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Dynamical evolution of critical fluctuations and its observation in heavy ion collisions
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We study time evolution of critical fluctuations of conserved charges near the QCD critical point in the context
of relativistic heavy ion collisions. A stochastic diffusion equation is employed in order to describe the diffusion
property of the critical fluctuation arising from the coupling of the order parameter field to conserved charges.
We show that the diffusion property gives rise to a possibility of probing the early time fluctuations through
the rapidity window dependence of the second-order cumulant and correlation function of conserved charges.
It is pointed out that their nonmonotonic behaviors as functions of the rapidity interval are robust experimental
signals for the existence of the critical enhancement around the QCD critical point.
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I. INTRODUCTION

The search for the QCD critical point is one of the most
intriguing topics in the physics of QCD in medium. The
existence of the critical point(s) in the QCD phase diagram
in the temperature (T ) and baryon chemical potential (μ)
plane is suggested by effective models [1–6] and lattice QCD
Monte Carlo simulations [7–9]. However, the number [10,11],
locations, and even existence itself are still controversial.
The experimental search for the critical point is one of the
fundamental purposes of the relativistic heavy ion collision
experiments [12]. Because the medium created by these
experiments pursues different trajectories in the T -μ plane
depending on collision energies

√
s

NN
, this search would be

achieved by comparing the characteristics of collision events
at various

√
s

NN
. For this purpose, active experimental studies

in the Beam-Energy Scan (BES) program at the Relativistic
Heavy-Ion Collider (RHIC) are ongoing [13]. Future heavy-
ion programs at J-PARC [14], FAIR [15], and NICA [16] will
also contribute to this subject.

In the experimental search for the QCD critical point,
fluctuation observables, such as the cumulants of the net-
baryon number, are believed to be natural and promising
observables [17]. At the critical point in the thermodynamic
limit, equilibrated fluctuations of various observables diverge,
reflecting the softening of the effective potential. Such singular
behavior is expected to be found in event-by-event analyses
in heavy ion collisions [18–21]. The experimental analyses
of the fluctuation observables, especially focusing on non-
Gaussianity, have been performed actively recently [12,22–
25].

In interpreting the experimentally observed fluctuations,
however, it should be remembered that the fluctuations
observed in these experiments are not those in an equilibrated
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medium near the critical point. First, as the system more
closely approaches the critical point, the relaxation time
toward equilibrium becomes longer because of the critical
slowdown [26]. Owing to this effect, the enhancement of
fluctuations is limited even if the medium passes right through
the QCD critical point. Second, the critical fluctuations are
to be distorted during the subsequent evolution until the
detection [27,28]. Remember that particles are measured only
in the final state. To extract the information on the critical
point from the experimental data, proper understanding and
description of these effects are indispensable, in addition to
various restrictions from the real experimental settings and
other sources of fluctuations [17].

The time evolution of critical fluctuations has been dis-
cussed in the literature [26,29–33]. In Refs. [26,29,32], the
effect of the critical slowdown is discussed for fluctuation of a
uniform order parameter field σ = 〈q̄q〉. It is known, however,
that the critical mode of the QCD critical point is not the pure
σ mode, but rather is given by a linear mixing of the σ mode
and conserved charges [34–37]. The soft mode of the critical
point thus is a diffusion mode. As we will see below, the time
evolution of a diffusion mode depends on the length scale, and
this property is crucial for the description of its dynamics. One
of the main goals of the present study is to reveal the dynamical
evolution of the critical fluctuation with the diffusion property.

Another aim of this paper is to make a connection between
the critical fluctuation of thermodynamics and experimental
observation. This connection will be clearest for the fluctua-
tions of conserved charges, especially that of the net-baryon
number (see Ref. [17] for detailed discussions). In order to
understand the evolution of the conserved-charge fluctuations,
we first need to know that of the charge density itself in a
collision event. This problem has been discussed for a hadronic
medium in a simple setup [27,28], but to the best of our
knowledge it has not yet been studied for the case where
a critical enhancement is encountered during the evolution.
Carrying out this subject is the second goal of this study.

In this study, in order to address these issues we employ a
simple stochastic diffusion equation (SDE). In this approach,
the singularity associated with the critical point is encoded
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in the time-dependent susceptibility and diffusion coefficient.
The SDE is a counterpart of the stochastic hydrodynamics
[38] and is a good model to describe fluctuations of conserved
charges. Moreover, as shown in Refs. [34–36,39], the critical
mode at the QCD critical point has the diffusion character and
should be described by the SDE.

In this study, we first write down a formal solution for
the density fluctuation within rapidity window �y. Next,
with a phenomenological parametrization for the susceptibility
and diffusion coefficient, we analyze numerically the time
evolution of the fluctuation. We find that the time evolution
of the fluctuations strongly depends on the size of the rapidity
window �y. We also show that the second-order cumulant can
have a nonmonotonic �y dependence only when the medium
fluctuation undergoes a critical enhancement during the time
evolution. It is argued that this nonmonotonic behavior serves
as a robust experimental signal of the critical enhancement.

In the present study, we restrict our attention only to the
second-order cumulant and leave the analysis of third-order
and still higher order cumulants for future study, because even
at the second order nontrivial outcomes are obtained from the
analysis. We also deal with the correlation functions of con-
served charges. We show that the same argument on the non-
monotonic behavior holds for this function with rapidity win-
dow replaced by rapidity separation. The relation between the
cumulant and the correlation function is also studied in detail.

This paper is organized as follows. In the next section,
we introduce the SDE and argue that this model is suitable
for describing the dynamics of conserved-charge fluctuations,
including the critical ones. We then solve this equation analyt-
ically and discuss general properties in Sec. III. In Sec. IV, we
introduce a phenomenological model, which is numerically
solved in Sec. V. The last section is devoted to discussions and
a summary. In Appendix A, we give a brief review of Refs. [34–
36], which clarified the diffusion property of the critical
fluctuation. In Appendix B, we compare the cumulant and cor-
relation function and discuss the condition for the appearance
of the nonmonotonic behaviors in these functions in detail.

II. MODEL

A. Second-order cumulant and correlation function

In this study, we investigate the time evolution of the
second-order cumulant and the correlation function of con-
served charges in the hot medium produced in heavy ion
collisions. We assume a boost-invariant Bjorken model for
the event evolution throughout this paper in order to simplify
the analysis and adopt the Milne coordinates, the spacetime
rapidity y = tanh−1(z/t), and proper time τ = √

t2 − z2.
Let us consider a conserved-charge density per unit rapidity

n(y,τ ), where transverse coordinates have been integrated
out. As the conserved charge, we can take specifically the
net-baryon number [40] or net-electric charge in heavy ion
collisions. The amount of the charge in a finite rapidity interval
�y at midrapidity at proper time τ is given by

Q�y(τ ) =
∫ �y/2

−�y/2
dy n(y,τ ). (1)

The second-order cumulant, or variance, of Q�y(τ ) is written
as

〈Q�y(τ )2〉c = 〈δQ�y(τ )2〉

=
∫ �y/2

−�y/2
dy1dy2〈δn(y1,τ )δn(y2,τ )〉, (2)

where 〈δn(y1,τ )δn(y2,τ )〉 is the correlation function with
δn(y,τ ) = n(y,τ ) − 〈n(y,τ )〉 and 〈·〉 stands for event average.
In a boost-invariant system, the correlation function depends
only on the rapidity difference ȳ = y1 − y2, and Eq. (2) is
rewritten as

〈Q�y(τ )2〉c =
∫ �y

−�y

dȳ (�y − |ȳ|) 〈δn(ȳ,τ )δn(0,τ )〉. (3)

This reveals a close relation between 〈Q�y(τ )2〉c and
〈δn(ȳ,τ )δn(0,τ )〉. We investigate both of these functions in
this paper. From Eq. (3), one finds that

lim
�y→0

d

d�y

〈Q�y(τ )2〉c

�y
= lim

ȳ→0
〈δn(ȳ,τ )δn(0,τ )〉. (4)

B. Stochastic diffusion equation

We consider the time evolution of the conserved-charge
density n(y,τ ) at long time and length scales. This is well
described by the stochastic diffusion equation [17,38], which
is written in the τ -y coordinates as

∂

∂τ
δn(y,τ ) = Dy(τ )

∂2

∂2y
δn(y,τ ) + ∂

∂y
ξ (y,τ ), (5)

where the diffusion coefficient Dy(τ ) is related to the Cartesian
one DC(τ ) as Dy(τ ) = DC(τ )τ−2. The noise term ξ (y,τ )
represents the coupling with short-time fluctuations, whose
average should vanish 〈ξ (y,τ )〉 = 0. The noise term appears
with the y derivative in Eq. (5) so as to satisfy the conservation
constraint, i.e., the continuity equation ∂n/∂τ = −∂j/∂y with
the corresponding current j .

When the noise correlation is local in time and space,
the fluctuation-dissipation relation specifies its value to
be [17]

〈ξ (y1,τ1)ξ (y2,τ2)〉
= 2χy(τ )Dy(τ )δ(y1 − y2)δ(τ1 − τ2). (6)

Here, χy(τ ) denotes the susceptibility of the conserved charge
per unit rapidity and is related to the one in the Cartesian
coordinates χC(τ ) as χy(τ )/τ = χC(τ ). The susceptibility
χy(τ ) is related to the second-order cumulant in equilibrium as
〈Q2

�y〉c,eq = χy�y. Furthermore, the noise is independent of
the value of the density at earlier times: 〈n(y,τ )ξ (y ′,τ ′)〉 = 0
for τ � τ ′. In the rest of this paper, we suppress the subscripts
of the diffusion coefficient and susceptibility and denote
D(τ ) = Dy(τ ) and χ (τ ) = χy(τ ), respectively.

The SDE (5) is not only a suitable equation for describing
the time evolution of conserved charges in a noncritical system
but also a good phenomenological equation to deal with the
slow dynamics near the QCD critical point. This is because
there the critical mode is identified as a linear combination of
the σ mode and conserved charges, and therefore its evolution
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must be consistent with the conservation law [31,34–36]. As
a consequence, the equation for the critical mode is given by
the same form as in Eq. (5). See Appendix A for more detailed
discussion. Hence, in the present study we use Eq. (5) solely
to describe the time evolution throughout the event trajectories
passing near and away from the critical point.

In our study, the critical enhancement and slowdown of
fluctuations are represented by the τ -dependent susceptibility
χ (τ ) and diffusion coefficient D(τ ): Near the critical point,
χ (τ ) grows sharply and D(τ ) becomes vanishingly small,
reflecting, respectively, the large fluctuation and critical
slowdown.

In the next section, we derive the formal solution of Eq. (5)
with τ -dependent χ (τ ) and D(τ ), and discuss its general
property. We then model the trajectories of collision events in
terms of possible τ dependence of the susceptibility χ (τ ) and
diffusion coefficient D(τ ), including the effect of the critical
point, and analyze the time evolution numerically in Secs. IV
and V.

C. Comment on critical slowdown

Before closing this section, we comment on the difference
of the treatment of the critical fluctuation in the present study
from previous ones [26,29,32]. In Refs. [26,29,32], the time
evolution of the uniform σ field was analyzed as the slowest
mode of the system.1 Since the σ mode is nonconserved, it
can relax locally in rapidity space and follows a relaxation
equation without ∂/∂y.

This assumption is in contrast to the conserved-charge
fluctuation discussed in the present study, which can relax
only through diffusion. As discussed already, the evolution
equation of the critical fluctuation has to be consistent with the
conservation law [36,39]. In order to respect this property, one
must use the SDE, which is based on the continuity equation.2

As we will see in the next section, the time evolution of the
critical mode then depends on their length scale �y. This
fact makes the problem complicated because the critical mode
can no longer be regarded as a spatially uniform mode. At the
same time, however, this diffusion property opens a possibility
to study the critical fluctuation through �y dependence in
experiments, as we will see later.

We also remark that our model can describe the fluctuations
throughout the time evolution of the hot medium including
the critical region as well as late stages. This property is
advantageous in understanding dynamics behind experimental
observables.

1In Refs. [26,29], the evolution of the correlation length of the σ

mode is studied, which is equivalent to treating the spatially uniform
σ mode, as shown in Ref. [32].

2Strictly speaking, neglected in Eq. (5) is the coupling of the soft
mode with the momentum-density modes, which plays an important
role in describing the critical dynamics more precisely [37]. This
effect is discussed in Ref. [31].

III. ANALYTIC PROPERTIES

In this section, we formally solve the SDE (5) and
study general properties of the second-order cumulant and
correlation function analytically.

A. Solution of SDE

Defining the Fourier transform of n(y,τ ) via n(q,τ ) =∫
dy e−iqyn(y,τ ), the formal solution of Eq. (5) with the initial

condition n(q,τ0) at τ = τ0 is obtained as

n(q,τ ) = n(q,τ0)e−q2[d(τ0,τ )]2/2

+
∫ τ

τ0

dτ ′ iqξ (q,τ ′)e−q2[d(τ ′,τ )]2/2, (7)

where

d(τ1,τ2) =
[

2
∫ τ2

τ1

dτ ′D(τ ′)
]1/2

(8)

denotes the diffusion length in rapidity space from τ1 to τ2

with τ1 � τ2. The diffusion length d(τ1,τ2) is a monotonically
increasing (decreasing) function of τ2 (τ1), satisfying the
boundary condition d(τ,τ ) = 0. The correlation function at
proper time τ is obtained by taking the average of the product
of Eq. (7) as3

〈δn(q1,τ )δn(q2,τ )〉
= 〈δn(q1,τ0)δn(q2,τ0)〉e−(q2

1 +q2
2 )[d(τ0,τ )]2/2

+
∫ τ

τ0

dτ1dτ2〈iq1ξ (q1,τ1)iq2ξ (q2,τ2)〉

× e−q2
1 [d(τ1,τ )]2/2 e−q2

2 [d(τ2,τ )]2/2, (9)

where we have used 〈n(y1,τ0)ξ (y2,τ )〉 = 0 for τ0 � τ .
To proceed further, we assume that the initial fluctuation

satisfies the locality condition,

〈δn(y1,τ0)δn(y2,τ0)〉 = χ (τ0)δ(y1 − y2). (10)

Indeed, this condition should hold in a thermal medium
at the length scale at which the extensive property of
thermodynamic functions is satisfied [17]. We then obtain
〈δn(q1,τ0)δn(q2,τ0)〉 = 2πδ(q1 + q2)χ (τ0), and Eq. (9) is cal-
culated to be

〈δn(q1,τ )δn(q2,τ )〉

= 2πδ(q1 + q2)

[
χ (τ0) e−q2

1 [d(τ0,τ )]2

+ 2q2
1

∫ τ

τ0

dτ ′χ (τ ′)D(τ ′)e−q2
1 [d(τ ′,τ )]2

]
. (11)

3This procedure to solve the stochastic equation corresponds to
Stratonovich integral [41]. There is alternative method called the Ito
stochastic integral. These two stochastic integrals give the same result
for Eq. (5).
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The correlation function in y space is obtained from Eq. (11)
as

〈δn(y1,τ )δn(y2,τ )〉
= χ (τ0)G(y1 − y2; 2d(τ0,τ ))

+
∫ τ

τ0

dτ ′χ (τ ′)
d

dτ ′ G(y1 − y2; 2d(τ ′,τ )) (12)

= χ (τ )δ(y1 − y2)

−
∫ τ

τ0

dτ ′χ ′(τ ′)G(y1 − y2; 2d(τ ′,τ )), (13)

where χ ′(τ ) = dχ (τ )/dτ , and we have defined the normalized
Gauss distribution

G(ȳ; d) = 1√
πd

e−ȳ2/d2
. (14)

We note that the correlation function depends on D(τ ) only
through the diffusion length d(τ ′,τ ).

By substituting Eq. (13) into Eq. (3), the second-order
cumulant is calculated to be

〈Q�y(τ )2〉c

�y
= χ (τ ) −

∫ τ

τ0

dτ ′χ ′(τ ′)F
(

�y

2d(τ ′,τ )

)
, (15)

where

F (X) = 2√
π

∫ X

0
dz

(
1 − z

X

)
e−z2

= erf(X) + e−X2 − 1√
πX

(16)

with the error function erf(x) = 2√
π

∫ x

0 dze−z2
. The behavior

of F (X) is shown in Fig. 1. As is shown in the figure, F (X) is
a monotonically increasing function, satisfying

lim
X→0

F (X) = 0, lim
X→∞

F (X) = 1. (17)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

F
(X

)

X

FIG. 1. Function F (X) defined in Eq. (16).

B. Properties of fluctuation observables

From Eqs. (15) and (13), we find several notable features in
the rapidity dependences of the cumulant and the correlation
function.

First, we consider the behavior of 〈Q�y(τ )2〉c in the small
and large �y limits. Using Eq. (17), the cumulant in these
limits is easily calculated to be

〈Q�y(τ )2〉c

�y
−−−→
�y→0

χ (τ ), (18)

〈Q�y(τ )2〉c

�y
−−−−→
�y→∞

χ (τ ) −
∫ τ

τ0

dτ ′χ ′(τ ′)

= χ (τ0). (19)

These results show that 〈Q�y(τ )2〉c/�y takes the local-
equilibrium value χ (τ ) in the small �y limit, while it recovers
the initial value in the opposite limit. This shows that the
relaxation toward the equilibrium state is sufficiently fast as
�y becomes smaller, but it becomes arbitrarily slow with
increasing �y. The latter means that equilibration of the
conserved-charge fluctuation over the whole system cannot
be achieved within a finite time, because it takes infinite time
to transport a charge from one end to the other. The analysis
here also implies that 〈Q�y(τ )2〉c/�y with smaller (larger) �y
bears the information of χ (τ ) at later (earlier) τ . This suggests
that one can study the τ dependence of χ (τ ) from the �y
dependence of 〈Q�y(τ )2〉c/�y [27].

Second, when χ (τ ) increases (decreases) monotonically in
τ , χ ′(τ ) � 0 (�0), then 〈Q�y(τ )2〉c/�y for a given τ is a
monotonically decreasing (increasing) function of �y:

χ ′(τ )

{
� 0
� 0 ⇒ d

d�y

〈Q�y(τ )2〉c

�y

{
� 0
� 0 . (20)

This can be easily shown from Eq. (15) and the fact that F (X) is
a monotonically increasing function. Taking the contraposition
of Eq. (20), one concludes that χ (τ ) must have at least
one extremum when 〈Q�y(τ )2〉c/�y is nonmonotonic as a
function of �y. In particular,

〈Q�y(τ )2〉c/�y
has a local maximum
as a function of �y

⇒
χ (τ )

has a local maximum
as a function of τ

.

(21)

The same argument also applies to the correlation function.
From the fact that G(ȳ,d) monotonically decreases as ȳ
increases, it is again easy to show that

χ ′(τ )

{
� 0
� 0 ⇒ d

dȳ
〈δn(ȳ,τ )δn(0,τ )〉

{
� 0
� 0 (22)

for ȳ > 0. From the contraposition of Eq. (22), one obtains

〈δn(ȳ,τ )δn(0,τ )〉
has a local minimum

as a function of ȳ
⇒

χ (τ )
has a local maximum

as a function of τ
.

(23)
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The properties (21) and (23) are quite useful in ex-
tracting the τ dependence of χ (τ ) in relativistic heavy
ion collisions. If the experimental results of 〈Q�y(τ )2〉/�y
and/or 〈δn(ȳ,τ )δn(0,τ )〉 show nonmonotonic behavior as a
function of rapidity, this immediately confirms the existence
of nonmonotonicity in χ (τ ) as a function of τ . It is known
that the susceptibilities of baryon number and electric charge
have a peak structure along the phase boundary around the
QCD critical point [6,21]. The peak in 〈Q�y(τ )2〉c/�y or
〈δn(ȳ,τ )δn(0,τ )〉 serves as an experimental signal for this
critical enhancement, provided that a peak structure of χ (τ ) is
only possible with the critical point in the QCD phase diagram.
This is the most important conclusion of this paper.

It should be kept in mind that the inverses of Eqs. (21)
and (23) do not necessarily hold. That is, even if χ (τ )
is a nonmonotonic function of τ , there is a possibility
that 〈Q�y(τ )2〉c/�y and 〈δn(ȳ,τ )δn(0,τ )〉 are monotonic.
Therefore, from the monotonic behavior of 〈Q�y(τ )2〉c/�y
and/or 〈δn(ȳ,τ )δn(0,τ )〉 one cannot conclude anything about
the τ dependence of χ (τ ). In Appendix B, we discuss the
condition for the appearance of the nonmonotonic behaviors
in these functions in more detail.

C. Comment on higher order cumulant

Using SDE (5), it is possible to calculate the time evolution
of third and still higher order cumulants and correlation
functions. As is easily shown, however, the higher order
correlation functions 〈δn(y1,τ )δn(y2,τ ) . . . δn(yN,τ )〉, and ac-
cordingly the higher order cumulants 〈Q�y(τ )N 〉c, too, vanish
in the τ → ∞ limit for N � 3 [17]; the fluctuations of
n(y,τ ) in equilibrium described by Eq. (5) obey the Gaussian
distribution.

Because of this property, SDE (5) is not capable of
describing the relaxation of higher order fluctuations toward
nonzero non-Gaussian equilibrium values. In relativistic heavy
ion collisions, observed higher order cumulants take values
close to their nonzero equilibrium values [17]. If this result
is a consequence of the relaxation process in the hadronic
medium, the relaxation cannot be described by the SDE (5).
This is one of the reasons why we limit our attention to
the second-order cumulant and correlation function in the
present study, in spite of the useful properties of the higher
order cumulants [20,21,42,43]. To describe the relaxation
of higher-order cumulants toward nonzero non-Gaussianity,
different approaches are needed. In Ref. [27], for example,
the noninteracting Brownian particle model is employed to
describe this process.

IV. MODEL OF COLLISION EVOLUTION

In the previous section, we showed that nonmonotonic
behavior of 〈Q�y(τ )2〉c/�y and/or 〈δn(ȳ,τ )δn(0,τ )〉, if ob-
served, is a direct experimental evidence for the existence
of a peak structure in susceptibility χ (τ ). In the rest of this
paper, we demonstrate the appearance of the nonmonotonic
behavior by studying the behavior of 〈Q�y(τ )2〉c/�y and
〈δn(ȳ,τ )δn(0,τ )〉 with a phenomenological parametrization
of χ (τ ) and D(τ ) for a collision event evolution passing near

and away from the QCD critical point. In this section, we
first introduce the model for χ (τ ) and D(τ ). Then, the time
evolution of fluctuation is studied in the next section.

In this study, we write the susceptibility and the diffusion
coefficient at temperature T as a sum of their singular and
regular contributions:

χ (T ) = χ cr(T ) + χ reg(T ), (24)

1

D(T )
= τ 2

[
1

Dcr
C (T )

+ 1

D
reg
C (T )

]
, (25)

where χ cr(T ) and χ reg(T ) denote the singular and regular parts
of susceptibility per unit rapidity, respectively. We also define
the singular and regular parts of diffusion coefficients Dcr

C (T )
and D

reg
C (T ) in Cartesian coordinate. We then parametrize the

map of the evolution time to the temperature T = T (τ ) to fix
the τ dependences.

A. Singular part

First, we discuss the singular parts χ cr(T ) and Dcr(T ). It is
known that the QCD critical point belongs to the same static
universality class as the three-dimensional (3D) Ising model.
The magnetization M of the Ising model as a function of the
reduced temperature r and the dimensionless magnetic field
H near the critical point is parametrized with the two variables
R � 0 and θ in the linear parametric model [44,45] as

M(R,θ ) = m0R
βθ, (26)

where r and H are expressed as

r(R,θ ) = R(1 − θ2), (27)

H (R,θ ) = h0R
βδh(θ ) = h0R

βδθ (3 − 2θ2). (28)

The critical point is located at r = H = 0. The crossover
(r > 0,H = 0) and first-order transition (r < 0,H = 0) lines
correspond to θ = 0 and |θ | = √

3/2 with R > 0, respectively.
We adopt approximate values β = 1/3 and δ = 5 for the Ising
critical exponents [44]. From Eq. (26), one can calculate the
magnetic susceptibility as

χM (r,H ) = ∂M(r,H )

∂H

∣∣∣∣
r

= m0

h0

1

R4/3(3 + 2θ2)
. (29)

As the susceptibility of a conserved charge χ near the QCD
critical point should share the same critical behavior as
χM (r,H ), we set [32,46,47]

χ cr(r,H )

χH
= ccχM (r,H ) = cc

m0

h0

1

R4/3(3 + 2θ2)
, (30)

with a dimensionless proportionality constant cc. The suscepti-
bility in the hadronic medium χH will be defined in Sec. IV C.
We fix the normalization constants m0 and h0 by imposing
M(r = −1,H = 0+) = 1 and M(r = 0,H = 1) = 1.

In reality, the finite-system-size effect in heavy ion col-
lisions prevents the divergence of χ [18]. Nevertheless we
ignore this effect because the growth of fluctuation would be
limited more severely by the finiteness of the evolution time
owing to the critical slowdown [26].

For determining Dcr
C , we employ the dynamic universality

argument [48]. Since the QCD critical point belongs to the
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model H [35] in the classification of Ref. [48], the singular part
Dcr

C scales with the correlation length ξ as Dcr
C ∼ ξ−2+χη+χλ ,

where the exponents χη and χλ for model H are obtained by
the renormalization group calculation as χη 
 0.04 and χλ 

0.916 [48]. As the correlation length ξ and the susceptibility
χ cr are related as χ cr ∼ ξ 2−χη , the singular part Dcr

C can be
expressed in terms of χ cr:

Dcr
C (r,H ) = dc

[
χ cr(r,H )

χH

](−2+χη+χλ)/(2−χη)

(31)

with a proportionality constant dc having the dimension of
diffusion coefficient. We set dc = 1 fm in what follows. Note
that Dcr

C vanishes at the critical point, reflecting the critical
slowdown.

In our model, we leave the strengths of the critical
component cc as a free parameter. The reduced temperature
r controls the distance of the trajectory from the critical point.
We will vary r to simulate the change of the collision energy
in the next section.

B. Parametrizing the medium evolution

To utilize the above universality argument for describing
heavy ion collision events, we need a map between the Ising
variables (r,H ) and the physical variables (T ,μ) in QCD, in
addition to a map from the proper time τ to (T ,μ) at a given
collision energy. To skip these mappings, we follow a simple
approach adopted in Refs. [26,32]: We assume that (T ,μ) in
QCD are linearly mapped to the Ising variables (r,H ) around
the critical point, and that only H changes while r is fixed
during the time evolution. We write the linear relation between
H and T as

T − Tc

�T
= H

�H
, (32)

with Tc being the critical temperature. The ratio �T/�H
controls the width of the critical region in the QCD phase
diagram. To relate T and τ , we assume the one-dimensional
Bjorken expansion and conservation of total entropy. The
relation is then obtained as [32]

T (τ ) = T0

(
τ0

τ

)c2
s

, (33)

where c2
s is the sound velocity and T0 is the initial temperature

of the system at the initial proper time τ0. We ignore possible
entropy production in the critical region in this work.

In our calculation, we set the initial temperature T0 =
220 MeV at proper time τ0 = 1.0 fm, the critical temperature
of the QCD critical point Tc = 160 MeV, and the kinetic
freeze-out temperature Tf = 100 MeV [49], where we stop the
evolution. The parameters for the critical region in Eq. (32)
are set to �T/�H = 10 MeV. For the sound velocity c2

s , we
adopt c2

s = 0.15, which is indicated in a lattice calculation
in the transition region at μ = 0 [50]. In Eq. (33), the effect
of transverse expansion is not taken into account. Transverse
expansion makes the duration of the hadron phase shorter.
Thus, the following calculation is likely to estimate the effect
of diffusion stronger than the actual one. As we will see, the

suppression of the diffusion will be advantageous to detecting
the critical point in experiments.

C. Regular + singular

We assume that the susceptibility per unit rapidity χ (T )
approaches a constant value χQ (χH) at high (low) temperature,
which we call quark-gluon plasma (hadronic) value. We note
that the value of χQ depends on the trajectory in the (T ,μ) plane
as well as the thermal property [51,52]; see also Refs. [17,53].
We also note that the susceptibility per unit rapidity approaches
a constant value in the late stage in heavy ion collisions because
the particle abundances are fixed after the chemical freeze-out.
In the present study, we use the value

χQ

χH

 0.5, (34)

which is estimated in Ref. [51] assuming entropy conservation.
For the diffusion coefficient, we assume that the coefficient

in the Cartesian coordinates approaches constant values, D
Q
C

and DH
C , at high and low temperatures, respectively. We take

D
Q
C = 2.0 fm from an estimate in the lattice QCD calculation

[54] and DH
C = 0.6 fm from Ref. [28].

The regular parts χ reg(T ) and D
reg
C (T ) are then constructed

by smoothly interpolating these values at high and low
temperatures,

χ reg(T ) = χH
0 + (

χ
Q
0 − χH

0

)
S(T ), (35)

D
reg
C (T ) = DH

0 + (
D

Q
0 − DH

0

)
S(T ), (36)

with

S(T ) = 1

2

[
1 + tanh

(
T − Tc

δT

)]
. (37)

Here χ
Q,H
0 and D

Q,H
0 are determined so that χ (T ) and DC(T )

coincide with the presumed values χQ,H and D
Q,H
C at T = T0,f ,

respectively. We set the width of the crossover region, δT =
10 MeV.

In Fig. 2, we plot the susceptibility χ (T )/χH and the
diffusion coefficient DC(T ) as a function of T for several
values of r and cc with dc = 1. The upper panel of Fig. 2 shows
that χ (T )/χH for r = 0 diverges at T = Tc. The sharp peak
around Tc remains even for r = 1 with cc = 4. The regular
part Eq. (35), labeled “reg,” is also shown for comparison. The
lower panel of Fig. 2 shows that DC(T ) with the singular part
vanishes at T = Tc for r = 0, which is a manifestation of the
critical slowdown.

V. EFFECTS OF CRITICALITY ON OBSERVABLES

Now, we analyze the time evolution of the fluctuation and
correlation function using the parametrization obtained in the
previous section and study the effect of the QCD critical point
on observables.

One remark concerned with the experimentally observed
fluctuations is that the diffusion described by the SDE (5) pro-
ceeds in coordinate space, but the experimental measurements
are performed in momentum space. The imperfect correlation
between the two rapidities owing to thermal motion gives rise
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FIG. 2. Susceptibility in rapidity space χ (T ) (upper) and diffu-
sion coefficient in the Cartesian coordinates DC in units of fm (lower)
as a function of T for several values of r and cc. The regular parts
of the susceptibility χ reg(T ) and of the diffusion coefficient D

reg
C (T ),

labeled “reg,” are also shown. The thin dashed lines show the initial
and final values.

to the thermal blurring effect [17,55]. For nucleons, this effect
increases the apparent diffusion length in rapidity space by
about 0.25 at and after the thermal freeze-out [55]. We take
account of this effect in the subsequent analyses.

In this section, we show the numerical results of the
cumulant and correlation function in the following normalized
forms:

K(�y) = 〈Q�y(τ )2〉c〈
Q2

�y

〉
c,H

= 〈Q�y(τ )2〉c

χH�y
, (38)

C(ȳ) = 〈δn(ȳ,τ )δn(0,τ )〉
χH

, (39)

where 〈Q2
�y〉c,H = χH�y is the cumulant in the equilibrated

hadronic medium.

A. Noncritical trajectory

First, we study the case without the singular parts by setting
χ (τ ) = χ reg(T (τ )) and D(τ ) = Dreg(T (τ )). This corresponds
to the collision events which pursue a trajectory away from
the critical point in the crossover region (or, in the QCD phase
diagram without a first-order phase transition). As in Fig. 2,
χ reg(T ) behaves monotonically as a function of T in this case.

In Fig. 3, we show the results of K(�y) and C(ȳ) for several
values of T from the initial temperature T0 = 220 MeV to the
kinetic freeze-out Tf = 100 MeV, together with the result after
the thermal blurring. Note that the result only after thermal
blurring can be compared with experimental results. The other
results are shown to understand the time evolution of these
quantities.

At the initial time with T = 220 MeV, K(�y) is given by a
constant, while C(ȳ) vanishes, in accordance with the locality
condition Eq. (10). As T is lowered, nontrivial structures
emerge in these functions. As discussed in Sec. II, K(�y)
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FIG. 3. Time slices of second-order cumulant (upper) and corre-
lation function (lower) for a noncritical trajectory.

at �y = 0 is equal to its thermal value, i.e., χ (T )/χH, which
increases monotonically with time in this noncritical case.
K(�y) at nonzero �y follows this trend but the increase is
slower because of the finite diffusion time. As a result, the
cumulant of a conserved charge depends on �y strongly. We
also note that K(�y) decreases monotonically with increasing
�y, which is consistent with the statement, Eq. (20), which
tells us that K(�y) should be monotonic when χ (τ ) is
monotonic. K(�y) approaches its initial value χQ/χH as �y
increases. Notice that the behavior of K(�y) after thermal
blurring is qualitatively consistent with the experimental result
of the second-order cumulant of net-electric charge observed
at the Large Hadron Collider [56].

The �y dependence of the second-order cumulant has been
studied in Refs. [27,28,57]. The analysis of these studies
corresponds to the parameter choice δT = 0 in Eq. (35),
i.e., χ (τ ) jumps discontinuously at Tc. Since our result is
qualitatively unchanged from the previous one, the nonzero
width δT seems not crucial for the argument here.

The lower panel of Fig. 3 shows C(ȳ). One finds that
this function also behaves monotonically as a function of ȳ,
which is consistent with Eq. (22). We also notice that C(ȳ)
always takes a negative value. This is directly confirmed by
substituting χ ′(τ ) > 0 into Eq. (13).
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FIG. 4. Second-order cumulant (upper) and correlation function
(lower) for a trajectory passing through the critical point with r = 0
and cc = 4.

B. Trajectory passing through the critical point

Let us examine the case where the trajectory in heavy ion
collisions passes right through the critical point (r = 0). In
Fig. 4, we show the evolution of K(�y) and C(ȳ) along the
critical trajectory (r = 0) for several values of T and after
thermal blurring with cc = 4.

In the upper panel of Fig. 4, K(�y) at T = Tc = 160 MeV
shows a remarkable enhancement, which comes from the
divergence of χ (τ ) at T = Tc as shown in Fig. 2. This figure
shows, however, that the cumulant stays finite for nonzero
�y even at the critical point. This result is a manifestation
of the critical slowdown for conserved charges. We remark
that the effect of the critical slowdown is dependent on �y as
discussed in Sec. III B. After passing through the critical point,
the value of K(�y) at �y = 0 decreases rapidly in accordance
with the suppression of χ (τ ), while the decrease at nonzero
�y is slower because of the slower diffusion for the larger
�y. As a consequence, a nonmonotonic structure appears in
K(�y). In Fig. 4, the nonmonotonic behavior continues to
exist in K(�y) until the kinetic freeze-out time and even
survives the thermal blurring. Therefore, the nonmonotonic
behavior of K(�y) can be observed experimentally in this

case. As discussed in Sec. III B, this nonmonotonic behavior,
if observed, is a direct signal for the existence of the critical
enhancement of χ (τ ).

An important lesson to learn from this result is that
the nonmonotonic behavior of K(�y) can survive whereas
the magnitude of fluctuation itself is almost smeared to
the equilibrated hadronic value K(�y) = 1; the maximum
value of K(�y) after thermal blurring is K(�y) 
 1.2 at
�y = 0.75. This result suggests that the study of the non-
monotonicity of K(�y) is more advantageous for the search
of the critical enhancement than the value of K(�y) with
fixed �y. Therefore, it is quite interesting to analyze its �y
dependence experimentally.

From the lower panel of Fig. 4, one can draw the same
conclusion on the ȳ dependence of C(ȳ): C(ȳ) at ȳ → 0
changes from negative to positive around Tc. Triggered by this
behavior, the nonmonotonic ȳ dependence of C(ȳ) manifests
itself. The nonmonotonicity again survives thermal blurring,
suggesting that it can be measured experimentally.

We note that similar nonmonotonic behaviors of correla-
tion functions are also observed in Ref. [31] and those of
the mixed correlation function in Ref. [58]. The appearance of
the nonmonotonicity in these studies is understood completely
the same way as that in Sec. III.
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FIG. 5. Same as Fig. 4 but with weaker criticality with cc = 1.
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Next, we consider the case of a weaker critical enhancement
by setting cc = 1, but still keeping r = 0. We show the results
in Fig. 5. Although results above T = 155 MeV look almost
the same as those for cc = 4, the nonmonotonicity of K(�y)
disappears already at T = 100 MeV. As the growth of the
susceptibility with cc = 1 is weaker, the signal is drowned out
by the diffusion in the hadronic phase. This exemplifies that,
as discussed in Sec. III B, the absence of the nonmonotonicity
in K(�y) does not necessarily mean the absence of the peak
structure in χ (τ ).

The lower panel of Fig. 5 shows the result for the correlation
function. The figure shows that the nonmonotonic behavior of
C(ȳ) generated at the critical point survives at T = 100 MeV
and even the thermal blurring. This result suggests that the
nonmonotonic signal in C(ȳ) is observable even when it
disappears in K(�y). In fact, as we will discuss in Appendix B,
the nonmonotonicity in C(ȳ) is more sustainable than that in
K(�y).

C. Trajectory passing near the critical point

Finally, let us study the time evolution of fluctuations
for r > 0, which corresponds to the case where the system
undergoes a crossover transition. Shown in Fig. 6 are the results
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FIG. 6. Second-order cumulant (upper) and correlation function
(lower) for a trajectory in the crossover region with r = 1 and cc = 4.

of K(�y) and C(ȳ) for r = 1 and cc = 4. The results are
qualitatively the same as those in Fig. 4. By closely comparing
these results, one finds that the nonmonotonic signal with
r = 1 for T � 150 MeV is much clearer than that in Fig. 4,
although χ (T ) does not diverge with r = 1.

There are two reasons behind this result. First, D(τ ) for
r = 1 does not vanish because the trajectory does not pass
right through the critical point (see Fig. 2). Therefore, the
critical slowdown for r = 1 is less important than that for
r = 0, and the fluctuations can grow faster around Tc. Second,
χ (T )/χH for r = 1 and cc = 4 is larger than that for r = 0
at T � 155 MeV in our parametrization, as seen in Fig. 2.
Therefore, χ (T ) for r = 1 approaches χH more slowly. This
behavior makes the nonmonotonic peaks in K(�y) and C(ȳ)
more prominent. Note, however, that the second observation
may be dependent on the parametrization of χ (T )/χH.

This argument suggests that the nonmonotonic signals
can be observed even when the trajectory does not pass
right through the critical point. Moreover, it is possible that
the trajectory off the critical point is more favorable for
the emergence of the nonmonotonicity. However, the signal
of the critical enhancement, of course, weakens and finally
disappears as the trajectory departs further off the critical
point. In our analysis with cc = 4, the nonmonotonic behavior
of K(�y) and C(ȳ) disappears at r 
 5 and 8, respectively.

VI. DISCUSSION AND SUMMARY

The most important conclusion of the present study is
Eqs. (21) and (23); i.e., the nonmonotonic behaviors of K(�y)
and/or C(ȳ), if observed, are direct experimental signals of
the critical enhancement in the susceptibility. Now, let us
consider the application of this conclusion to real heavy ion
collisions. Throughout this study we assumed the Bjorken
spacetime evolution. This assumption, however, is violated in
lower energy collisions. In particular, in the energy range of
the BES program at RHIC, one has to consider the effect of the
violation severely. The violation of the Bjorken picture makes
the correspondence between the coordinate and momentum
space rapidities worse. This makes the thermal blurring
effect stronger [17,55], and the experimental measurement of
nonmonotonicity would become difficult. Even in this case,
however, the relations Eqs. (21) and (23) should hold, because
the thermal blurring effect only acts to enhance the diffusion
length [55].

Next, we comment on the effect of global charge conser-
vation arising from the finiteness of the collision system. In
Ref. [28], the charge diffusion length is estimated to be about
0.5 in the unit of rapidity. We thus expect that the finite volume
effects do not alter our conclusions on nonmonotonicity as
long as the system size in rapidity space is larger than
a few times this value. For high-energy collisions where
the system size is sufficiently large, the fluctuation around
midrapidity will not be affected by the effect of global charge
conservation. For lower energy collisions, however, it may
affect fluctuation observables, and our conclusion may need
to be altered for collisions at BES energies and the lower
energies such as those at FAIR, NICA, and J-PARC. We
also note that the effects of other event-by-event fluctuations,
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such as the volume fluctuation in the initial condition, have
to be considered separately for quantitative description of
fluctuation observables [17,59–61].

In this study, we described the critical fluctuation by
the stochastic diffusion equation (5). Although this model
well describes sufficiently long and slow fluctuations, the
fluctuations in heavy ion collisions may not be slow enough
compared to the timescale of the medium evolution. To take
account of these effects, the SDE (5) has to be modified. One
direction is to include higher order derivative terms. Another
interesting extension is to include the σ field as a dynamical
field and solve the coupled equation of n and σ . Near the
critical point, the coupling of σ with momentum density would
also be important [31]. To deal with these subjects, numerical
simulations of medium evolution will be needed with adopting
a certain model, for example, the chiral fluid model [33].

In this study, we investigated the time evolution of the
second-order cumulant and the correlation function of con-
served charges in heavy ion collisions which pass through or
near the critical point, focusing on the effects of critical slow-
down near the critical point and dissipation in the late stages.
We adopted the stochastic diffusion equation with critical
nature being encoded in the time-dependent susceptibility and
diffusion coefficient. This model can describe the dynamics
of the critical mode respecting its diffusion property, which
was not considered in previous studies on the critical slow-
down. We have pointed out that the critical enhancement in
susceptibility can be observed as the nonmonotonic behaviors
in the second-order cumulant and correlation function. Our
numerical results suggest that these nonmonotonic behaviors
are a more robust experimental signal than the value of
these functions themselves. It is, therefore, quite interesting to
analyze the rapidity dependences of these functions in heavy
ion collisions.
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APPENDIX A: TIME EVOLUTION OF THE SOFT MODE
NEAR THE QCD CRITICAL POINT

In this appendix, we explain that the appropriate equation
to describe the time evolution of the soft mode near the critical
point is the SDE (5), on the basis of Refs. [35,36,48].

At sufficiently long distance and time scales, the dynamics
of a finite temperature system near equilibrium is described
by hydrodynamic theory, which only contains the modes
whose excitation energies vanish in the long wavelength
limit: “hydrodynamic modes.” Near the critical point, the
hydrodynamic variables are given by the fluctuations of the
order parameter and the densities of conserved charges [35,36].

The QCD critical point shares the same dynamical universality
class with the model H in the classification of Ref. [48], and the
chiral order parameter field σ = 〈q̄q〉 has nonzero couplings
with baryon number density n, and energy and momentum
densities. In this appendix, we neglect the energy-momentum
density for a simple illustration.

We start from the Ginzburg-Landau free energy functional

F [σ (x),n(x)]

= 1

2

∫
dx[A(δσ )2 + 2B(δσ )(δn) + C(δn)2 + · · · ],

(A1)

where the coefficients A,B, and C are functions of temperature
T and baryon chemical potential μ. The neglected terms
include higher order terms in δσ and δn, and derivative terms,
which are not important to describe slow modes. Here, B �= 0
because the coupling between σ and n is allowed at the QCD
critical point because of the finite quark masses and finite
baryon density [36].

Deviation of σ and n from the equilibrium values gives rise
to relaxation of the system. The evolutions of σ and n are given
by the following stochastic hydrodynamic equations:(

σ̇
ṅ

)
= −

(
γσσ γσn

γnσ γnn

)(
δF
δσ
δF
δn

)
+

(
ξσ

ξn

)
, (A2)

where the noise correlators are local,

〈ξi(x1,t1)ξj (x2,t2)〉c ∼ δ(x1 − x2)δ(t1 − t2), (A3)

with i,j = σ,n. From Onsager’s principle, we have γσn = γnσ .
In the small momentum limit, γσσ is given by a nonzero con-
stant, while the coefficients for ṅ, γnσ , and γnn, are proportional
to space derivative squared because of the conservation law,
parity invariance, and analyticity. We thus have in the Fourier
space

γσn = γnσ = λ̃q2, γnn = λq2, (A4)

with q2 being the momentum squared. By inserting Eqs. (A4)
and (A1) into Eq. (A2), we obtain the hydrodynamic equation
to leading order in q2 as(

σ̇
ṅ

)
= −

(
γσσA γσσB

(λ̃A + λB)q2 (λ̃B + λC)q2

)(
σ
n

)

+
(

ξσ

ξn

)
. (A5)

After solving Eq. (A5), we obtain two eigenfrequencies,

ω1 = −iλ
�

A
q2, ω2 = −iγσσA, (A6)

with � = AC − B2 and the corresponding eigenmodes,

v1 = δn, v2 = Aδσ + Bδn, (A7)

which decay with |ω1| and |ω2|, respectively. At the critical
point, the energy functional develops a flat direction, � = 0,
and the susceptibilities of σ and n become divergent. The
diffusion coefficient

D = λ
�

A
(A8)
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goes to zero at the critical point, which represents the critical
slowdown.

This result tells us that a small fluctuation of σ and n in
the system relaxes with two distinct time scales. The first slow
mode v1 is just the conserved charge n, whose time evolution
is described by the SDE

v̇1 = D∇2v1 + ξn. (A9)

Note that ξn should be proportional to space derivative as in
Eq. (5) so that this equation is consistent with the continuity
equation. On the other hand, v2 is a relaxation mode with
nonvanishing relaxation time scale (γσσA)−1. This time scale
is fast compared to that of v1 = δn. In the faster time scale, σ
alone relaxes to the value δσ = −(B/A)δn, which minimizes
F [σ,n] with n being fixed to a given value. After that, with
the longer time scale (Dq2)−1, the mode v1 relaxes to δn = 0.
In this stage, σ simply traces the profile of n, and the time
evolution of the slow mode is described by the SDE (A9). The
effect of the critical point is encoded in vanishing of D in the
SDE.

In the above discussion, we neglected the energy-
momentum density. In model H, with which the QCD critical
point shares the same dynamic universality, the hydrodynamic
slow modes in the long wavelength limit are in fact given by the
baryon number diffusion and the diffusion of two transverse
momentum components [35] having a nonlinear coupling via
the nonzero Poisson bracket [48]. The analysis incorporating
the nonlinear coupling is left for future works.

APPENDIX B: CONDITIONS FOR THE APPEARANCE OF
NONMONOTONICITY

In Sec. III, we showed that the nonmonotonic behaviors
of K(�y) and C(ȳ) in Eqs. (38) and (39) serve as direct
experimental evidence for the existence of a peak structure
in χ (τ ). In this appendix, we take a much closer look at the
conditions for the appearance of the nonmonotonic behaviors
in these functions and discuss which function is better in
sustaining the nonmonotonicity.

To simplify the problem, in this appendix we consider the
functional form of χ (τ ) which has only one maximum as a
function of τ . Then, χ ′(τ ) changes its sign only once from
positive to negative. In this case, K(�y) and C(ȳ) can have
only one local maximum and minimum, respectively. Thus,
the necessary and sufficient conditions for the nonmonotonic
behaviors of K(�y) and C(ȳ) are given by

lim
�y→0

dK(�y)

d�y
> 0 and lim

�y→∞
dK(�y)

d�y
< 0, (B1)

lim
ȳ→0

dC(ȳ)

dȳ
< 0 and lim

ȳ→∞
dC(ȳ)

dȳ
> 0, (B2)

respectively.
From Eq. (15), the �y derivative of K(�y) is given by

dK(�y)

d�y
= −

∫ τf

τ0

dτ ′ χ ′(τ ′)
2χHd(τ ′,τf )

F ′
(

�y

2d(τ ′,τ )

)
, (B3)

where F ′(X) = dF (X)/dX. Using

lim
X→0

F ′(X) = π−1/2, lim
X→∞

F ′(X) = π−1/2X−2, (B4)

one obtains

lim
�y→0

dK(�y)

d�y
= − 1

2
√

π

∫ τf

τ0

dτ ′ χ ′(τ ′)
χHd(τ ′,τf )

, (B5)

lim
�y→∞

dK(�y)

d�y
= − 1

2
√

π (�y)2

∫ τf

τ0

dτ ′ χ
′(τ ′)d(τ ′,τf )

χH
.

(B6)

Here, d(τ ′,τf ) is a monotonically decreasing function of τ ′
with d(τf,τf) = 0. The integrand in Eq. (B5) is χ ′(τ ′) with a
weight 1/d(τ ′,τf ), which takes a larger value for larger τ ′. The
sign of χ ′(τ ′) with later τ ′ is more strongly reflected to the sign
of Eq. (B5). On the other hand, in Eq. (B6) χ ′(τ ′) is integrated
with a weight d(τ ′,τf ), taking larger value for earlier τ ′. The
sign of χ ′(τ ′) with earlier τ ′ is more responsible for that of
Eq. (B6).

Next, the ȳ derivative of C(ȳ) is calculated to be

dC(ȳ)

dȳ
= ȳ

4
√

π

∫ τf

τ0

dτ ′ χ
′(τ ′)
χH

e−ȳ2/d(τ ′,τf )2

d(τ ′,τf )3
. (B7)

By taking the small ȳ limit, we obtain

lim
ȳ→0

dC(ȳ)

dȳ
= ȳ

4
√

π

∫ τf

τ0

dτ ′ χ ′(τ ′)
χHd(τ ′,τf )3

. (B8)

Equation (B8) shows that the sign of dC(ȳ)/dȳ in the small ȳ
limit is determined by the integral of χ ′(τ ′) with a weight
1/d(τ ′,τf )3. In the large ȳ limit, the weight is given by
e−ȳ2/d(τ ′,τf )2

/d(τ ′,τf )3, which concentrates at the initial time
τ ′ = τ0 in the large ȳ limit. The sign in this limit thus is
determined only by χ ′(τ0), which is positive in the present
situation.

Now, let us compare the conditions, Eqs. (B1) and (B2). As
discussed above, the second condition in Eq. (B2) is always
satisfied, while that in Eq. (B1) is not necessarily true but
dependent on the functional form of χ (τ ). Next, the first
conditions in Eqs. (B1) and (B2) are not always satisfied,
but the latter is more favored, because the weight of the latter,
d(τ ′,τf)−3, is more concentrated at later τ ′ than the former,
d(τ ′,τf)−1. From these observations, one concludes that the
nonmonotonicity is more likely to appear in C(ȳ) than in
K(�y).

Although the manifestation of nonmonotonicity is more
robust in C(ȳ) than K(�y), in experimental analyses it is
meaningful to analyze both of these functions. In the above
argument, the position of the local extremum is not determined.
The ranges of �y and ȳ which can be measured in experiments
are limited owing to the coverage of the detector, and the
manifestation of the extremum in this range depends on
the functional form. Therefore, by analyzing both K(�y)
and C(ȳ), the chance to find the nonmonotonic behaviors is
enhanced.
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