound and the shear modes we are able
to find a set of new Kubo-type relations. In particular, we
find the Kubo formula which relates the product ζ τ� to the
second derivative of the real part of the pressure-pressure
response function with respect to the frequency. It is worth
emphasizing that the obtained Kubo relation provides us with
an explicit prescription on how to examine the bulk relaxation
time from the quantum field theory perspective. All formulas
studied here were obtained by making use of hydrodynamic
limits, general properties of a response function, and the Ward
identity. The method we employ was introduced in Ref. [24]
and here we provide its extension. In the low-frequency and
long-wavelength limits, each of the correlation functions are
related to some set of kinetic coefficients.

In this paper we focus only on the leading order of the
response function, which is sufficient to study shear effects
and, in particular, find the shear relaxation time. In order to
analyze bulk effects one needs to go to the next-to-leading
order calculation, which will be the purpose of a future work.

To find the value of the shear relaxation time we use
diagrammatic methods of the closed-time path (Keldysh-
Schwinger) formalism. As advocated in Ref. [25], the (r,a)
or Keldysh basis serves very convenient framework for such
considerations, mostly due to the vanishing aa propagator
component. We work with the massless λφ4 theory in the
weakly coupled limit. We start with the one-loop case and
then perform the resummation over ladder diagrams, which
contribute at the same order. The one-loop approximation
allows us to determine what is the typical scale at which
ητπ appears. This is found to be of the order 1/	2

p, where
	p is the thermal width and it is directly related to the mean
free path of the system constituents. With the knowledge on
the one-loop result for η we are able to extract τπ , which
scales as 1/	p. The summation of ladder diagrams leads
us to manipulation on the four-point Green functions which
couple to each other through the Bethe-Salpeter equation. In
the (r,a) basis, however, only the Gaarr component matters
and consequently the Bethe-Salpeter equation decouples. To
compute the shear viscosity the integral equation for ImGaarr

needs to be solved. We show that to compute ητπ one needs to
solve the integral equation for ∂ωReGaarr , which requires us
to introduce a new type of the effective vertex. Both η and ητπ

are evaluated numerically to extract the shear relaxation time.
The remaining part of the paper is organized as fol-

lows. In Sec. II we provide a brief introduction to viscous
hydrodynamics, mainly to write the dispersion relations of
the two hydrodynamic modes arising from the momentum
and energy dissipation. We assume that there are no other

currents coupled to the energy-momentum tensor. In Sec. III
general properties and constraints of the response functions
are discussed. Section IV presents the way on how to
parametrize the response functions to the longitudinal and
transverse hydrodynamic fluctuations so that to reproduce
the corresponding dispersion relations. Subsequently, we find
Kubo-type relations. In Sec. V the expression which allows
us to extract the relaxation time for shear viscosity is derived
within diagrammatic methods in the real-time formalism. We
perform full leading order analysis providing summation over
multiloop diagrams. We also introduce a new effective vertex,
which enters the formula for evaluation of ητπ . In Sec. VI we
evaluate τπ and 〈ε + P 〉τπ/η numerically as a function of the
constant coupling. We also discuss our results in the context
of kinetic theory findings. We conclude in Sec. VII.

II. HYDRODYNAMIC MODES

Here, we very briefly introduce basic equations of hydrody-
namics, mostly to fix a starting point for the further discussions.
For more comprehensive analysis we refer the reader to, for
example, [14,24,26,27]. The discussions in this section and
Secs. III and IV closely follow [24].

Hydrodynamics as a long-wavelength and low-frequency
many-body effective theory provides a macroscopic descrip-
tion of a system which is close to thermal equilibrium. It
governs the evolution of any fluid in terms of flows of
its conserved quantities, such as the energy, momentum, or
baryon current. Here, we study phenomena associated only
with the energy-momentum conservation. The corresponding
conservation law is the continuity equation of the energy-
momentum tensor T μν

∂μT μν = 0. (1)

When the system is approaching local thermal equilibrium,
its relevant behavior is fairly well described by the viscous
hydrodynamics, for which the energy-momentum tensor takes
the form

T μν = εuμuν − �μν(P + �) + πμν, (2)

where ε is the energy density, P is the thermodynamic
pressure, uμ are the components of the flow velocity with
the normalization condition uμuμ = 1, �μν = gμν − uμuν is
the projection operator with uμ�μν = 0, and the Minkowski
metric is gμν = (1,−1,−1,−1). The terms � and πμν are the
bulk viscous pressure and the shear stress tensor, respectively.
They are viscous corrections which contain the dynamics of
the dissipative medium approaching the equilibrium state. The
shear tensor is symmetric, traceless, πμ

μ = 0, and transverse,
uμπμν = 0, and the bulk pressure � is a correction to the
thermodynamic pressure. These corrections are assumed to
be small for the nearly equilibrium state of a system. If the
static equilibrium limit is achieved, the dissipative corrections
in Eq. (2) vanish and one reproduces the ideal hydrodynamic
stress-energy tensor. Within the Navier-Stokes approach, the
viscous corrections are obtained from the gradient expansion
of the energy density and flow velocity. Then, up to the linear
terms, only the corrections proportional to ∂μuν matter. The
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dissipative currents � and πμν take the following forms:

�NS = ζ�μν∂
μuν, (3)

π
μν
NS = 2η�

μν
αβ∂αuβ, (4)

where ζ and η are the bulk and shear viscosities which
determine transport phenomena of the energy and momentum,
and �

μν
αβ ≡ (�μ

α�ν
β + �

μ
β�ν

α − 2/3�μν�αβ)/2 is the trace-
less and transverse projection operator. In the fluid cell rest
frame the dissipative currents may be written as

�NS = −γ ∂lT
l0, (5)

π
ij
NS = DT

(
∂iT j0 + ∂jT i0 − 2

3gij ∂lT
l0
)
, (6)

where γ = ζ/(ε + P ) and DT = η/(ε + P ). Accordingly, the
full spatial viscous correction to the energy-momentum tensor
of a viscous fluid is

δT ij = π
ij
NS + �NS

= DT

(
∂iT j0 + ∂jT i0 − 2

3gij ∂lT
l0
) + gij γ ∂lT

l0 (7)

in the rest frame of the fluid cell at the position x.
In fact, the Navier-Stokes theory of a relativistic fluid is

acausal and unstable. Generally speaking, the viscous currents
must be allowed to take some time when responding to changes
in the thermodynamic forces. This requires taking the next
terms in gradient expansion, and the corresponding hydro-
dynamics is the second-order Israel-Stewart theory. The bulk
viscous pressure and the shear stress tensor are then subject to
the relaxation equations. In a general frame, these are given by

πμν = π
μν
NS − τπ π̇ 〈μν〉, (8)

� = �NS − τ��̇, (9)

where we ignored the nonlinear terms as they are not relevant
for our study. We have also used the notation A〈μν〉 ≡ �

μν
αβAαβ

for the spin-2 component of a rank-2 tensor. The new transport
coefficients, τ� and τπ , are relaxation times for the bulk and
shear viscosities, respectively. They determine how fast the
bulk pressure and the shear tensor relax to the respective
Navier-Stokes forms given by Eqs. (3) and (4), respectively. As
a result, causality of the theory is maintained if the relaxation
times satisfy certain restrictions [28]. The relaxation equations
take the following forms in the local rest frame:

∂t� = −� − �NS

τ�

, (10)

∂tπ
ij = −πij − π

ij
NS

τπ

. (11)

If there are no other currents coupled to the energy-momentum
tensor, there are two hydrodynamic modes that determine
the behavior of the system. These are the diffusion and
sound modes. The diffusion mode describes fluid flow in
the direction transverse to the flow velocity. It appears as a
consequence of the momentum conservation, which is

∂tT
0k = −∂lT

lk. (12)

When the relaxation equation (11) and the Navier-Stokes
form of the shear tensor (6) are implemented to the

momentum conservation law (12), we get the corresponding
hydrodynamic equation, which is the equation of motion of
the transverse part of stress tensor

0 = (
τπ∂2

t + ∂t − DT ∇2
)
πi

T , (13)

where πi
T = εijk∂jT

k0. The corresponding dispersion relation
is then found to be

0 = −ω2τπ − iω + DT k2 (14)

with ω and k being the frequency and wave vector of the
momentum diffusion excitation.

The other mode is associated with small disturbances in
dynamic variables propagating longitudinally in the medium.
The conservation law in the local rest frame then is

∂2
t ε = ∇2P − ∂l∂mπlm + ∇2�. (15)

By multiplying Eq. (15) by (τπ∂t + 1)(τ�∂t + 1), making use
of the relaxation equations (10) and (11) and using the Navier-
Stokes forms of the stress tensor (6) and bulk pressure (5), we
get the equation of motion for the energy density deviation δε,

0 =
[
∂2
t − v2

s ∇2 + (τπ + τ�)∂3
t − (τπ + τ�)v2

s ∇2∂t

− 4DT

3
∇2∂t − γ∇2∂t + τπτ�∂4

t

− τπτ�v2
s ∇2∂2

t − 4DT

3
τ�∇2∂2

t − γ τπ∇2∂2
t

]
δε, (16)

where v2
s = ∂P/∂ε is the speed of sound. The solution to

Eq. (16) is provided by the following dispersion relation:

0 = −ω2 + v2
s k2 + iω3(τπ + τ�)

− i

(
4DT

3
+ γ + v2

s (τπ + τ�)

)
ωk2 + τπτ�ω4

− τπτ�v2
s ω

2k2 − τ�

4DT

3
ω2k2 − τπγω2k2. (17)

The dispersion relations (14) and (17) play an essential role
in further analysis as they encode full information on the
relaxation times for viscosities. This information should be
also contained in the pole structure of the respective retarded
Green function and this is the subject of the next sections.

III. RESPONSE FUNCTIONS

Linear response theory is a natural quantum-mechanical
framework to examine systems exhibiting small deviations
from equilibrium. Within the linear response theory one is able
to express quantities characteristic of the nonequilibrium state
of a fluid in terms of time dependent correlation functions of
the equilibrium state. The linear response theory is explained
in many textbooks, see for example [29], and here we restrict
ourselves to discuss only those properties of response functions
relevant to our study of transport coefficients.

When a system undergoes small perturbations, the deviation
of an observable A from equilibrium is encoded in equilibrium
response function as

δ〈Â(t,x)〉 =
∫

d4x ′GR(t − t ′,x − x′)θ (−t ′)eεt ′f (x), (18)
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where t > 0, θ (t) is the standard step function, f (x) is an
external perturbing force coupled to 〈Â〉 and acts on the
system with infinitesimally slow rate ε, and 〈· · · 〉 means
the thermal expectation value. GR is the retarded response
function corresponding to the Hermitian operator Â,

GR(t − t ′,x − x′) = −iθ (t − t ′)〈[ÂH (t,x),ÂH (t ′,x′)]〉, (19)

where ÂH stands for the operator in the Heisenberg picture. For
further analysis it is also convenient to introduce the advanced
correlation function, which is

GA(t − t ′,x − x′) = iθ (t ′ − t)〈[ÂH (t,x),ÂH (t ′,x′)]〉. (20)

Suppose the retarded Green function GR satisfies the
following equation of motion:

DAGR(t − t ′,x − x′) = dAδ(t − t ′)δ(x − x′), (21)

where DA is some operator such that GR is its generalized
Green function and dA may contain a finite number of
derivatives. For positive values of t, t �= t ′ since t ′ is restricted
by θ (−t ′). Therefore, for positive t , δ〈Â〉 satisfies the following
evolution equation:

DAδ〈Â(t,x)〉 = 0. (22)

Accordingly, the evolution equation is known whenever one
finds the pole structure of the response function [30].

The formula (18) shows explicitly that the linear response of
the system is expressed in terms of a retarded Green function of
Heisenberg operators. To study the retarded Green functions,
it is convenient to introduce the spectral density defined by the
thermal expectation value of the commutator,

ρAA(k) =
∫

d4xeikx〈[ÂH (x),ÂH (0)]〉, (23)

where k = (ω,k), which may be expressed as

ρAA(k) = 1

Z0

∑
m,n

(e−βEn − e−βEm )(2π )4

× δ(k − pm + pn)|〈pn|Â|pm〉|2, (24)

when Â is Hermitian. Here |m〉 is the simultaneous eigenstate
of the system’s total Hamiltonian Ĥ and the total momentum P̂
with the eigenvalue pm = (Em,pm). Relying on the fact that for
any observable the corresponding operator must be Hermitian,
Â† = Â, one can derive

ρAA(−ω,−k) = −ρAA(ω,k). (25)

For an equilibrium system, which is isotropic, ρAA(ω,k)
must preserve a rotational invariance so that it depends on
momentum only through its absolute value |k|. Therefore, the
spectral density is an odd function of ω, that is, ρAA(−ω,k) =
−ρAA(ω,k).

In the spectral representation the retarded and advanced
Green functions are given by

GR/A(ω,k) =
∫

dω′

2π

ρAA(ω′,k)

ω′ − ω ∓ iε
, (26)

where the upper sign (−) corresponds to the retarded function
and the lower sign (+) to the advanced one. By extracting the

principal value of the integral in Eq. (26) from the imaginary
part one obtains the following relations:

Re GR(ω,k) = Re GA(ω,k) = P
∫

dω′

2π

ρAA(ω′,k)

ω′ − ω
, (27)

Im GR(ω,k) = −Im GA(ω,k) = 1

2
ρAA(ω,k), (28)

where P stands for the principal value. By changing the
sign of ω′ in the formula (27) and using the fact that the
spectral function is an odd function of the frequency one
observes that Re GR(ω,k) = Re GR(−ω,k), that is, the real
part of the retarded and the advanced Green function is an
even function of frequency. Moreover, the imaginary part of
the retarded response function, since related directly to the
spectral function, is an odd function of ω. These facts will be
frequently used in the next parts of this paper.

Due to the fact that the stress-energy tensor represents both
the conserved current as well as the generators of the space
time evolution, the correlation functions of T μν are not so
simple. To determine them correctly, one must first start with
the following gravitational Ward identity [31]:

∂α[Ḡαβ,μν(x,x ′) − δ(4)(x − x ′)(gβμ〈T̂ αν(x ′)〉
+ gβν〈T̂ αμ(x ′)〉 − gαβ〈T̂ μν(x ′)〉)] = 0, (29)

which becomes in the momentum space

kα[Ḡαβ,μν(k) − gβμ〈T̂ αν〉 − gβν〈T̂ αμ〉 + gαβ〈T̂ μν〉] = 0,

(30)

where k = (ω,k). The identity (29) is most conveniently de-
rived in the imaginary-time metric. The two-point functions of
T μν are then obtained by taking the second functional deriva-
tive of the partition function with respect to the imaginary-time
metric. Going to the flat space and then analytic continuing to
the real space give (29). Let us stress that Ḡ

μν,αβ
R (x,x ′) is the

response function, which is not, in general, the same as

G
μν,αβ
R (x,x ′) = −iθ (x0 − x ′

0)〈[T̂ μν(x),T̂ αβ(x ′)]〉 (31)

due to the presence of the single stress-energy tensor average
terms in Eq. (30). ḠR differs from GR by terms containing
δ(x − x ′). Let us add that the formula (30), when combined
with the continuity equations, fixes actually a set of constraints
that the response functions, corresponding to different
components of the energy-momentum tensor, must maintain.

IV. ANALYTIC STRUCTURE OF RESPONSE FUNCTIONS
AND KUBO FORMULAS

The general properties of a correlation function supported
by the Ward identity constrain its analytical form enough so
that one is able to parametrize it for both the propagating and
diffusive mode. Here, we parametrize the correlation functions
in terms of the linear response method.

A. Response function to transverse fluctuations

The perturbing Hamiltonian for the shear flow is

δĤ (t) = −
∫

d3xθ (−t)eεt T̂ x0(t,x)βx(y). (32)
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Note that the external force βx(y) is related to the flow
velocity component in the x direction which only varies in
the perpendicular y direction. Hence, at t = 0, this sets up a
system with a nonzero shear flow. The corresponding linear
response is

δ〈T̂ x0(t,ky)〉 = βx(ky)
∫ ∞

−∞
dt ′θ (−t ′)eεt ′Ḡ

x0,x0
R (t − t ′,ky)

(33)

for t > 0. From the Ward identity (30), one finds

ω
(
Ḡ

x0,x0
R (ω,ky) + ε

) = kyḠ
x0,xy
R (ω,ky), (34)

ωḠ
x0,xy
R = ky

(
Ḡ

xy,xy
R (ω,ky) + P

)
. (35)

When these two equations are combined, one gets

Ḡ
xy,xy
R (ω,ky) + P = ω2

k2
y

(
Ḡ

x0,x0
R (ω,ky) + ε

)
. (36)

In the ω → 0 limit, Ḡ
x0,x0
R (ω,ky) must have a well defined

limit since it is a thermodynamic quantity. Moreover, both
correlation functions must be well behaved in the ky → 0
limit. Using these arguments and the fact that the imaginary
part of the retarded Green function must be an odd function of
ω, one can parametrize Ḡ

xy,xy
R (ω,ky) as

Ḡ
xy,xy
R (ω,ky) = ω2[ε + gT (ky) + iωA(ω,ky)]

k2
y − iω

D(ω,ky ) − ω2B(ω,ky)
− P, (37)

and

Ḡ
x0,x0
R (ω,ky) = k2

y[ε + gT (ky) + iωA(ω,ky)]

k2
y − iω

D(ω,ky ) − ω2B(ω,ky)
− ε, (38)

where gT (ky) = Ḡx0,x0(0,ky) = P + gππ (ky) comes from
Eq. (A11) in Appendix A. The functions A, B, and D have
the form

D(ω,ky) = DR(ω,ky) − iωDI (ω,ky), (39)

where DR(ω,ky) and DI (ω,ky) are real-valued even functions
of ω and ky . The real parts DR and BR must have a nonzero
limit as ω → 0 and ky → 0. All other parts of A, B, and
D must have finite limits as ω → 0 and ky → 0. Dynamical
information in the hydrodynamic limit is contained in the
constants DR(0,0), DI (0,0), BR(0,0), etc.

The pole structure of a Green function determines the
corresponding dispersion relation of a given hydrodynamic
mode. Therefore, the dispersion relation of the diffusive
excitation is dictated by the form of the denominator of the
function (37), that is

k2
yDR − iωk2

yDI − iω − ω2BRDR + iω3BIDR

+ iω3BRDI + ω4BIDI = 0. (40)

By comparing the pole structure (40) to the dispersion relation
obtained from the conservation law (14), we find the following
relations:

DR(0,0) = DT , (41)

BR(0,0) = τπ

DT

. (42)

From this, one finds

Ḡ
xy,xy
R (ω,0) = iωη − ητπω2 + (ε + P )[DI (0,0)

+AR(0,0)η]ω2 + O(ω3). (43)

Hence, when the small ω and ky limits of the function (37) are
taken, we find

η = lim
ω→0

lim
ky→0

1

ω
ImḠ

xy,xy
R (ω,ky), (44)

which is the Kubo relation for the shear viscosity. The
hydrodynamic limits also enable us to find

ητπ − (ε + P )[DI (0,0) + AR(0,0)η]

= −1

2
lim
ω→0

lim
ky→0

∂2
ω ReḠxy,xy

R (ω,ky), (45)

where we have used P = gT (0,0).
In the relation (45), there appear the constants AR(0,0) and

DI (0,0), which we are not able to identify within this approach.
However, other studies involving a slightly different perturbing
Hamiltonian were able to identify the second term in Eq. (45)
as a thermodynamic quantity. The Kubo relations for the
second-order hydrodynamics coefficients were examined in
Refs. [19,20,32], where they are provided by studying the
response of a fluid to small and smooth metric perturbations. If
one takes into account only linearized equations, the following
relations are found:1

η = i lim
ω→0

lim
kz→0

Ḡ
xy,xy
R (ω,kz), (46)

κ = lim
kz→0

lim
ω→0

∂2
kz
Ḡ

xy,xy
R (ω,kz), (47)

ητπ = − 1
2 lim

ω→0
lim
kz→0

∂2
ωḠ

xy,xy
R (ω,kz)

+ 1
2 lim

kz→0
lim
ω→0

∂2
kz
Ḡ

xy,xy
R (ω,kz), (48)

where κ is an additional coefficient. Note that these formulas
involve nonzero kz while our formulas involve ky . When
expanded around small ω and kz = 0, the correlation function
Ḡ

xy,xy
R (ω,kz) becomes

Ḡ
xy,xy
R (ω,kz = 0) ≈ −P + iωη − ητπω2 + κ

2
ω2. (49)

Since the two-point functions (37) and (49) have different
momentum arguments, their analytical structures are slightly
different. See Appendix B for details. As pointed out in
Ref. [19], the κ term in the dissipative part of the stress-
momentum tensor is proportional to uμ so that these additional
terms in the correlation function do not come from the
contact term in the coordinate space. Nevertheless, providing
Ḡ

xy,xy
R (ω,kz) and Ḡ

xy,xy
R (ω,ky) share the same diffusion pole

1In the formulas (46)–(49) we applied the same sign convention as
used in the entire paper, that is, with the metric being mostly negative.
In the original papers [19,20,32] these formulas are given with the
opposite sign convention since they are studied in the flat space which
is convenient when one examines transport properties of a medium
via background geometry perturbations.
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structure, their small frequency and vanishing momentum
limits should be consistent with each other.

In the small ω and vanishing ky limits, the function (37) is

Ḡ
xy,xy
R (ω,ky = 0) ≈ −P + iω(ε + P )DR(0,0)

+ω2
[−(ε + P )D2

R(0,0)BR(0,0)

+ (ε + P )DI (0,0) + AR(0,0)DR(0,0)
]
.

(50)

By comparing the function (50) to (49) we can obtain the
condition on the unknown functions AR(0,0) and DI (0,0) and
clarify the relation (45). So we identify

η = (ε + P )DR(0,0), (51)

ητπ = ηDR(0,0)BR(0,0). (52)

Then the condition on the contribution from DI (0,0) and
AR(0,0) is

(ε + P )DI (0,0) + AR(0,0)DR(0,0) = κ

2
. (53)

Finally, we can write the Kubo relation for ητπ as

ητπ − κ

2
= −1

2
lim
ω→0

lim
ky→0

∂2
ω ReḠxy,xy

R (ω,ky). (54)

It is known [32,33] that κ = O(λ0T 2) in the weak coupling
limit. On the other hand, both η and τπ behave like the mean
free path which depends inversely on the cross section. Hence,
Eq. (54) can be still used to study the leading order shear
relaxation time.

B. Response function to longitudinal fluctuations

The perturbing Hamiltonian for the bulk flow is

δĤ (t) = −
∫

d3xθ (−t)T̂ 00(x)eεtβ0(x), (55)

where T̂ 00 is the operator of energy density and β0(x) is an
space-dependent external force, which has driven the system
off equilibrium. The response of the medium then is

〈T 00(t,k)〉 = β0(k)
∫ ∞

−∞
dt ′θ (−t ′)eεt ′Ḡ

00,00
R (t − t ′,k). (56)

By applying the continuity equation to each index of Ḡ
αβ,μν
R

in the Ward identity (30), we get

ω4Ḡ
00,00
R (ω,k) = ω4ε − ω2k2(ε + P ) + k4ḠL(ω,k), (57)

where ḠL(ω,k) is the response function to the longitudinal
fluctuations and, through the Ward identity, it is related to the
spatial stress-stress function Ḡ

ij,mn
R (ω,k) as

k4ḠL(ω,k) = kikj kmkn

[
Ḡ

ij,mn
R (ω,k)

+P (δimδjn + δinδjm − δij δmn)
]
. (58)

What is more, the Ward identity enables one to express
a response function associated with an arbitrary energy-
momentum tensor component via the spatial stress-stress
response function Ḡ

ij,mn
R (ω,k).

From the response function ḠL (57), one finds

ḠL(ω,k) ≈ ω2

k2
(ε + P ) + ω4

k4

(
Ḡ

00,00
R (0,k) − ε

)
. (59)

We know that Ḡ
00,00
R (0,k) = T cv + O(k2) where cv is the

specific heat per unit volume from Eq. (A16) in Appendix A.
It is also related to the speed of sound T cv = (ε + P )/v2

s . We
also take into account that the imaginary part of ḠL must be an
odd function of ω and the full function should behave well in
the k → 0 limit. All these arguments allow one to parametrize
the most general form of the function ḠL as [24]2

ḠL(ω,k) = ω2[ε + P + ω2Q(ω,k)]

k2 − ω2

Z(ω,k) + iω3R(ω,k)
. (60)

The functions Z(ω,k), R(ω,k), and Q(ω,k) are all of the form

Z(ω,k) = ZR(ω,k) − iωZI (ω,k), (61)

where ZR(ω,k) and ZI (ω,k) are real-valued even functions of
ω and k. The real parts ZR and RR must have a nonzero limit
as ω → 0 and k → 0. All other parts of Z,Q, and R must
have finite limits as ω → 0 and k → 0.

The pole structure of the correlation function (60) provides
us with the dispersion relation

ω2 − k2Z(ω,k) − iω3R(ω,k)Z(ω,k) = 0. (62)

Comparing the dispersion relation (62) to (17) one observes
that in order to reproduce terms ∼ω2k2 and other terms of
higher powers, it is enough to expand the real part of Z(ω,k)
up to ω2 so that

ZR(ω,k) = ZR1(0,0) − ω2ZR2(0,0) + O(k2) + O(ω4).

(63)

Then, the expression (62) takes the form

0 = ω4[ZI (0,0)RR(0,0) + RI (0,0)ZR1(0,0)] − ω2k2ZR2(0,0)

−ω2 + k2ZR1(0,0) − iωk2ZI (0,0)

+ iω3RR(0,0)ZR1(0,0) + O(ω5) + O(k4). (64)

Comparing this pole structure to the dispersion relation
provided by a purely hydrodynamic framework (17) one finds
the following relations:

ZR1(0,0) = v2
s , (65)

ZR2(0,0) = τπτ�v2
s + τ�

4DT

3
+ τπγ, (66)

ZI (0,0) = 4DT

3
+ γ + v2

s (τπ + τ�), (67)

RR(0,0) = τπ + τ�

v2
s

, (68)

RI (0,0) = v2
s τπτ�−v2

s (τπ+τ�)2−(4DT /3+γ )(τπ+τ�)

v4
s

.

(69)

2In Ref. [24], the numerator had iω3Q(ω,k) instead of ω2Q(ω,k).
Equation (60) is the correct form for the most general parametrization.
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The imaginary and real parts of the Green function ḠL(ω,k)
in the thermodynamic limit becomes

lim
ω→0

lim
k→0

1

ω
Im ḠL(ω,k) = (ε + P )

(
ZI − Z2

R1RR

)
, (70)

−1

2
lim
ω→0

lim
k→0

∂2
ωRe ḠL(ω,k) = (ε + P )

(
2RRZIZR1 + RIZ

2
R1

−R2
RZ3

R1 − ZR2
) + QRZR1,

(71)

where all the constants ZI ,ZR1, ZR2, RI , RR , and QR should
be understood as ZI ≡ ZI (0,0), etc. Using the relations (65)–
(69), we find the following Kubo formulas:

4η

3
+ ζ = lim

ω→0
lim
k→0

1

ω
Im ḠL(ω,k), (72)

4

3
ητπ + ζ τ� + QRv2

s = −1

2
lim
ω→0

lim
k→0

∂2
ωReḠL(ω,k), (73)

v2
s (ε + P ) = − lim

ω→0
lim
k→0

ḠL(ω,k). (74)

Here as in the shear case, one constant, QR , is left undeter-
mined through this analysis. In Ref. [23], it was shown through
the curved metric analysis that

4

3
ητπ + ζ τ� − 2κ

3
= −1

2
lim
ω→0

lim
k→0

∂2
ωReḠL(ω,k). (75)

Hence, we may identify

QR = − 2κ

3v2
s

. (76)

More convenient Kubo formulas can be obtained if one
combines the Kubo formulas (72)–(74) with those for the
shear viscosity and the relaxation time so that η, τπ , and κ are
eliminated. As shown in Appendix B, the k → 0 limit of the
pressure-pressure correlation function accomplishes just that,

ḠPP
R (ω,0) = P

3
+ ḠL(ω,0) − 4

3
Ḡ

xy,xy
R (ω,0)

= P

3
+ iωζ − ζ τ�ω2 + O(ω3). (77)

Here the pressure operator is defined as P̂ = δij T̂
ij /3.

Hence our final Kubo formulas for the bulk viscosity and the
relaxation time are

ζ = lim
ω→0

lim
k→0

1

ω
Im ḠPP

R (ω,k), (78)

ζ τ� = −1

2
lim
ω→0

lim
k→0

∂2
ωRe ḠPP

R (ω,k). (79)

The formula (79) is especially important, as it consists of the
bulk relaxation time and encodes the prescription on how to
compute it.

While the Kubo formulas for the linear second-order
viscous hydrodynamics have been consistently derived here,
it is worth mentioning that the stress-energy correlation
functions were also examined in Ref. [34]. In the current paper
we focus on derivation of the second-order fluid dynamics
from the general analytic properties of the correlation functions
while in Ref. [34] the correlation functions were obtained as

the Green functions of the Israel-Stewart type second-order
hydrodynamics.

V. SHEAR RELAXATION TIME IN THE SCALAR
FIELD THEORY

We perform here the perturbative analysis of the stress-
energy tensor response functions. The study is done in the
leading order for the massless real scalar quantum field theory3

with the Lagrangian

L = 1

2
∂μφ∂μφ − λ

4!
φ4, (80)

where λ is the coupling constant, which is assumed to be small.
Since the scalar field is real, there are no conserved number or
charge operators coupled to the chemical potential.

In leading order the scalar field dynamics is governed by
2 ↔ 2 scatterings which give rise only to the shear viscosity
effects being of the orderO(λ−2T 3) where T is the temperature
[8]. The bulk viscosity strictly vanishes in the conformal limit.
Since the conformal symmetry in the scalar theory is broken by
the nonzero β function, the bulk viscosity is much smaller than
the shear viscosity ζ = O(λT 3) [8]. It also requires inclusion
of number changing inelastic processes at higher orders in the
coupling constant.

Here we work in the leading order of the expansion
of the response function and provide a systematic analysis
to compute the shear relaxation time. To find it we make
use of the formula (54), where we ignore the coefficient κ
since it only scales as O(λ0T 2). By evaluating the real and
imaginary parts of Ḡ

xy,xy
R we are able to get ητπ and η,

respectively, and then extract the shear relaxation time. In
the forthcoming derivation we employ the closed time path
(Keldysh-Schwinger) formalism which is briefly summarized
in Appendix C. The analysis of the four-point functions in
Sec. V E closely follows [25]. We also adopt the notations and
sign conventions for the real-time n-point functions from the
same reference throughout this section.

A. Definition of the retarded response function

Since any response function ḠR differs from the standard
retarded Green function due to the Ward identity let us start
with the definition of Ḡ

ij,mn
R . Making allowance for the Ward

identity (29), Ḡ
ij,mn
R is defined by

Ḡ
ij,mn
R (x,y) = −δ(4)(x − y)(δjm〈T̂ in(y)〉

+ δjn〈T̂ im(y)〉 − δij 〈T̂ mn(y)〉)
− iθ (x0 − y0)〈[T̂ ij (x),T̂ mn(y)]〉. (81)

In the equilibrium state, the rotational invariance provides that
〈T̂ ij 〉 = δijP , where P is the thermodynamic pressure, so that
the retarded Green function becomes

Ḡ
ij,mn
R (x,y) = −δ(4)(x − y)P (y)(δjmδin + δjnδim − δij δmn)

− iθ (x0 − y0)〈[T̂ ij (x),T̂ mn(y)]〉. (82)

3Our analysis can be easily generalized to the massive case by just
substituting m2

th → m2
phys + m2

th where mphys is the physical mass.
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Analogously, the advanced Green function is

Ḡ
ij,mn
A (x,y) = −δ(4)(x − y)P (y)(δimδjn + δinδjm − δij δmn)

+ iθ (y0 − x0)〈[T̂ ij (x),T̂ mn(y)]〉. (83)

The commutator in Eqs. (82) and (83) consists of the Wightman
functions and should be understood as

〈[T̂ ij (x),T̂ mn(y)]〉 = 〈
T̂ mn

2 (y)T̂ ij
1 (x)

〉 − 〈
T̂

ij
2 (x)T̂ mn

1 (y)
〉
, (84)

where the reading from right to left inside the brackets should
be understood as the evolution from the initial to final state; the
indices 1 and 2 locate the operators on the upper (earlier) or
lower (later) branch of the Keldysh time contour, respectively.
The stress tensor operator is defined by

T̂ ij = T̂
ij

kin − 1
3δijL (85)

with the Lagrangian given by (80). Rewriting the Lagrangian
as

L = −1

2
φE[φ] + λ

4!
φ4, (86)

where

E[φ] = ∂μ∂μφ + λ

3!
φ3 (87)

is the equation of motion for the field operator, we see that
within the thermal average, 〈L〉 = O(λ). Hence the leading
order stress-energy tensor is dominated by the kinetic term

T̂ ij (x) = ∂iφ(x)∂jφ(x) + O(λ). (88)

Accordingly, the Wightman functions read〈
T̂ mn

2 (y)T̂ ij
1 (x)

〉 = 〈∂nφ2(y)∂mφ2(y)∂jφ1(x)∂iφ1(x)〉, (89)〈
T̂

ij
2 (x)T̂ mn

1 (y)
〉 = 〈∂jφ2(x)∂iφ2(x)∂nφ1(y)∂mφ1(y)〉, (90)

which may be expressed in terms of the four-point Green
functions as

i
〈
T̂ mn

2 (y)T̂ ij
1 (x)

〉 = ∂i
x1

∂j
x2

∂m
y1

∂n
y2

G1122(x1,x2; y1,y2)|x1=x2=x
y1=y2=y

,

(91)

i
〈
T̂

ij
2 (x)T̂ mn

1 (y)
〉 = ∂i

x1
∂j
x2

∂m
y1

∂n
y2

G2211(x1,x2; y1,y2)|x1=x2=x
y1=y2=y

.

(92)

The four-point Green functions are defined as

i3G1122(x1,x2; y1,y2) = 〈Ta{φ2(y2)φ2(y1)}Tc{φ1(x2)φ1(x1)}〉,
(93)

i3G2211(x1,x2; y1,y2) = 〈Tc{φ1(y2)φ1(y1)}Ta{φ2(x2)φ2(x1)}〉.
(94)

Then the retarded and advanced Green functions of the stress-
energy tensor take the forms

Ḡ
ij,mn
R (x,y) = −δ(4)(x − y)P (y)(δjmδin + δjnδim − δij δmn)

− θ (x0 − y0)∂i
x1

∂j
x2

∂m
y1

∂n
y2

[G1122(x1,x2; y1,y2)

−G2211(x1,x2; y1,y2)]|x1=x2=x
y1=y2=y

, (95)

FIG. 1. One-loop diagram of the free scalar field theory rep-
resenting the contribution to the retarded Green function of the
energy-momentum tensor operator.

Ḡ
ij,mn
A (x,y) = −δ(4)(x − y)P (y)(δimδjn + δinδjm − δij δmn)

+ θ (y0 − x0)∂i
x1

∂j
x2

∂m
y1

∂n
y2

[G1122(x1,x2; y1,y2)

−G2211(x1,x2; y1,y2)]|x1=x2=x
y1=y2=y

, (96)

where the limits x1 → x2 and y1 → y2 must be taken after the
derivatives.

B. Real part of the retarded Green function
in the free field theory

To find the real part of Ḡij,mn we continue our considera-
tions to study the one-loop diagram which appears in the free
scalar quantum field theory; this is done mostly to work out
the details. This diagram is shown in Fig. 1 and it comes from
the disconnected parts of four-point Green functions which are
nothing but the products of the Wightman functions,

i3G1122(x1,x2; y1,y2) = 〈φ2(y1)φ1(x2)〉〈φ2(y2)φ1(x1)〉
+ 〈φ2(y1)φ1(x1)〉〈φ2(y2)φ1(x2)〉, (97)

i3G2211(x1,x2; y1,y2) = 〈φ2(x2)φ1(y1)〉〈φ2(x1)φ1(y2)〉
+ 〈φ2(x1)φ1(y1)〉〈φ2(x2)φ1(y2)〉. (98)

When the points are joined so that x1 = x2 = x and y1 = y2 =
y, we get

i3G1122(x,x; y,y) = 2i�12(x,y)i�21(y,x), (99)

i3G2211(x,x; y,y) = 2i�21(x,y)i�12(y,x), (100)

where we defined �12(x,y) = 〈φ1(x)φ2(y)〉 and �21(x,y) =
〈φ2(x)φ1(y)〉 and also used the fact that �12(x,y) = �21(y,x).
Since the system considered is homogeneous, the two-point
functions depend on x and y only through their difference
x − y. Putting all these facts together, we get the retarded
function Ḡ

ij,mn
R in the form

Ḡ
ij,mn
R (x − y)

= −δ(4)(x − y)P (δimδjn + δinδjm − δij δmn)

+ 2iθ (x0 − y0)
(
∂j
x ∂m

y �12(x − y)∂i
x∂

n
y �21(y − x)

− ∂j
x ∂m

y �21(x − y)∂i
x∂

n
y �12(y − x)

)
. (101)
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At this point, it is more convenient to change the basis from
φ1,2 to φr,a defined by

φr (x) = φ1(x) + φ2(x)

2
, (102)

φa(x) = φ1(x) − φ2(x). (103)

Using the relations between the Green functions in the (1,2)
and (r,a) bases expressed by (C6)–(C9) and (C11)–(C14), we
find

Ḡ
ij,mn
R (x − y) = −δ(4)(x − y)P (δimδjn + δinδjm − δij δmn)

− i
(
∂j
x ∂m

y �ra(x − y)∂i
x∂

n
y �rr (y − x)

+ ∂j
x ∂m

y �rr (x − y)∂i
x∂

n
y �ar (y − x)

)
.

(104)

Performing the Fourier transform we next get

Ḡ
ij,mn
R (k) = −P (δimδjn + δinδjm − δij δmn)

− i

∫
d4p

(2π )4
pipn(p + k)j (p + k)m

× [�rr (p)�ra(p + k) + �rr (p + k)�ar (p)],

(105)

where k ≡ (k0,k) ≡ (ω,k). And analogously Ḡ
ij,mn
A (k) is

Ḡ
ij,mn
A (k) = −P (δimδjn + δinδjm − δij δmn)

− i

∫
d4p

(2π )4
pipn(p + k)j (p + k)m

× [�rr (p)�ar (p + k) + �rr (p + k)�ra(p)].

(106)

The functions �ra(p) and �ar (p) are the usual retarded and
advanced two-point Green functions which are of the following
forms:

�ra(p) = 1

(p0 + iε)2 − p2
, (107)

�ar (p) = 1

(p0 − iε)2 − p2
, (108)

and they satisfy

�ra(p) = �∗
ar (p). (109)

�rr (p) is the autocorrelation function and it is the only function
where a distribution function explicitly enters. In thermal
equilibrium all three of these functions are related via the
fluctuation-dissipation theorem,

�rr (p) = N (p0)[�ra(p) − �ar (p)], (110)

where N (p0) = 1 + 2n(p0) and n(p0) = 1/(eβp0 − 1) is the
Bose distribution function with β being the inverse of
temperature T .

The functions Ḡ
xy,xy
R (k) and Ḡ

xy,xy
A (k) are then obtained

by setting i = m = x and j = n = y in Eqs. (105) and (106).
We also choose k = (0,ky,0) to use our analysis in Sec. IV A.
The real and imaginary parts of Ḡ

xy,xy
R (k) are then obtained

by the sum and the difference of Ḡ
xy,xy
R (k) and Ḡ

xy,xy
A (k),

respectively. In the vanishing momentum limit they are as
follows:

lim
ky→0

Re Ḡ
xy,xy
R (ω,ky) + P

= − i

2

∫
d4p

(2π )4
p2

xp
2
y[�rr (p)[�ra(p + k) + �ar (p + k)]

+�rr (p + k)[�ar (p) + �ra(p)]], (111)

lim
ky→0

Im Ḡ
xy,xy
R (ω,ky)

= −1

2

∫
d4p

(2π )4
p2

xp
2
y[�rr (p)[�ra(p + k) − �ar (p + k)]

+�rr (p + k)[�ar (p) − �ra(p)]], (112)

where in the right hand side k = (ω,0).

C. Pinching poles

Provided that the fluctuation-dissipation theorem of the
form (110) is applied to the formulas (111) and (112), there
appear, in particular, terms of products of propagators with
four poles lying symmetrically on both sides of the real axis
in the complex p0 plane if the small ω limit is used. These
poles give rise to the pinching of the integration contour by the
poles lying on opposite sides of the real energy axis, that is,
the pinching pole effect. These terms indeed may be evaluated
as∫

dp0

2π
�ra(p)�ar (p)

∼
∫

dp0

2π

1

(p0 + iε) − |p|
1

(p0 − iε) − |p| ∼ 1

ε
, (113)

so that they produce a singularity as ε → 0. In a noninteracting
theory such an effect is natural and it means that since the
emerged excitation is not subject to collisions it can propagate
indefinitely long. It is reflected by δ functions carried by
the spectral density. The width of such a peak, which is
inversely proportional to the lifetime of the excitation, is
vanishingly small. This implies that in the free theory there
is no transport of conserved quantities and consequently
transport coefficients cannot be defined. In an interacting
system, transport coefficients are finite due to the finite mean
free path (or lifetime) of a propagating excitation until it suffers
from scatterings with constituents of the thermal bath. Thus,
in thermal weakly interacting medium the spectral density can
be approximated by Lorentzians [4]

ρ(p) = 1

2Ep

(
2	p

(p0 − Ep)2 + 	2
p

− 2	p

(p0 + Ep)2 + 	2
p

)
,

(114)

where Ep is the quasiparticle excitation energy and 	p is
the thermal width. The origin of such a form of the spectral
density may be also understood if one uses the resummed
propagators. These propagators carry information on the
interaction of a given particle with the medium in terms
of the self-energy � = Re � + iIm �. They are defined as
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�ra(p) = [p2 − m2 − �(p)]−1 and �ar (p) = �∗
ra(p), where

m is the mass.
In this paper, we study massless theory, but the real part of

the self-energy in the lowest order does not vanish. The leading
order diagram is the tadpole diagram, which is momentum
independent, and may be identified as the thermal mass (mth)
squared. The spectral density is then given in terms of the
resummed retarded and advanced propagators as

ρ(p) = i[�ra(p) − �ar (p)]. (115)

When the spectral density has sharp peaks near p0 = ±Ep,
we can then say that the dispersion relation is E2

p = p2 + m2
th,

and the thermal width is related to the imaginary part of the
self-energy as 	p = Im �(Ep,|p|)

2Ep
. Consequently, the resummed

retarded and advanced propagators can be approximated
as

�ra(p) = 1

(p0 + i	p)2 − E2
p

, (116)

�ar (p) = 1

(p0 − i	p)2 − E2
p

. (117)

Appearance of 	p in the propagators shifts the pinching
poles away from the real axis in the complex p0 plane,
which regulates the singularities in Eqs. (111) and (112)
making the integral finite. The pinching pole contribution
is then of the order O(1/	p). What is more, the terms of
the type �ra(p)�ra(p) and �ar (p)�ar (p) have poles on the
same side of the real energy axis and thus they give much
smaller contribution to the expressions (111) and (112) than
the pinching poles, and may be safely ignored in further
computations. The omission of these terms constitutes the
pinching pole approximation.

Replacement of bare propagators by dressed ones means
that we need to deal with the skeleton expansion where
propagators are dressed and vertices remain bare. Here, we
are to study the first loop of this expansion. However, since the
thermal width is related to the imaginary part of a self-energy,
some complications arise. In the weakly coupled λφ4 theory
the lowest contribution to Im � comes from a two-loop
diagram which is of the order O(λ2) and since the pinching
pole contribution dominates, the one-loop diagram is of the
order O(1/λ2) [3]. However, one realizes that there may be
momentum exchange between the side rails of the loop. This
is represented by the one-loop rungs connecting the two side
rails as shown in Fig. 2.

Each rung introduces a factor of λ2 coming from the
vertices and a factor of the order O(1/λ2) coming from
the pinching poles introduced by the additional pair of
propagators. Therefore, all such multiloop ladder diagrams

FIG. 2. Resummation of ladder diagrams. The insertions of the
energy-momentum tensor operator T̂ xy is denoted by the crossed dots
and black dots are the vertices with the coupling constant λ.

contribute at the leading order. They must be resummed to
give the full result in the leading order.

The situation described above holds when the single
transport coefficient, such as the shear viscosity, is analyzed.
In case of the combination ητπ , it gets more involved and it
will be discussed in the next part of this work.

D. Evaluation of η and ητπ in the one-loop limit

Before we include all ladder diagrams let us consider first
only the one-loop diagram with the resummed propagators.
This is illuminating as we can find the typical scales of η and
ητπ .

The shear viscosity is related to the imaginary part of the
relevant retarded Green function. It can be calculated in a few
ways which are related to different choices of the correlation
function. Usually, it is examined from the imaginary part
of the Green function of the traceless, spatial part of the
stress-energy tensor πij . It may be also computed in terms
of the stress-stress function Ḡ

xy,xy
R as shown by the Kubo

formula (44). We employ here the latter choice. Applying the
fluctuation-dissipation theorem (110) and the pinching pole
approximation to Eq. (112), the imaginary part is then given
by

lim
ky→0

ImḠ
xy,xy
R (ω,ky)

= 1

2

∫
d4p

(2π )4
p2

xp
2
y[Np − Np+k]

× (�ar (p + k)�ra(p) + �ra(p + k)�ar (p)) (118)

with the propagators �ra and �ar being dressed and given by
(116) and (117) and k = (ω,0) in the right hand side. The real
part of the retarded Green function (111) is

lim
ky→0

Re Ḡ
xy,xy
R (ω,ky) + P

= − i

2

∫
d4p

(2π )4
p2

xp
2
y[Np − Np+k]

× (�ar (p + k)�ra(p) − �ra(p + k)�ar (p)). (119)

In pursuit of η = 1
ω

ImḠ
xy,xy
R (ω,ky)|ω,ky→0 = ∂ωImḠ

xy,xy
R

(ω,ky)|ω,ky→0, we find

lim
ω,ky→0

∂ωImḠ
xy,xy
R (ω,ky)

= lim
ω,ky→0

∫
d4p

(2π )4
p2

xp
2
y ∂ω[Np − Np+k]�ar (p)�ra(p).

(120)

Realizing that

lim
ω→0

∂ω[Np − Np+k] = 2βn(p0)(n(p0) + 1), (121)

the one-loop shear viscosity is

η1−loop = 2β

∫
d4p

(2π )4
p2

xp
2
y n(p0)(n(p0) + 1)�ra(p)�ar (p).

(122)
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The action of the second-order derivative and inclusion of the
factor −1/2 to the real part given by the formula (119), as
dictated by the Kubo formula (54), leads us to the following
equation:

ητπ |1−loop = − i

2
lim

ω,ky→0

∫
d4p

(2π )4
p2

xp
2
y ∂ω[Np − Np+k]

× ∂ω(�ar (p + k)�ra(p) − �ra(p + k)�ar (p)).

(123)

Taking Eq. (121) into account and

lim
ω,ky→0

∂ω(�ar (p + k)�ra(p) − �ra(p + k),�ar (p))

= 4i	p

(
p2

0 + 	2
p + E2

p

)
�2

ra(p)�2
ar (p), (124)

the expression (123) becomes

ητπ |1−loop = 4β

∫
d4p

(2π )4
p2

xp
2
y n(p0)[n(p0) + 1]

×	p

(
p2

0 + 	2
p + E2

p

)
�2

ra(p)�2
ar (p). (125)

The frequency integrals to perform in Eqs. (122) and (125) are

I1 =
∫

dp0

2π
n(p0)[n(p0) + 1]

× 1[
(p0 + i	p)2 − E2

p

][
(p0 − i	p)2 − E2

p

] , (126)

I2 =
∫

dp0

2π
n(p0)[n(p0) + 1]

× 	p

(
p2

0 + 	2
p + E2

p

)
[
(p0 + i	p)2 − E2

p

]2[
(p0 − i	p)2 − E2

p

]2 . (127)

The integrands in Eqs. (126) and (127) have four poles
at p1 = i	p + Ep, p2 = i	p − Ep, p3 = −i	p + Ep, and
p4 = −i	p − Ep. In Eq. (126) the poles are simple poles
while in Eq. (127) they are double poles. By using the residue
theorem and closing the contour in the upper-half plane, the
sum of the residua in Eq. (126) is found in the leading order
of 	p/Ep as

I1 = n(Ep)[n(Ep) + 1]

4E2
p	p

. (128)

In Eq. (127) we handle the second-order poles. We recall that
the residua of a function with second-order poles contain the
derivative with respect to the complex argument. Thus, when
the contour integration is carried out, the expression (127)
becomes

I2 = n(Ep)[n(Ep) + 1]

16E2
p	2

p

. (129)

Finally, the formula (122) for the shear viscosity is

η1−loop = β

2

∫
d3p

(2π )3
p2

xp
2
y

n(Ep)[n(Ep) + 1]

E2
p	p

(130)

and the product of the shear viscosity and its relaxation time
is

ητπ |1−loop = β

4

∫
d3p

(2π )3
p2

xp
2
y

n(Ep)[n(Ep) + 1]

E2
p	2

p

. (131)

At this level one immediately notices that the shear relaxation
time scales as 1/	p. The computation of its value is given in
Sec. VI.

E. Summation over multiloop diagrams

The one-loop limit is, however, not sufficient and we need
to resum ladder diagrams which requires us to manipulate the
connected four-point Green functions as well. To do so we
employ the definitions (C7) and (C8) to get the retarded and
advanced four-point Green functions as

G̃R(x1,x2,x3,x4)

= G1111(x1,x2,x3,x4) − G1122(x1,x2,x3,x4), (132)

G̃A(x1,x2,x3,x4)

= G1111(x1,x2,x3,x4) − G2211(x1,x2,x3,x4). (133)

The subscripts R and A in G̃R and G̃A do not mean that they
themselves are four-point retarded and advanced functions.
The subscripts just indicate that these functions will become
the two-point retarded and advanced functions when x1 is
identified with x2 and y1 is identified with y2. The real part is

Re G̃R = 1
2 (2G1111 − G2211 − G1122) = 1

2 (G1111 − G2222),

(134)

where we have used the relation (C3), and the imaginary part is

Im G̃R = 1
2 (G2211 − G1122). (135)

The four-point functions in (1,2) basis may be transformed to
the (r,a) basis using the relation (C15). Then, one finds

Re G̃R = 1
8 (Grrra + Grrar + Grarr + Garrr

+Gaaar + Gaara + Garaa + Graaa), (136)

Im G̃R = 1
8 (Grrra + Grrar − Grarr − Garrr

+Gaaar + Gaara − Garaa − Graaa). (137)

Despite the fact that the shear viscosity, related to the
imaginary part of a Green function, has been studied in
literature many times, it may be illuminating to see some
analogies and differences between the real and imaginary
parts. Thus, when deriving the real part of the Green function
we will be referring to ImG̃R quite frequently, as well. In
particular, we will be quoting the results from [25], where η
was derived in the real-time formalism.

Each of the four-point Green functions in Eqs. (136)
and (137) couples to the remaining ones. This is shown in
Fig. 3 where the disconnected parts represent the one-loop

FIG. 3. Four-point Green function.
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diagram, the rung is a kernel and the shaded box is a sum of
all possible combinations of four-point Green functions in the
(r,a) basis. Both the kernel and the shaded box contribute to an

effective vertex. Therefore, Fig. 3 presents an infinite series of
diagrams which can be written as the Bethe-Salpeter equation
(BSE). For an arbitrary function Gα1α2α3α4 , the BSE reads

i3Gα1α2α3α4 (p + k,−p,−q − k,q) = i�α1α3 (p + k) i�α2α4 (−p)(2π )4δ4(p − q) + i�α1β1 (p + k)i�α2γ1 (−p)

×
∫

d4l

(2π )4
Kβ1γ1β4γ4 (p + k,−p,−l − k,l)i3Gβ4γ4α3α4 (l + k,−l,−q − k,q). (138)

The analytic solution of the BSE is, in general, not readily
available. However, as already mentioned, the use of the
Keldysh basis accompanied by the pinching pole approxima-
tion makes it much simpler.

In Ref. [25] it has been shown that by means of the
fluctuation-dissipation theorems (FDT), developed in
Refs. [35,36], one may show that the only contribution to
ImG̃R comes from ImGaarr . Even without referring to FDT
one may quickly observe that the functions Gaaar , Gaara,
Garaa , and Graaa in Eqs. (136) and (137) do not contribute
because these functions must contain at least one �aa .

In this way we are left only with Grrra, Grrar , Grarr , and
Garrr . As shown in Appendix D, these functions are related to
Gaarr and Grraa by

Garrr + Grarr = [Np − Np+k]Gaarr , (139)

Grrar + Grrra = [−Nq + Nq+k]Grraa, (140)

where Np = N (p0). The functions Gaarr and Grraa are also
related through FDT. The relevant relation is [36]

(−Nq + Nq+k)(Grraa + Np+kGaraa − NpGraaa)

= (Np − Np+k)(G∗
aarr − Nq+kG

∗
aaar + NqG

∗
aara). (141)

So, ignoring again the contributions from the functions with
three a indices, we obtain ReG̃R and ImG̃R as follows:

Re G̃R = 1
8 [Np − Np+k](Gaarr + G∗

aarr ), (142)

Im G̃R = 1
8 [Np − Np+k](Gaarr − G∗

aarr ). (143)

F. Bethe-Salpeter equation for Gaarr and G∗
aarr

The Bethe-Salpeter equation for Gaarr is analyzed in detail
in Ref. [25]. Nonetheless, we repeat here the main steps

because unlike the viscosity calculations, the ητπ calculation
requires that the external frequency k0 = ω be kept until the
derivatives are taken. Fully written out, the Bethe-Salpeter
equation for Gaarr is

Gaarr (p + k,−p,−q − k,q)

= −�ar (p + k) �ra(p)

[
i(2π )4δ4(p−q)

+
∫

d4l

(2π )4
Krrβ4γ4 (p + k,−p,−l − k,l)

×Gβ4γ4rr (l + k,−l,−q − k,q)

]
. (144)

The external momentum k can flow in an arbitrary way along
a diagram, that is, it can enter the rungs but it does not have
to. Since all opportunities are equally possible and lead to
the same final result, we have a freedom to choose what is
convenient for computations. Therefore, in this analysis the
external momentum is flowing along the external lower side
rail only, as indicated in Fig. 3. Then, the kernel couples to
four-point Green functions as

Krrβ4γ4Gβ4γ4rr = KrraaGaarr + KrrraGrarr + KrrarGarrr ,

(145)

where we have taken into account that Krrrr = 0, which is
the analog of Gaaaa = 0 amputated of the external legs. By
truncating external legs from Grarr and Garrr , that is, by using
the formulas (D4) and (D3), we find that the expression (145)
becomes

KrraaGaarr + KrrraGrarr + KrrarGarrr

= (Krraa − Nl+kKrrra + NlKrrar )Gaarr . (146)

The Bethe-Salpeter equation for Gaarr becomes now

Gaarr (p + k,−p,−q − k,q) = −�ar (p + k) �ra(p)

[
i(2π )4δ4(p − q) +

∫
d4l

(2π )4
(Krraa − Nl+kKrrra

+NlKrrar )(p + k,−p,−l − k,l)Gaarr (l + k,−l,−q − k,q)

]
. (147)

To find G∗
aarr one just makes a complex conjugate of the formula (147). Taking into account the analysis of the complex conjugate

procedure of the kernel rungs, shown in Appendix D, one gets

G∗
aarr (p + k,−p,−q − k,q) = −�ra(p + k) �ar (p)

[
− i(2π )4δ4(p − q) +

∫
d4l

(2π )4
(Krraa + Nl+kKrrar

−NlKrrra)(p + k,−p,−l − k,l)G∗
aarr (l + k,−l,−q − k,q)

]
. (148)

Note that the combinations of the kernel functions in Eqs. (147) and (148) become identical in the k → 0 limit.
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G. Evaluation of η and ητπ

To calculate the shear viscosity and the shear relaxation time, one needs to evaluate Eq. (143) with the appropriate derivatives,

lim
ky→0

ImḠ
xy,xy
R (ω,ky) = i

2

∫
d4p

(2π )4
pxpy

∫
d4q

(2π )4
qxqy[Np − Np+k](Gaarr − G∗

aarr )(p + k,−p,−q − k,q), (149)

and Eq. (142),

lim
ky→0

ReḠxy,xy
R (ω,ky) + P = 1

2

∫
d4p

(2π )4
pxpy

∫
d4q

(2π )4
qxqy[Np − Np+k](Gaarr + G∗

aarr )(p + k,−p,−q − k,q). (150)

Accordingly, only Gaarr and its complex conjugate matter when the transport coefficients are needed.
To obtain η and ητπ we move forward to find ∂ωImḠ

xy,xy
R and ∂2

ωReḠxy,xy
R . Simultaneously, we will be applying the limit

ω → 0. So, we get

lim
ω,ky→0

∂ωImḠ
xy,xy
R (ω,ky) ∼ ∂ω(Np − Np+k)(Gaarr − G∗

aarr )(p,−p,−q,q), (151)

lim
ω,ky→0

∂2
ωReḠxy,xy

R (ω,ky) ∼ ∂2
ω(Np − Np+k)(Gaarr + G∗

aarr )(p,−p,−q,q)

+ 2∂ω(Np − Np+k)∂ω(Gaarr + G∗
aarr )(p + k,−p,−q − k,q). (152)

The first line in Eq. (152), however, gives vanishing contribution to the calculation of ητπ since it is an odd function of p0. It
is seen when the following arguments are taken into account: n(−p0) = −n(p0) − 1 and �ar (−p0) = �ra(p0). Including the
relation (121), Eqs. (151) and (152) are rewritten as

lim
ω,ky→0

∂ωImḠ
xy,xy
R (ω,ky) ∼ 4βn(p0)[n(p0) + 1]ImGaarr (p,−p,−q,q), (153)

lim
ω,ky→0

∂2
ωReḠxy,xy

R (ω,ky) ∼ 8βn(p0)[n(p0) + 1]∂ωReGaarr (p + k,−p,−q − k,q)|ω,ky→0, (154)

where ImGaarr and ∂ωReGaarr are to be found from the Bethe-
Salpeter equations for Gaarr and G∗

aarr . First, using the BSEs
given by (147) and (148), ImGaarr and ReGaarr are given by

2ImGpq(0) = Bp(0)

[
δpq +

∫
l

Kpl(0) ImGlq(0)

]
, (155)

2ReGpq(k) = iAp(k)

[
δpq +

∫
l

Kpl(0) ImGlq(k)

]

+Bp(k)
∫

l

Kpl(0) ReGlq(k), (156)

where, for clarity, we have introduced the following symbolic
notations: ∫

l

. . . ≡
∫

d4l

(2π )4
. . . , (157)

δpq ≡ (2π )4δ4(p − q) (158)

and

Gpq(k) ≡ Gaarr (p + k,−p,−q − k,q), (159)

Ap(k) ≡ �ar (p) �ra(p + k) − �ar (p + k) �ra(p), (160)

Bp(k) ≡ −�ar (p) �ra(p + k) − �ar (p + k) �ra(p),

(161)

Kpl(0) ≡ K(p,−p,−l,l)

≡ (Krraa − NlKrrra + NlKrrar )(p,−p,−l,l).

(162)

The imaginary part ImGaarr has been expressed in the
vanishing k limit. It is also the case for the kernel Kpl of
the real part of Gaarr . This is justified due to the following
reason. In the next step we need to apply the derivative with
respect to frequency. There would appear terms consisting of
∂ωKpl(k) which are, however, of the order of 1/	p or less and
they give much smaller contribution to the final formula than
the remaining ones, which are of the order 1/	2

p. Therefore,
the hydrodynamic limits could have been applied at this stage,
which has simplified a lot the notation of formula (156). The
action of the derivative on Eq. (156) in the hydrodynamic limits
produces

2 lim
ω→0

lim
ky→0

∂ωReGpq(k)

= iA′
p(0)

[
δpq +

∫
l

Kpl(0) ImGlq(0)

]

+ iAp(0)
∫

l

Kpl(0) [∂ωImGlq(ω)]|ω→0

+B ′
p(0)

∫
l

Kpl(0) ReGlq(0)

+Bp(0)
∫

l

Kpl(0) [∂ωReGlq(ω)]|ω→0. (163)

To assess which terms contribute further let us check the small
frequency behavior of Ap and Bp functions given by (160) and
(161) and their derivatives,

Ap(0) ≡ 0, (164)

Bp(0) ≡ −2�ar (p) �ra(p), (165)
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A′
p(0) ≡ ∂ωAp(ω)|ω→0

= 4i	p

(
p2

0 + 	2
p + E2

p

)
�2

ar (p)�2
ra(p), (166)

B ′
p(0) ≡ ∂ωBp(ω)|ω→0

= 4p0
(
p2

0 + 	2
p − E2

p

)
�2

ar (p)�2
ra(p). (167)

Due to Eq. (164), the second term in Eq. (163) vanishes. To see
the behavior of the third term we need to include the integrals
as given by the formula (150). Then the following expression
needs to be considered:

I3 =
∫

p

Ipnp(np + 1)B ′
p(0)Fp(0), (168)

where Ip = I (p) = pxpy and Fp(0) is

Fp(0) =
∫

q

Iq

∫
l

Kpl(0) ReGlq(0). (169)

The frequency integral part of I3 is

f3 =
∫

dp0

2π
np(np + 1)B ′

p(0)Fp(0) (170)

and

B ′
p(0) = 4p0

(
p2

0 + 	2
p − E2

p

)
[
(p0 + i	p)2 − E2

p

]2[
(p0 − i	p)2 − E2

p

]2 . (171)

The function B ′
p(0) has four poles at p1 = i	p + Ep, p2 =

i	p − Ep, p3 = −i	p + Ep, and p4 = −i	p − Ep and they
are of the second order. We calculate them by using the residue
theorem and closing the contour in the upper-half plane. We
recall that the residua of a function with second-order poles
contain the derivative with respect to the complex argument.
Thus, upon carrying out the contour integration and summing
up the residua, the expression (170) becomes

f3 = i lim
p0→p1

∂p0 [np(np + 1)(p0 − p1)B ′
p(0)Fp(0)]

+ i lim
p0→p2

∂p0 [np(np + 1)(p0 − p2)B ′
p(0)Fp(0)]. (172)

If we now group the terms in Eq. (172) according to the
derivative with respect to p0, we can write

f3 = i∂p0 [np(np + 1)(p0 − p1)B ′
p(0)]|p0=p1Fp(0)|p0=p1

+ i∂p0 [np(np + 1)(p0 − p2)B ′
p(0)]|p0=p2Fp(0)|p0=p2

+ i[np(np + 1)(p0 − p1)B ′
p(0)]|p0=p1 [∂p0Fp(0)]|p0=p1

+ i[np(np + 1)(p0 − p2)B ′
p(0)]|p0=p2 [∂p0Fp(0)]|p0=p2 .

(173)

The expressions in the first and the second lines of Eq. (173)
are equal to 0. The other terms produce

f3 = np(np + 1)

E2
p	p

[[
∂p0Fp(0)

]∣∣
p0=p1

+ [
∂p0Fp(0)

]∣∣
p0=p2

]
,

(174)

which is of the order of 1/	p. The derivative ∂p0 in Eq. (174)
acts only on the kernel Kpl included in Fp(0) as shown
by (169). The kernel, however, does not contribute any
terms of the order of 1/	 so neither can do the action of

FIG. 4. Integral equation for the effective vertex.

∂p0 . The contribution of Fp(0) is Kpl(0) ReGlq(0) ∼ O(1).
Consequently, the third term in Eq. (163) is only O(1/	p)
and may be ignored as we know from the one-loop analysis
that ητπ = O(1/	2

p).
In this way we are left with the first and the fourth term of

Eq. (163), that is

∂ωReGpq(k)|ω,ky→0

= iA′
p(0)

2

[
δpq +

∫
l

Kpl(0) ImGlq(0)

]

+ Bp(0)

2

∫
l

Kpl(0) [∂ωReGlq(ω)]|ω,ky→0. (175)

From now on the vanishing ω and ky limits are implicit in all
expressions.

To reduce the BSE to a more manageable form, it is
convenient to define the effective vertex

Dp ≡ 2

Bp

∫
q

ImGpq Iq, (176)

where again Iq = I (q) = qxqy . The effective vertex Dp

satisfies the following integral equation:

Dp = Ip +
∫

l

Kpl

Bl

2
Dl, (177)

which is schematically shown in Fig. 4.
Then formula for η becomes

η = −β

∫
d4p

(2π )4
Ipn(p0)[n(p0) + 1]BpDp. (178)

For the real part, including the integral over q to the equation
(175) and the expression for Dp, given by (177), we can define
a new effective vertex Rp,

Rp ≡ 2

Bp

∫
q

Iq∂ωReGpq, (179)

which satisfies the following integral equation:

Rp = iA′
p

Bp

Dp +
∫

l

Kpl

Bl

2
Rl, (180)

and the formula for ητπ can be written in a compact
form as

ητπ = −β

∫
d4p

(2π )4
Ipn(p0)[n(p0) + 1]BpRp. (181)

Note that Rp = O(1/	p).
If we insert Dp, given by (177), and Bp, given by Eq. (165),

into Eq. (178) and perform the contour integration, then the
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shear viscosity is given by

η = β

∫
d3p

(2π )3
I (p)n(Ep)[n(Ep) + 1]

D(Ep,p)

2E2
p	p

, (182)

where the effective vertex satisfies

D(Ep,p) = I (p) −
∫

d3l

(2π )3
[K(Ep,El) + K(Ep,−El)]

D(El,l)

8E2
l 	l

. (183)

When deriving this we have used D(El,l) = D(−El,l),
K(Ep,El) = K(−Ep,−El), and K(−Ep,El) = K(Ep,−El).
The relations for the kernel are shown in Appendix D.

Then, using Rp, given by (180), and Bp and A′
p, given by

(165) and (166), respectively, to Eq. (181), we get

ητπ = β

∫
d3p

(2π )3
I (p)n(Ep)[n(Ep) + 1]

R(Ep,p)

2E2
p	p

(184)

with the effective vertex R(Ep,p) satisfying

R(Ep,p) = D(Ep,p)

2	p

−
∫

d3l

(2π )3
[K(Ep,El)

+K(Ep,−El)]
R(El,l)

8E2
l 	l

. (185)

VI. SHEAR RELAXATION TIME

First of all, by comparing the one-loop results (131) and
(130), one clearly sees that both the shear viscosity and the
shear relaxation time are controlled by the thermal width, 	p.
The thermal width is defined by the imaginary part of the
self-energy and therefore is momentum dependent.

Let us first, however, consider a simple example by assum-
ing that the thermal width is constant. Then by comparing
the formulas (131) and (130) in the one-loop limit, it is
found as

τπ |1-loop = 1

2	
. (186)

Thus one can claim that the thermal width 	, as directly related
to the lifetime or the mean free path of a thermal excitation,
introduces the only time scale into the system of interacting
particles and the shear relaxation time is directly related to that
scale. Hence the ratio of the one-loop results is

η

τπ

∣∣∣∣
1-loop

= β

∫
d3p

(2π )3

p2
xp

2
y

E2
p

n(Ep)[n(Ep) + 1]. (187)

With the Bose-Einstein momentum distribution n(Ep) =
1/(eβEp − 1), we get the value

η

τπ

= 4

450
π2T 4. (188)

With the definition of the energy density for the one-
component field,

〈ε〉 =
∫

d3p

Ep(2π )3
E2

p n(Ep), (189)

where n(Ep) is the Bose-Einstein statistics and the pressure is
〈P 〉 = 1

3 〈ε〉, the formula (190) may be rewritten in the form

η

τπ

= 〈ε + P 〉
5

. (190)

The similar relation was found within 14-moment approxima-
tion to the Boltzmann equation for the classical massless gas,
studied in Ref. [16], but the energy density and thermodynamic
pressure are defined there through the Boltzmann statistics. If
we use the Boltzmann statistics in Eqs. (187) and (189) then
the relation (190) holds approximately.

In general, one needs to maintain the momentum depen-
dence of the thermal width and solve the integral equations
numerically. By analyzing the integral equations for the
effective vertices D(Ep,p) and R(Ep,p) given by Eqs. (183)
and (185), one sees that they are of the same type but the
inhomogeneous terms are different. This indicates that the
order of these two equations is different since D(Ep,p) ∼
O(1) and R(Ep,p) ∼ O(1/	p). Also, to find the solution to
R(Ep,p) one needs to first obtain the solution to D(Ep,p).
The complication of solving double integral equations can be,
however, avoided. Define the inner product of two functions as

f ∗ g =
∫

d3p

(2π )32E2
p	p

n(Ep)[1 + n(Ep)]f (p)g(p). (191)

Then the viscosity is

η = βI ∗ D. (192)

The integral equation for Dp can be symbolically written as

D = I − C ∗ D, (193)

where

C = [K(Ep,El) + K(Ep, − El)]
1

4n(El)[1 + n(El)]
(194)

and for Rp,

R = D

2	
− C ∗ R. (195)

Formally, the solutions are

D = (1 + C)−1 ∗ I, (196)

R = (1 + C)−1 ∗ D

2	
. (197)

The product ητπ is then

ητπ = βI ∗ R

= βI ∗ (1 + C)−1 ∗ 1

2	
D

= βD ∗ 1

2	
D (198)

064906-15



ALINA CZAJKA AND SANGYONG JEON PHYSICAL REVIEW C 95, 064906 (2017)

FIG. 5. Shear relaxation time as a function of mth/T . One-loop
result (τπ0, red dashed curve) and multiloop resummation (τπ , blue
solid curve) are presented.

provided that the kernel operator C is real and symmetric. The
same formula was found in Ref. [12] through the effective
kinetic theory approach. The fact that C is real and symmetric
is shown in Appendix D.

The form of the effective vertices actually reflects the fact
that when the ladder diagrams are summed over to get ητπ ,
one out of all pairs of propagators in each diagram contributes
one more factor of 1/2	p when compared to equivalent
resummation of diagrams corresponding to η calculation.
Since every loop may be cut so as to represent an elastic
scattering process, one can say that each of these processes
can contribute the lifetime associated with the momentum
of incoming or outgoing particles, or also that of mediating
particles, when loops with at least two rungs are considered.
In the end the shear relaxation time is obtained when all
distinguishable possibilities are included and they all give rise
to a balanced relaxation process.

The shear relaxation time has been then obtained by
evaluating the integrals in Eqs. (182) and (184) numerically.
The result is shown in Fig. 5, where the relaxation time
is displayed as a function of mth/T with mth being the
thermal mass, which introduces the natural cutoff to infrared
divergences. The ratio mth/T ought to be identified with

√
λ

since the thermal mass behaves as m2
th = λT 2 in the leading

order and the range of the plot has been chosen in such a way
to show a general behavior of the shear relaxation time. Yet,
one needs to keep in mind that when the coupling constant is
increasing, nonperturbative effects start to play more and more
a role and the value of the relaxation time becomes less and less
realistic. On the other hand, our analysis equally well applies
even if the physical mass is nonzero. Hence, the large mth/T
part of the results shown in this section can be interpreted as
those for the the massive scalar field but still weakly coupled.

The solid (blue) curve in Fig. 5 corresponds to the shear
relaxation time obtained as the ratio of (184) over (182).
The dashed (red) curve represents the shear relaxation time
evaluated directly from one-loop expressions (131) and (130).
As can be seen, the difference between these two treatments
is noticeable. One also immediately observes that the bigger
the coupling constant is, the shorter the shear relaxation time

FIG. 6. The ratio 〈ε + P 〉τπ/η as a function of mth/T . Evaluation
in the one-loop limit (red dashed curve) and multiloop resummation
(blue solid curve) are presented.

becomes, as expected. What is more, the shear relaxation time
is around three times bigger than the corresponding one-loop
finding so it is not justified to claim that the one-loop result
dominates the behavior of the relaxation time.

We also present the ratio 〈ε + P 〉τπ/η as a function of
mth/T , which is shown in Fig. 6. One can see that the ratio
is decreasing when coupling constant decreases and it varies
between 6.11 up to 6.55 in the range shown. Furthermore, the
tendency of the one-loop result is just opposite.

The ratio 〈ε + P 〉τπ/η as a function of mth/T was also
obtained in Ref. [12] within the effective kinetic theory for
QCD, QED, and scalar λφ4 theory. In the case of the scalar
theory only the value at mth = 0 was presented in Ref. [12].
As mth/T → 0, they observed this ratio to be 6.11 for the full
theory and exactly 6 for the massless Boltzmann gas. As can be
seen, the quantum field theoretical findings obtained here are
in line with these of the effective kinetic theory in the regime
of a very small coupling constant and one may expect that this
equivalence holds in the whole range of mth/T .

The ratio 〈ε + P 〉τπ/η obtained here for the scalar theory
behaves in opposite way than the one obtained in Ref. [12]
for QCD in the range of mth/T changing from 0 to 1. When
the coupling constant increases the nonperturbative effects be-
come, as mentioned, more and more essential but even for very
small values of the coupling different nature of the interaction
governing both theories should be taken into consideration. In
QCD Coulomb-like interaction dominates the physics of the
system which results in appearance of ln(1/g), with g being the
coupling constant of strong interaction, in the parametric form
of the transport coefficients. What is more, the cross section
is strongly angle dependent which gives rise to the soft and
near collinear singularities. As argued in Ref. [12] the collinear
splittings become more and more important when the coupling
constant increases and they make the ratio 〈ε + P 〉τπ/η go
down. In the scalar λφ4 theory the contact interaction causes
the cross-section to be isotropic therefore only ladder diagrams
constitute the leading order behavior of the shear viscosity and
its relaxation time. In Ref. [4] it was shown that indeed the
soft and near collinear singularities are of smaller size than the
ladder diagrams and they have not had to be discussed in detail

064906-16



KUBO FORMULAS FOR THE SHEAR AND BULK . . . PHYSICAL REVIEW C 95, 064906 (2017)

here. A broader analysis of the next-to-leading order behavior
of shear viscosity is given in Ref. [37], where the soft physics
(quasiparticle momenta k being of the order mth) is shown
to determine the NLO correction. Since the leading order
equation does not differ in the form from the one that includes
subleading corrections, we expect that higher order contribu-
tions will behave similarly, but we leave that for future analysis.

It is also illuminating to notice that the leading order behav-
ior of different transport coefficients manifests different sus-
ceptibility to the thermal mass and to the way it emerges in the
computational analysis. For instance, the thermal mass plays
an essential role in the case of bulk viscosity where not only
the leading order term but also higher order corrections in the
coupling constant must be properly incorporated. Then, apart
from the loops with an arbitrary number of rungs inside them,
there appear so-called chain diagrams made of an arbitrary
number of loops. Addition of a subsequent loop introduces
an additional coupling constant. However, although chain dia-
grams emerge at every possible order in the coupling constant
their resummation is of the size O(λT 2), that is, the same as
the thermal mass squared. Therefore, the chain diagrams give
a significant contribution to the bulk effects analysis. In the
case of the shear viscosity or shear relaxation time calculation
this effect is absent since rotational symmetry makes the chain
diagrams vanish, as discussed in Ref. [4]. Accordingly, these
higher order corrections do not have to be considered here.

VII. CONCLUSIONS

The first goal in this paper was to work out Kubo formulas
for the shear and the bulk relaxation times. Since the Kubo
formula for the shear relaxation time was studied before, our
focus was on the Kubo formula which allows us to compute
the bulk relaxation time. Our Kubo formula is different than
the one obtained in Ref. [22] using the projection operator
method, but it is consistent with the one found in Ref. [23]
using the metric perturbation method.

Although our ultimate goal is to compute the bulk relaxation
time, in this paper we have concentrated on simpler task
of computing the shear relaxation time. This is primarily to
check the soundness of our overall formulations and refine the
field theoretical techniques we will need for the much more
involved bulk relaxation time computation. Calculation of the
bulk relaxation time is in progress.

The behavior of the shear relaxation time obtained in this
study is consistent with previous studies within the kinetic
theory setting as well as within the field theory setting. Our
conclusion that

τπ 〈ε + P 〉
η

≈ 5–7 (199)

seems to be robust across different theories and also consistent
with the values used in hydrodynamic calculations [38].
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APPENDIX A: WARD IDENTITY ANALYSIS

The stress-energy tensor Ward identity (30) is

kα(Ḡαβ,μν(k) − gβμ〈T̂ αν〉 − gβν〈T̂ αμ〉 + gαβ〈T̂ μν〉) = 0.

(A1)

In the local rest frame of the medium, the above expression
can be decomposed as

ω(Ḡ00,00(k) − 〈ε〉) = −kiḠ
0i,00(k), (A2)

ω(Ḡ00,0i(k)) = −kj (Ḡ0j,0i(k) − δijP ), (A3)

ω(Ḡ00,ij (k) + δijP ) = −kl(Ḡ
0l,ij (k)), (A4)

ω(Ḡ0j,00(k)) = −ki(Ḡ
ij,00(k) − δij ε), (A5)

ω(Ḡ0j,0i(k) + δij ε) = −kl(Ḡ
lj,0i(k)), (A6)

ω(Ḡ0j,lm(k)) = −ki(Ḡ
ij,lm(k) + δjlδimP

+ δjmδilP − δij δlmP ). (A7)

In the k → 0 limit, the right hand sides of Eqs. (A2)–(A7)
must vanish. Hence,

Ḡεε(ω,0) = ε, (A8)

Ḡεsij

(ω,0) = −δijP , (A9)

Ḡπj πi

(ω,0) = −δij ε. (A10)

In the ω → 0 limit, the left hand side must vanish. Hence,

Ḡπj πi

(0,k) = δijP + δ̂ij gππ (k), (A11)

Ḡsij ε(0,k) = δij ε + δ̂ij gsε(k), (A12)

Ḡsij slm

(0,k) = −(δjlδim + δjm − δij δlm)P + gijlm(k),

(A13)

where δ̂ij = δij − k̂i k̂j with k̂i = ki/|k| is the transverse
projection and gijlm is transverse with respect to all its indices.
Each of the g···(k) functions must be at least O(k2) in the small
k limit so that k̂i k̂j in δ̂ij is well defined.

We also need Ḡεε(0,k). In the zero frequency limit, the
retarded correlation function and the Euclidean one coincide.
Hence,

lim
k→0

Gεε
E (0,k) =

∫
d3x

∫ β

0
dτ 〈T̂ 00(τ,x)T̂ 00(0)〉conn + ε

= β(〈ĤT 00〉 − 〈Ĥ 〉〈T 00〉) + ε. (A14)

Note that

∂

∂T
e−βĤ = β2Ĥ e−βĤ , (A15)

which leads to

lim
k→0

Gεε
E (0,k) = T

∂ε

∂T
+ ε, (A16)

where ∂ε/∂T = cv is the specific heat per unit volume.
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APPENDIX B: DECOMPOSITION OF STRESS-STRESS
CORRELATION FUNCTION

Consider Ḡij,lm which is the correlation function of T̂ ij

and T̂ lm. When the space is isotropic, there are following five
independent tensors that respect the symmetry:

δij δlm, δilδjm + δimδjl, δij k̂l k̂m + δlmk̂i k̂j ,

δil k̂j k̂m + δjmk̂i k̂l + δimk̂j k̂l + δjl k̂i k̂m, k̂i k̂j k̂l k̂m, (B1)

which are composed of δij and k̂i = ki/|k|. Hence, there are
altogether five independent functions that can appear in Ḡij,lm.
Since we are interested in the shear and the bulk responses, it
is more convenient to define the transverse metric

δ̂ij = δij − k̂i k̂j . (B2)

The stress-stress correlation function can be then decomposed
as [39]

Ḡij,lm(ω,k) = −P (δilδjm + δimδjl − δij δjm)

+ Ḡ1(ω,k)(δ̂il k̂j k̂m + δ̂jmk̂i k̂l

+ δ̂imk̂j k̂l + δ̂j l k̂i k̂m)

+ Ḡ2(ω,k)(δ̂il δ̂jm + δ̂imδ̂j l − δ̂ij δ̂lm)

+ ḠT (ω,k) δ̂ij δ̂lm

+ ḠLT (ω,k)(δ̂ij k̂l k̂m + δ̂lmk̂i k̂j )

+ ḠL(ω,k) k̂i k̂j k̂l k̂m. (B3)

This expression must be well defined in the k → 0 limit.
Hence, the coefficient of, say, δij k̂l k̂m must be O(k2) as k → 0.
Collecting the coefficients, one sees that

Ḡ2 − ḠT + ḠLT = O(k2). (B4)

The coefficient of δil k̂j k̂m is

−Ḡ2 + Ḡ1 = O(k2). (B5)

The coefficient of k̂i k̂j k̂l k̂m must be O(k4),

2Ḡ2 − 4Ḡ1 + ḠT + ḠL − 2ḠLT = O(k4). (B6)

Hence in the k → 0 limit, only two functions are independent.
Choosing those to be Ḡ1 and ḠL, we get

Ḡ2(ω,0) = Ḡ1(ω,0),

ḠT (ω,0) = ḠL(ω,0) − Ḡ1(ω,0), (B7)

ḠLT (ω,0) = ḠL(ω,0) − 2Ḡ1(ω,0).

From Eq. (B3), one can easily see that Ḡ
xy,xy
R (ω,ky) =

−P + Ḡ1(ω,ky) and Ḡ
xy,xy
R (ω,kz) = −P + Ḡ2(ω,kz). From

Ref. [19], we know that in the small kz limit,

Ḡ2(ω,kz) = −iηω + τπηω2 − κ

2

(
ω2 + k2

z

) + higher orders.

(B8)
However, since Ḡ1(ω,k) = Ḡ2(ω,k) + O(k2), one cannot
in general say that Ḡ

xy,xy
R (ω,kz) behaves the same as

Ḡ
xy,xy
R (ω,ky) nor the same as Ḡ

xy,xy
R (ω,kx).

To get the Kubo formulas for the bulk viscosity and the
bulk relaxation time, the pressure-pressure correlation function

is needed. In the limit k → 0, Eq. (B3) becomes, with P̂ =
δij T̂

ij /3,

ḠPP
R (ω,0) = P

3
+ 4

9
ḠT (ω,0) + 4

9
ḠLT (ω,0) + 1

9
ḠL(ω,0)

= P

3
+ ḠL(ω,0) − 4

3
Ḡ1(ω,0)

= P

3
+iω(ζ+4η/3)−(ζ τ�+4ητπ/3−2κ/3)ω2

− 4

3
(iωη − ητπω2 + κω2/2) + O(ω3)

= P

3
+ iωζ − ζ τ�ω2 + O(ω3). (B9)

APPENDIX C: CLOSED TIME PATH FORMALISM

Here we briefly describe the closed time path or Keldysh-
Schwinger formalism, which is studied in more detail, for
example, in Ref. [40]. The main object of the formalism is
the contour Green function which has four components of the
real-time arguments. Here, we define them for the scalar field
operators φ but these definitions may be directly generalized
to any composite field operators, such as T̂ ij discussed in the
main body of the paper. The components of the contour Green
function are given as

�a1a2 (x,y) = −i〈T φa1 (x)φa2 (y)〉, (C1)

where a1,a2 ∈ {1,2} and the indices 1 and 2 refer to the
two branches of the Keldysh contour the field operator φ
is located on. The operator T represents an ordering of
the operators along the contour; T = Tc chronologically
orders the operators on the upper branch and T = Ta sets
antichronological ordering on the lower branch. For the angle
brackets we use the following notation:

〈. . . 〉 ≡ Tr[ρ̂(t0) . . . ]

Tr[ρ̂(t0)]
(C2)

with ρ̂(t0) being a density operator and the trace is understood
as a summation over all states of the system at a given
initial time t0. The averaged products of unordered operators
are commonly known as the Wightman functions. All the
functions in the (1,2) basis satisfy the relation

�11 + �22 = �12 + �21, (C3)

which reflects the fact that only three out of four components
are independent of each other.

Going to the (r,a) basis, we define

φa(x) = φ1(x) − φ2(x), φr (x) = 1
2 [φ1(x) + φ2(x)] (C4)

and then the four components are defined by

�α1α2 (x,y) = −i2nr−1〈T φα1 (x)φα2 (y)〉, (C5)

where α1,α2 ∈ {r,a} and nr is a number of r indices among α1

and α2.
For further purposes it is useful to know the relations

between the Green functions of (r,a) and (1,2) bases,
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which read

�rr (x,y) = �12(x,y) + �21(x,y), (C6)

�ra(x,y) = �11(x,y) − �12(x,y),

= θ (x0 − y0)[�12(x,y) − �21(x,y)], (C7)

�ar (x,y) = �11(x,y) − �21(x,y),

= −θ (y0 − x0)[�12(x,y) − �21(x,y)], (C8)

�aa(x,y) = 0, (C9)

where θ (x0) is the step function. A general transformation law
which holds for any n-point Green function is then

Gα1...αn
(x1, . . . ,xn)

= 2n/2−1Ga1...an
(x1, . . . ,xn)Qα1a1 . . . Qαnan

, (C10)

where the repeated indices are summed over and Qa1 =
−Qa2 = Qr1 = Qr2 = 1√

2
are the four elements of the or-

thogonal Keldysh transformation.
The inverted relations (C6)–(C9) read

�11(x,y) = 1
2 [�rr (x,y) + �ra(x,y) + �ar (x,y)], (C11)

�12(x,y) = 1
2 [�rr (x,y) − �ra(x,y) + �ar (x,y)], (C12)

�21(x,y) = 1
2 [�rr (x,y) + �ra(x,y) − �ar (x,y)], (C13)

�22(x,y) = 1
2 [�rr (x,y) − �ra(x,y) − �ar (x,y)] (C14)

and the general transformation from (1,2) to (r,a) basis for
any n-point function is then

Ga1...an
(x1, . . . ,xn)

= 21−n/2Gα1...αn
(x1, . . . ,xn)Qα1a1 . . . Qαnan

. (C15)

The functions �ra(x,y) and �ar (x,y) are the usual retarded
and advanced Green functions. In case of massless theory they
are of the following forms in the momentum space:

�ra(k) = 1

(k0 + i	k)2 − E2
k

, (C16)

�ar (k) = 1

(k0 − i	k)2 − E2
k

, (C17)

and they satisfy

�ra(k) = �∗
ar (k). (C18)

�rr (k) is the correlation function and it is the only function
where a distribution function enters. In thermal equilibrium all
these three functions are related via the fluctuation-dissipation
theorem

�rr (k) = [1 + 2n(k0)][�ra(k) − �ar (k)], (C19)

where n(k0) = 1/(eβk0 − 1) is the Bose distribution function
with β being the inverse of temperature T .

By means of the relation (C18), we immediately find real
and imaginary parts of the retarded propagator:

2 Re �ra(k) = �ra(k) + �ar (k), (C20)

2i Im �ra(k) = �ra(k) − �ar (k). (C21)

APPENDIX D: FOUR-POINT GREEN FUNCTIONS

Here we provide some useful derivations arising during the
analysis of the Bethe-Salpeter equation.

1. Relations among different four-point Green functions

The four-point Green functions which contribute to the real
and imaginary parts of Ḡ

xy,xy
R are Garrr , Grarr , Grrar , and

Grrra . The analysis of the Bethe-Salpeter equation gets easier
when one realizes that these functions may be expressed by
Gaarr and Grraa . Let us first notice that by amputating two
external legs out of the Gaarr function from the left hand side
one may write

Gaarr (p + k,−p,−q − k,q)

= i�ar (p + k)i�ar (−p)Mrrrr (p + k,−p,−q − k,q),

(D1)

and by amputating two external legs of Grraa from the right
hand side one gets

Grraa(p + k,−p,−q − k,q)

= i�ra(q + k)i�ra(−q)Mrrrr (p + k,−p,−q − k,q).

(D2)

Using the expressions (D1) and (D2), we can express
Grrra, Grrar , Grarr , and Garrr as follows:

Garrr (p + k,−p,−q − k,q)

= i�ar (p + k)i�rr (−p)Mrrrr (p + k,−p,−q − k,q)

= NpGaarr (p + k,−p,−q − k,q), (D3)

Grarr (p + k,−p,−q − k,q)

= i�rr (p + k)i�ar (−p)Mrrrr (p + k,−p,−q − k,q)

= −Np+kGaarr (p + k,−p,−q − k,q), (D4)

Grrar (p + k,−p,−q − k,q)

= i�ra(q + k)i�rr (−q)Mrrrr (p + k,−p,−q − k,q)

= −NqGrraa(p + k,−p,−q − k,q), (D5)

Grrra(p + k,−p,−q − k,q)

= i�rr (q + k)i�ra(−q)Mrrrr (p + k,−p,−q − k,q)

= Nq+kGrraa(p + k,−p,−q − k,q), (D6)

where Np = N (p0) and we also have used the identity
N (−p0) = −N (p0). Then, we see

Garrr + Grarr = [Np − Np+k]Gaarr , (D7)

Grrar + Grrra = [−Nq + Nq+k]Grraa. (D8)

2. Kernel of the Bethe-Salpeter equation

The general expression of any rung contributing to the
kernel is

Kβ1γ1β4γ4 (p + k,−p,−l − k,l)

= 1

2

∫
d4s

(2π )4
λγ1γ2γ3γ4λβ1β2β3β4�γ2β2 (s)�γ3β3 (s − l + p)

(D9)
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and the bare four-point vertex is given by

λγ1γ2γ3γ4 = λ

4
[1 − (−1)na ], (D10)

where na is the number of a indices among γ1γ2γ3γ4. With the
definitions (D9) and (D10), the three rungs under interest are
given by

Krrra(p + k,−p,−l − k,l)

= λ2

8

∫
d4s

(2π )4
[�rr (s)�ar (s − l + p)

+�ra(s)�rr (s − l + p)], (D11)

Krrar (p + k,−p,−l − k,l)

= λ2

8

∫
d4s

(2π )4
[�ar (s)�rr (s − l + p)

+�rr (s)�ra(s − l + p)], (D12)

Krraa(p + k,−p,−l − k,l)

= λ2

8

∫
d4s

(2π )4
[�rr (s)�rr (s − l + p) + �ra(s)

×�ar (s − l + p) + �ar (s)�ra(s − l + p)].

(D13)

Then, the following relations hold:

K∗
rraa = Krraa, (D14)

K∗
rrra = −Krrar , (D15)

K∗
rrar = −Krrra, (D16)

which are helpful in investigation of the Bethe-Salpeter
equation for G∗

aarr . In the vanishing frequency and momentum
limits, the kernel may be denoted as

K = Krraa + NlKrrar − NlKrrra. (D17)

The kernel, as explained in Ref. [25], may be also expressed
in a more convenient form as

K(p,−p,−l,l) = −λ2

2

1 + n(l0)

1 + n(p0)

∫
d4s

(2π )4
n(s0)ρ(s)

× [1 + n(s0 − l0 + p0)]ρ(s − l + p),

(D18)

where ρ(s) = i[�ra(s) − �ar (s)]. If we denote
K(p,−p,−l,l) = K(p,l), the following relations for the
kernel hold:

K(−p,−l) = K(p,l) (D19)

and

K(−p,l) = K(p,−l), (D20)

both of which can be shown by changing the integration
variable from s to −s. One can also show

K(p,l) = n(l0)

n(p0)

1 + n(l0)

1 + n(p0)
K(l,p) (D21)

by changing the integration variable s to s − l + p.
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