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For the first time, we apply the temperature-dependent relativistic mean-field (TRMF) model to study the
ternary fragmentation of heavy nuclei using the level density approach. The relative fragmentation probability of
a particular fragment is obtained by evaluating the convolution integrals that employ the excitation energy and
the level density parameter for a given temperature calculated within the TRMF formalism. To illustrate, we have
considered the ternary fragmentations in 252Cf, 242Pu, and 236U with a fixed third fragment A3 = 48Ca, 20O, and
16O, respectively. The relative fragmentation probabilities are studied for the temperatures T = 1, 2, and 3 MeV.
For the comparison, the relative fragmentation probabilities are also calculated from the single-particle energies
of the finite range droplet model (FRDM). In general, the larger phase space for the ternary fragmentation is
observed indicating that such fragmentations are most probable ones. For T = 2 and 3 MeV, Sn + Ni + Ca is
the most probable combination for the nucleus 252Cf. However, for the nuclei 242Pu and 236U, the maximum
fragmentation probabilities at T = 2 MeV differ from those at T = 3 MeV. For T = 3 MeV, the closed shell
(Z = 8) light-mass fragment with its corresponding partners has larger scission point probabilities. But, at T = 2
MeV, Si, P, and S are favorable fragments with the corresponding partners. It is noticed that the symmetric binary
fragmentation along with the fixed third fragment for 242Pu and 236U is also favored at T = 1 MeV.
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I. INTRODUCTION

The exotic decay modes other than basic decay modes of
heavy nuclei need to be studied to understand the reaction kine-
matics and the structure as well. One such exotic fission mode
of heavy nuclei is the splitting into three charged fragments,
so-called ternary fission. After earlier reports on ternary fis-
sion [1,2], extensive experimental studies on the heavy nuclei
252Cf, 242Pu, and 236U were reported [3–6]. The observations
indicate that α particles have the larger yield values. Köster
et al. [5] reported the ternary fission yields of 242Pu for the
various third fragment isotopes up to 30Mg. Pyatkov et al. [6,7]
reported the ternary fission yields of 252Cf (sf) and 236U
(nth, f) using the missing mass approach. Sn + Ni/Ge + Ca/S
are the most favorable combinations. But theoretically,
Fong [8] calculated the probability of α-particle-accompanied
fission using statistical theory. Diehl et al. [9] applied the
liquid drop model to study true ternary fission (TTF) where
the three fragments are almost equal by direct prolate/oblate
and cascade ternary fission modes. The authors reported that
the prolate fission mode is energetically more favorable than
the oblate fission mode. Rubchenya and Yavshits [10] applied
the dynamical model for ternary fission and reported the
formation of light-charged particle at the later descent stage
from the saddle point to the scission point. Oertzen and
Nasirov [11] obtained the TTF fragments using the potential
energy surface calculations. Manimaran and Balasubrama-
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niam [12] proposed the three-cluster model (TCM) to study
the α-particle ternary fission and the obtained relative yields
are very well in agreement with the experimental data. Further,
the TCM was applied to the study of equatorial and collinear
configuration [13] of all possible third fragments. The collinear
configuration is more favorable for the heavy third particle
accompanied fission with the third fragment at the middle of
two fragments. Very recently, Karpov [14] applied the three-
center shell model to study the potential energy landscape
of the ternary fission of 252Cf. The potential energy valleys
are favorable for doubly magic Sn as one of the favorable
fragments with two other magic or semimagic fragments.
Further, Vijayaraghavan et al. [15] reported the kinetic energies
of 252Cf in a sequential decay mode calculation. Holmvall
et al. [16] reported the possible kinetic energies in collinear
cluster tripartition (CCT) using the true ternary decay mode
and studied the stability of collinearity using the Monte Carlo
method. That the kinetic energy of the third fragment is almost
zero in CCT was reported in Refs. [15,16]. In addition, the
intrinsic instability in the collinearity due to the repulsion
between the second and third fragments was reported in
Ref. [16].

Rajasekaran and Devanathan [17] applied statistical theory
to study the binary mass distributions using the single-particle
energies of the Nilsson model. The obtained results were well
in agreement with the experimental data. As the sequel of
this work, Balasubramaniam et al. [18] studied the ternary
mass distribution of 252Cf for the fixed third fragment 48Ca
using the single-particle energies of the finite range droplet
model (FRDM) and obtained Sn + Ni + Ca as the most
favorable combination at T = 2 MeV. Further, the authors
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extended [19] the study to calculate the ternary charge
distribution of potential-energy-minimized possible fragments
whose probabilities were calculated using the convolution
integrals. The results indicate that the most favorable com-
bination has Sn as one of its fragments for temperature T = 2
MeV. The excitation energies and the level density parameters
for the different fission fragments required to evaluate the
convolution integrals in such calculations were obtained
using temperature-independent single-particle energies from
the FRDM corresponding to the ground-state deformations.
The temperature dependence was incorporated through the
Fermi-Dirac distributions.

Single-particle energies are usually sensitive to temperature
in heavy nuclei, in particular, due to the transition from the
deformed to the spherical shape and the transition from the
pairing phase to the normal phase as induced by temperature.
Such features can significantly affect the temperature depen-
dence of the excitation energy and the level density parameter.
The temperature-induced effects on the nuclear deformation
and the pairing phase can be readily accounted for within the
temperature-dependent nonrelativistic and relativistic mean-
field models in a self-consistent manner. Of the main focus
in the present investigation is the relativistic mean-field
models (RMF). The RMF models at zero temperature [20–24]
with various parameter sets have successfully reproduced the
bulk properties, such as binding energies, root-mean-square
radii, quadrupole deformation, etc., not only for nuclei near
the β-stability line but also for nuclei away from it. The
temperature-dependent relativistic mean-field (TRMF) model
has been employed to study the structural properties of the
highly excited hot nuclei [25]. The heavy and rare earth nuclei
are studied within the TRMF model [26,27], which indicates
that there is a phase transition from the pairing phase to the
normal phase around the temperature T ∼ 0.8 MeV and a
shape transition from a prolate shape to a spherical shape at
critical temperature Tc ∼ 2.7 MeV.

The RMF formalism is successfully applied to the study
of clusterization of the known cluster emitting heavy nuclei
[28–30]. The presence of α clusters in light nuclei, such as
12C, which is also an experimental fact, is explained very
convincingly within the framework of the RMF approxima-
tion. In addition, it is claimed that the N �= Z clusters exit
in the excited states of heavy nuclei. For superheavy nu-
clei, the existence of N ≈ Z matter is predicted by this theory.
The ternary cluster decay from the hyper-hyper deformed 56Ni
at high angular momenta that is formed in the 32S + 24Mg
reaction is reported in Ref. [31]. The RMF model predicted the
two multiple N = Z, α-like clusters or the symmetric fission
mode of a hyper-hyper deformed 56Ni nucleus [32], which
is in contradiction with the experimental results. However,
the multiple α-nucleus clusterization is in agreement with
earlier experiments. Rutz et al. [33] reproduced the double-
and triple-humped fission barrier of 240Pu and 232Th and the
asymmetric ground states of 226Ra using the RMF formalism.
Moreover, the symmetric and asymmetric fission modes have
also been successfully reproduced. Patra et al. [34] studied
the neck configuration in the fission decay of neutron-rich
U and Th isotopes. Further, various decay modes, such as α
decay, β decay, and cluster decays, are studied in Refs. [35–39]

using the RMF formalism with double-folding M3Y, LR3Y,
and NLR3Y nucleon-nucleon interaction potential within the
preformed cluster model.

In the present work we study the ternary fragmentation of
the heavy nuclei 252Cf, 242Pu, and 236U using the TRMF model.
The various inputs, like single-particle energies, excitation
energies, and the level density parameters of the fission
fragments, are calculated using the TRMF model with the
well-known NL3 parameter set [40]. For comparison, we
calculate the ternary fragmentations using the single-particle
energies of the FRDM as explained in Ref. [19].

The article is organized as follows. Section II provides a
brief description of statistical theory and the TRMF model with
inclusion of the BCS pairing formalism used for this study. In
Sec. III we discuss the ternary fragmentation of heavy nuclei
and the temperature dependence of the level density parameter
and the level density. The main results are summarized in
Sec. IV.

II. FORMALISM

We generate different combinations of ternary fission
fragments by considering their charge-to-mass ratio to be equal
to that of the parent nucleus [17,18], i.e.,

ZP

AP

≈ Zi

Ai

, (1)

where AP and ZP and Ai and Zi (i = 1, 2, and 3) correspond
to the mass and charge numbers of the parent nucleus and
the three fission fragments, respectively. The following con-
straints, A1 + A2 + A3 = A, Z1 + Z2 + Z3 = Z, and A1 �
A2 � A3 are imposed to satisfy the conservation of mass and
charge numbers in the nuclear reaction and to avoid the repe-
tition of fragment combinations. The third fragment A3 is also
considered a priori to find the other two fragments A1 and A2.

A. Statistical theory

According to statistical theory [17,19,41,42], the ternary
fission probability P (Aj ,Zj ) is proportional to the folded
densities ρ123(Aj,Zj ,E

∗) of the three distinct fragments and
is given by

ρ123(Aj,Zj ,E
∗) =

∫ E∗

0
ρ1(A1,Z1,E

∗
1 )

×
[∫ E∗

0

∫ E∗

0

3∏
i=2

ρi(Ai,Zi,E
∗
i )δ[E∗

2

+ E∗
3 − (E∗ − E∗

1 )]dE∗
i

]
dE∗

1 , (2)

with E∗
i as the excitation energy. Here, ρi is the level density

of three fragments (i = 1, 2, and 3). The double integral in
the square brackets is the binary convolution integral. The
nuclear level density [42,43] is expressed as a function of the
fragment excitation energy E∗

i and the single-particle level
density parameter ai :

ρi(E
∗
i ) = 1

12

(
π2

ai

)1/4

E
∗(−5/4)
i exp(2

√
aiE

∗
i ). (3)
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In Refs. [18,19], we calculated the excitation energies of the
fragments using the single-particle energies of the FRDM [44]
at a given temperature, T . In the present work we apply the
self-consistent TRMF theory to calculate the excitation energy
of the fragments. The excitation energy is calculated as

E∗
i (T ) = Ei(T ) − Ei(T = 0). (4)

The level density parameter ai is given as

ai = E∗
i

T 2
. (5)

In general, the total energy of the parent is more than
the sum of the energies of the daughters. The fragment
yield in the present calculations can be regarded as the
relative fragmentation probability. This relative fragmentation
probability (or relative scission point probability) is calculated
as the ratio of the probability for a given ternary fragmentation
and the sum of the probabilities of all the possible ternary
fragmentations and it is given by

Y (Aj,Zj ) = P (Aj ,Zj )∑
j P (Aj ,Zj )

. (6)

The competing basic decay modes such as neutron emission,
α decay, and binary fragmentation are not considered in the
present work. The presented results are the prompt disinte-
gration of a parent nucleus into three fragments (democratic
breakup). The resulting excitation energy would be liberated
as prompt particle emission or delayed emission, but such
secondary emissions are not considered in the present study.

B. RMF formalism

The RMF theories assume that the nucleons interact with
each other via the meson fields. The nucleon-meson interaction
is given by the Lagrangian density [20–22,24,45,46]:

L = ψi{iγ μ∂μ − M}ψi + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gσψiψiσ

− 1

4
�μν�μν + 1

2
m2

wV μVμ − gwψiγ
μψiVμ

− 1

4
�Bμν · �Bμν + 1

2
m2

ρ
�Rμ · �Rμ − gρψiγ

μ�τψi · �Rμ

− 1

4
FμνFμν − eψiγ

μ (1 − τ3i)

2
ψiAμ. (7)

Here, ψi is the single-particle Dirac spinor. The arrows over the
letters in the above equation represent the isovector quantities.
The nucleon and the σ -, ω-, and ρ-meson masses are denoted
by M , mσ , mω, and mρ , respectively. The field for the σ meson
is denoted by σ , that for the ω meson by Vμ, and that for
the isovector ρ meson by �Rμ. Aμ denotes the electromagnetic
field. gσ , gω, gρ , and e2

4π
are the coupling constants for the σ , ω,

and ρ mesons and the photon fields with nucleons, respectively.
The strength of the constants g2 and g3 is responsible for the
nonlinear coupling of the σ mesons (σ 3 and σ 4). The field

tensors of the isovector mesons and the photon are given by

�μν = ∂μV ν − ∂νV μ, (8)

�Bμν = ∂μ �Rν − ∂ν �Rμ − gρ( �Rμ · �Rν), (9)

Fμν = ∂μAν − ∂νAμ. (10)

The classical variational principle gives the Euler-Lagrange
equation, thus we get the Dirac equation with potential terms
for the nucleons and Klein-Gordan equations with source terms
for the mesons. We apply the no-sea approximation, so we
neglect the antiparticle states. We are dealing with the static
nucleus, so the time-reversal symmetry and the conservation of
parity simplify the equations. After simplifications, the Dirac
equation for the nucleon is given by

{−iα · ∇ + V (r) + β[M + S(r)]} ψi = εi ψi, (11)

where V (r) represents the vector potential and S(r) is the scalar
potential,

V (r) = gωω0 + gρτ3ρ0(r) + e
(1 − τ3)

2
A0(r),

S(r) = gσσ (r), (12)

which contributes to the effective mass,

M∗(r) = M + S(r). (13)

The Klein-Gordon equations for the mesons and the
electromagnetic fields with the nucleon densities as sources
are as follows:{−� + m2

σ

}
σ (r) = −gσρs(r) − g2σ

2(r) − g3σ
3(r), (14){−� + m2

ω

}
ω0(r) = gωρv(r), (15){−� + m2

ρ

}
ρ0(r) = gρρ3(r), (16)

−�A0(r) = eρc(r). (17)

The corresponding densities such as scalar, baryon (vector),
isovector, and proton (charge) are given as

ρs(r) =
∑

i

niψ
†
i (r)ψi(r), (18)

ρv(r) =
∑

i

niψ
†
i (r)γ0ψi(r), (19)

ρ3(r) =
∑

i

niψ
†
i (r)τ3ψi(r), (20)

ρc(r) =
∑

i

niψ
†
i (r)

(
1 − τ3

2

)
ψi(r). (21)

To solve the Dirac and Klein-Gordan equations, we expand
the Boson fields and the Dirac spinor in an axially deformed
symmetric harmonic oscillator basis with β0 as the initial
deformation parameter. The nucleon equation along with
different meson equations form a set of coupled equations,
which can be solved by the iterative method. The center-of-
mass correction is calculated with the nonrelativistic approxi-
mation Ec.m. = −3/4×41A−1/3. The quadrupole deformation
parameter β2 is calculated from the resulting quadrupole
moments of the proton and the neutron. The total energy is
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given by [23,47,48]

E(T ) =
∑

i

εini + Eσ + EσNL + Eω + Eρ

+EC + Epair + Ec.m. − AM, (22)

with

Eσ = −1

2
gσ

∫
d3rρs(r)σ (r), (23)

EσNL = −1

2

∫
d3r

{
2

3
g2σ

3(r) + 1

2
g3σ

4(r)

}
, (24)

Eω = −1

2
gω

∫
d3rρv(r)ω0(r), (25)

Eρ = −1

2
gρ

∫
d3rρ3(r)ρ0(r), (26)

EC = − e2

8π

∫
d3rρc(r)A0(r), (27)

Epair = −�
∑
i>0

uivi = −�2

G
, (28)

Ec.m. = −3

4
× 41A−1/3. (29)

Here, εi is the single-particle energy, ni is the occupation
probability, and Epair is the pairing energy obtained from the
simple BCS formalism.

C. Pairing and temperature-dependent RMF formalism

Pairing correlation plays a pivotal role in the description
of the open shell nuclei and the quantitative description of
deformation in heavy nuclei. In the Hartree approximation,
we have only the ψ†ψ (density) term in the Lagrangian. The
inclusion of a pairing term like ψ†ψ† or ψψ and a two-body
interaction term like ψ†ψ†ψψ violates the particle number
conservation. So, we apply externally the BCS constant pairing
gap approximation for our calculation to take the pairing
correlation into account. The pairing interaction energy in
terms of the occupation probabilities v2

i and u2
i = 1 − v2

i is
written as [49,50]

Epair = −G

[∑
i>0

uivi

]2

, (30)

where G is the pairing force constant. The variational approach
with respect to the occupation number v2

i gives the BCS
equation [50]:

2εiuivi − �(
u2

i − v2
i

) = 0, (31)

with the pairing gap � = G
∑

i>0 uivi . The pairing gap (�)
of the proton and the neutron is taken from the empirical
formula [23,51]:

� = 12A−1/2. (32)

The temperature introduced in the partial occupancies in the
BCS approximation is given by

ni = v2
i = 1

2

[
1 − εi − λ

ε̃i

[1 − 2f (ε̃i ,T )]

]
, (33)

with

f (ε̃i ,T ) = 1

(1 + exp[ε̃i/T ])
and

ε̃i =
√

(εi − λ)2 + �2. (34)

The function f (ε̃i ,T ) represents the Fermi-Dirac distri-
bution function for quasiparticle energies ε̃i . The chemical
potential λp (λn) for protons (neutrons) is obtained from the
constraints of the particle number equations:∑

i

nZ
i = Z,

∑
i

nN
i = N. (35)

The sum is taken over all proton and neutron states. The
entropy is obtained by

S = −
∑

i

[ni ln ni + (1 − ni) ln(1 − ni)]. (36)

The temperature-dependent RMF total energies and the gap
parameter are obtained by minimizing the free energy:

F = E − T S. (37)

In constant pairing gap calculations, for a particular value of
pairing gap � and force constant G, the pairing energy Epair

diverges, if it is extended to an infinite configuration space. In
fact, in all realistic calculations with finite range forces, � is
not constant, but decreases with large angular momenta states
above the Fermi surface. Therefore, a pairing window in all the
equations is extended up to the level |εi − λ| � 2(41A−1/3) as
a function of the single-particle energy. The factor 2 has been
determined so as to reproduce the pairing correlation energy
for neutrons in 118Sn using Gogny force [23,49,52].

III. RESULTS AND DISCUSSION

In earlier studies [18,19], the level densities of the fragments
were calculated using the single-particle energies from the
FRDM of Möller et al. [53]. The single-particle levels
were retrieved from the Reference Input Parameter Library
(RIPL-3) [54]. In the present study, we calculate the level
densities using the TRMF formalism. We calculate relative
fragmentation probabilities for the ternary fragmentation of
252Cf, 242Pu, and 236U with the fixed third fragments A3 =
48Ca, 20O, and 16O, respectively. The other two fragments with
masses and charges A1, Z1 and A2, Z2 are obtained by keeping
the charge-to-mass ratio to be equal to that of parent nucleus
as given by Eq. (1). The results are presented for the three
different temperatures T = 1, 2, and 3 MeV. In principle, one
should consider all the possible third fragments. However, in
the present study we have neglected such possibilities. From
the cluster-decay study of 252Cf [55], it is shown that 48Ca
or the neighboring 48Ar or 52Ca has a large preformation
probability compared to their light clusters, such as C, O, etc.
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In view of experimental data [5] 20O is chosen for 242Pu as the
third fragment.

The TRMF equations for the nucleon and the Boson fields
are solved within the basis expansion method. In the present
work, the numbers of oscillator shells NF = 12 and NB = 20
are used as the basis space for the nucleons and the boson fields,
respectively. The total energy is obtained by minimizing the
free energy at a given temperature. The ground-state (T = 0)
binding energies are well reproduced with the experimental
data in our calculations.

Ternary system mass distribution and the level densities

Pyatkov et al. [6,7] and Oertzen et al. [31,56] experi-
mentally observed the heavy third fragments from the new
decay mode called collinear cluster tripartition (CCT), in
which the ternary fragments are collinearly emitted due to
the lower Coulomb interaction for this configuration and at
least one of the fragments has the composition with a magic
number of nucleons. Further, Pyatkov et al. [6] reported
that the CCT decay of 252Cf with the ternary 48Ca yields
4.7 ± 0.2×10−3/binary fission and the CCT decay of 236U
with the ternary 34Si yields 5.1 ± 0.4×10−3/binary fission. It
was further reported that this yield is due to the whole Ni-bump
consisting of some hundreds of different mass partitions. In
Ref. [7], it is mentioned that the total yield of 68,72Ni ions does
not exceed 10−4/binary fission. However, the yield of each
separate ternary partition, for instance, 128Sn + 72Ni + 52Ca,
can be estimated to be of the order of 3×10−6/binary fission.
It is reported that the lighter third fragments like 4He and 10Be
have larger yield values in collinear configuration than the
clusters like 48Ca and 50Ca [57]. Recently, Balasubramaniam
et al. [18] studied the ternary fission mass distribution of
252Cf using the FRDM, for the fixed third fragment 48Ca, at
temperatures of T = 1 and 2 MeV, and revealed Sn + Ni + Ca
as the most favorable combination at T = 2 MeV. For our
investigation, we consider one of the nuclei to be 252Cf for the
study of ternary fission at temperatures of T = 1, 2, and 3 MeV.
The ternary mass distribution of 242Pu is studied using the third
fragment as 20O as suggested by Köster et al. [5]. We also
studied the ternary fission of 236U for the fixed cluster-like third
fragment 16O. For comparison, the ternary fragmentations
were also calculated using the FRDM formalism.

The total energy at finite temperature and ground-state
energy are calculated using the TRMF formalism as discussed
in the Sec. II A. From the TRMF the excitation energy E∗ of
fragments are calculated using Eq. (4). From the excitation
energy E∗ and the temperature T the level density parameter
a is calculated using Eq. (5). From the excitation energy E∗
and the level density parameter a, the level density ρ of
fragments are calculated using Eq. (3). From the fragment
level densities ρi , the folding density ρ123 is calculated using
the convolution integral Eq. (2) and the relative fragmentation
probabilities are calculated using Eq. (6). It is to be noted
that the total fragmentation probabilities are normalized to
2 throughout the calculations. In the FRDM formalism, the
temperature dependence is introduced in the Fermi occupation
number. Using the Lagrange multipliers αN,Z and β and the
number equations, the temperature-dependent energy E(T ) is

FIG. 1. Ternary fragmentation of 252Cf for the fixed third frag-
ment 48Ca for the temperatures T = 1, 2, and 3 MeV. The total
fragmentation probabilities are normalized to 2.

calculated from the ground-state single-particle energies for a
given temperature, T . The excitation energy E∗ at the given
temperature is E∗ = E(T ) − E(0) and other details can be
found in Ref. [18].

In Fig. 1, the TRMF results for the ternary fragmentations
of 252Cf for the fixed third fragment 48Ca are shown for

FIG. 2. Ternary fragmentation of 242Pu for the fixed third frag-
ment 20O for the temperatures T = 1, 2, and 3 MeV. The total
fragmentation probabilities are normalized to 2.
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TABLE I. The relative fragmentation probability (RFP) = Y (Aj ,Zj ) = P (Aj ,Zj )∑
P (Aj ,Zj ) for 252Cf, 242Pu, and 236U obtained with the TRMF model

at temperatures of T = 1, 2, and 3 MeV is compared with the FRDM prediction. (The fragmentation probabilities are normalized to 2.)

Parent T (MeV) TRMF FRDM

Fragment RFP Fragment RFP

108Nb + 96Rb + 48Ca 1.090 106Zr + 98Sr + 48Ca 0.196
1 141Xe + 63Cr + 48Ca 0.270 113Tc + 91Br + 48Ca 0.134

132Sn + 72Ni + 48Ca 1.438 131Sn + 73Ni + 48Ca 0.732252Cf 2 160Nd + 48Ar + 48Ca 0.152 132Sn + 72Ni + 48Ca 0.392
132Sn + 72Ni + 48Ca 1.508 131Sn + 73Ni + 48Ca 0.780

3 131Sn + 73Ni + 48Ca 0.327 128In + 76Cu + 48Ca 0.404
165Gd + 57Ti + 20O 1.071 193Re + 29Na + 20O 0.165

1 164Gd + 58Ti + 20O 0.409 111Tc + 111Tc + 20O 0.069
111Tc + 111Tc + 20O 0.107 160Sm + 62Cr + 20O 0.052

182Lu + 40P + 20O 0.726 201Pt + 21O + 20O 0.164
242Pu 183Lu + 39P + 20O 0.482 185Hf + 37Si + 20O 0.106

2 179Yb + 43S + 20O 0.296 182Lu + 40P + 20O 0.106
185Hf + 37Si + 20O 0.090 113Te + 89Se + 20O 0.056
201Pt + 21O + 20O 1.660 126In + 96Rb + 20O 0.118

3 200Pt + 22O + 20O 0.166 133Te + 89Se + 20O 0.116
111Mo + 109Mo + 16O 0.720 191Ta + 29Na + 16O 0.112

1 161Pm + 59V + 16O 0.452 158Nd + 62Cr + 16O 0.084
110Mo + 110Mo + 16O 0.395 180Tm + 40P + 16O 0.058

180Tm + 40P + 16O 0.794 131Sn + 89Se + 16O 0.468
181Tm + 39P + 16O 0.554 130In + 90Br + 16O 0.230236U 2 177Er + 43S + 16O 0.166 180Tm + 40P + 16O 0.064
183Yb + 37Si + 16O 0.136 199Os + 21O + 16O 0.046
199Os + 21O + 16O 1.174 131Sn + 89Se + 16O 0.458

3 197Os + 23O + 16O 0.432 130Sn + 90Br + 16O 0.312
132Sn + 88Se + 16O 0.136 132Sn + 88Se + 16O 0.188

different temperatures. For T = 1 MeV, 108Nb + 96Rb + 48Ca
is the most probable fragmentation followed by 141Xe +
63Cr + 48Ca. For higher temperatures T = 2 and 3 MeV,
it is interesting to see that 132Sn + 72Ni + 48Ca is the most
favorable combination of the existing fragmentations.

In Figs. 2 and 3, we display the TRMF results for the
ternary fragmentations of 242Pu and 236U for the fixed third
fragments 20O and 16O, respectively. At T = 1 MeV, we see
both symmetric and asymmetric fragmentation for 242Pu and
236U. For 242Pu, at T = 1 MeV, 165Gd + 57Ti + 20O is the
most favorable combination rather than the symmetric binary
fragments 111Tc + 111Tc + 20O. For T = 2 MeV, 182,183Lu +
40,39P + 20O, 179Yb + 43S + 20O, and 185Hf + 37Si + 20O are
the possible relative fragmentation probabilities. At T =
3 MeV 201Pt + 21O + 20O is the most favorable fragmentation.
For 236U, at T = 1 MeV, the symmetric breakup into the heavy
fragments 109Mo + 111Mo and 110Mo + 110Mo along with the
third fragment 16O has larger scission point probabilities.
In addition, the fragment combinations 161Pm + 59V + 16O
and 163Sm + 57Ti + 16O also have larger fragmentation prob-
abilities. For T = 2 MeV, 180,181Tm + 40,39P + 16O are the
most probable fragments. Further, 177Er + 43S + 16O and
183Yb + 37Si + 16O are also the probable ternary fragments.
It is seen that, at T = 3 MeV, the fragments 199,198,197Os +
21,22,23O + 16O have considerable scission point probabilities.
In Ref. [19], it is predicted that the ternary charge distribution

of 252Cf, at T = 2 MeV, with Si, P, and S as the most favorable
fragments along with Sn and the corresponding partner. Here,
at T = 3 MeV, the most favorable fragment is one of the
closed shell (Z = 8) nuclei. Although, one would expect the
even-even fragments as more probable for fission, we find a
large number of odd-mass fragments possessing maximum
fragmentation probability compared to even-even fragments.
This is due to the fact that the level densities of the odd-mass
fragments are higher than those of the even-mass fragments as
reported in Ref. [41].

For comparison, in Figs. 1–3, the FRDM results for the
ternary fragmentations are also presented. For quick reference,
the most probable ternary fragmentations and their relative
scission point probabilities are tabulated in Table I at three
different temperatures: T = 1, 2, and 3 MeV. In general, at T =
1 MeV, the most favorable fragments of the FRDM formalism
are quite different than those for the TRMF formalism. These
differences may be attributed to the differences in the excitation
energies obtained in the TRMF and FRDM formalisms. For
252Cf, the TRMF and FRDM results agree qualitatively with
each other at T = 2 and 3 MeV. For 242Pu, more fragments
have considerable fragmentation probabilities in the FRDM
formalism. At T = 2 and 3 MeV, the favorable fragmentations
are in the mass range A1 ∼ 180 and 130 region with their
corresponding partners. The TRMF and FRDM results agree
only partially for the 242Pu nucleus at T = 2 MeV. For 236U,

064613-6



RELATIVE FRAGMENTATION IN TERNARY SYSTEMS . . . PHYSICAL REVIEW C 95, 064613 (2017)

FIG. 3. Ternary fragmentation of 236U for the fixed third fragment
16O for the temperatures T = 1, 2, and 3 MeV. The total fragmentation
probabilities are normalized to 2.

the most favorable fragments are at A1 ∼ 130 for T = 2 and
3 MeV in FRDM calculations. One of the favorable fragments
has a closed shell nucleon or a near closed shell (N = 82)
nucleus. Further, in both the formalisms, at T = 2 MeV, we get
nearly similar fragments such as 40P along with their partners
180Tm and 16O as shown in Fig. 3. The doubly closed shell
nucleus 132Sn is appears in both the cases, at T = 3 MeV.

To illustrate the difference between the TRMF and FRDM
results, we studied the level density parameter a, which is a

FIG. 4. The level density parameter a of the ternary fragmentation
of 252Cf for the temperatures T = 1, 2, and 3 MeV within the TRMF
and FRDM formalisms.

FIG. 5. The level density parameter a of the ternary fragmentation
of 242Pu for the temperatures T = 1, 2, and 3 MeV within the TRMF
and FRDM formalisms.

crucial quantity. In general, the level density parameter a is
given by the empirical estimation relation [58]:

a = A

K
(MeV−1), (38)

where K is the inverse level density parameter and varies from
10 to 14 depending on the mass number A of the nucleus.
In Figs. 4–6, we have plotted the level density parameter
a of the fission fragments for 252Cf, 242Pu, and 236U as a
function of mass number. Here, we consider the inverse level
density parameter K = 10 (which is quite a practical value as
mentioned in Ref. [58]) for all nuclei, which is shown in the

FIG. 6. The level density parameter a of the ternary fragmentation
of 236U for the temperatures T = 1, 2, and 3 MeV within the TRMF
and FRDM formalisms.
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FIG. 7. The level density of the ternary fragmentation of 252Cf
for the temperatures T = 1, 2, and 3 MeV.

plots as a black dashed-dotted line. From these figures, one
can see that the TRMF values are very near to the empirical
level density parameter a. The FRDM values are considerably
lower than the referenced level density parameter. Further, in
both models at T = 1 MeV, there are more fluctuations in
a due to the shell effects of the fission fragments. For 252Cf
and 236U, the level density parameter a promptly increases
for the doubly closed shell nucleus 132Sn and has the lowest
inverse level density parameter K = 10.9. For 242Pu, the 132Sn
nucleus was restricted by Eq. (1). However, value of parameter
a increases towards the neutron closed shell (N = 82) nuclei.
In the TRMF model the prompt increase of the level density
towards the doubly closed shell nucleus 132Sn is clearly seen
at T = 3 MeV due to the fact all fission fragments become a
spherical Fermi liquid drop.

FIG. 8. The level density of the ternary fragmentation of 242Pu
for the temperatures T = 1, 2, and 3 MeV.

FIG. 9. The level density of the ternary fragmentation of 236U for
the temperatures T = 1, 2, and 3 MeV.

To understand the results better we have plotted the level
density of the fragments (A2 and A1) of the heavy nuclei
252Cf, 242Pu, and 236U as a function of mass number as shown
in Figs. 7–9. From Fig. 7, it can be seen that for T = 2
and 3 MeV, the level density of 132Sn is higher than that
for the neighboring nuclei in both formalisms. Hence, 132Sn
becomes the most favorable fragment. Figure 9 shows, once
again, that 132Sn has a level density higher than that of the
neighboring nuclei; however, the corresponding partner has
lower or nearly the same level density as the neighboring nuclei
in the TRMF model. For the nucleus 242Pu, 132Sn is restricted
due to the charge-to-mass ratio. From Figs. 8 and 9, we see
that the fragments Si to S have large level densities compared
with the neighboring nucleus and the corresponding partners
also have similar behavior. At T = 3 MeV, the light-charged
particles, Z2 = 8, have a level density larger than that of the
neighboring nuclei and its corresponding partners also have
similar behavior. In the FRDM formalism, the level density of
the doubly closed shell nuclei 132Sn has a larger value than the
neighboring nuclei for 252Cf and 236U at T = 2 and 3 MeV.
For 242Pu, there is no prompt increase in the level density due
to the restricted fragment 132Sn by Eq. (1).

Further, from Figs. 7 and 9, it can be seen that the level
density promptly increases while reaching the doubly closed
shell nucleus 132Sn in both formalisms. It is noted that, other
than the light-charged particles, 132Sn has the larger level
density. This indicates that, the ternary combinations with
larger phase spaces become more probable than the other
ternary combinations.

IV. SUMMARY AND CONCLUSIONS

We have studied the ternary fragmentation of 252Cf, 242Pu,
and 236U nuclei within statistical theory. Various inputs to
statistical theory, like the excitation energies and the level
density parameters for the different fission fragments at a
given temperature, are calculated from the TRMF model. The
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ternary combinations for these nuclei are obtained from the
charge-to-mass ratio of the parent nuclei. For the comparison,
the results obtained using the FRDM inputs to statistical
theory are also presented.

For the nucleus 252Cf we obtained Sn + Ni + Ca as the
most probable ternary combination at the temperatures T = 2
and 3 MeV. For the nuclei 242Pu and 236U, however, we
obtained a few different fragmentations at T = 2 and 3 MeV.
For these nuclei, at T = 2 MeV, Si, P, and S are the possible
ternary fragments along with the corresponding fragments. For
T = 3 MeV, the oxygen isotopes have the larger fragmentation
probabilities. The TRMF results for 252Cf at T = 2 and
3 MeV resemble very well those for the FRDM, whereas
they are strikingly differ from each other at T = 1 MeV. In
the case of 236U, the ternary fission fragments corresponding
to the TRMF model and the FRDM resemble each other

only at T = 3 MeV. For 242Pu, the ternary fragmentations
for the TRMF model and the FRDM are by and large at
variance at all the temperatures considered. Thus, it seems
that the ternary fragmentations are quite sensitive to the
thermal evolution of the deformation and the single-particle
energies as they affect the excitation energy and the level
density parameter. These aspects are treated self-consistently
within the TRMF model, while being ignored within the later
approach.
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