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Translation invariance and antisymmetry in the theory of the nucleon optical model
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The first step in any formalism that aims to connect a many-nucleon theory of nucleon-nucleus scattering and the
concept of an optical model potential in the sense pioneered by Feshbach is to explain what is meant by the optical
model wave function. By definition, this is a function of a single space coordinate plus a set of single-nucleon
internal variables. This article gives a critique of the definition as it is frequently expressed in second quantization
language and suggests a new definition which is more consistent with the requirements of antisymmetry and
translational invariance. A modification of the time-dependent Green’s function formalism is suggested.
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I. INTRODUCTION

Theories devoted to calculating an optical potential that
describes nucleon scattering from an A-nucleon target in terms
of fundamental two- and three-body internucleon interactions
are of considerable current interest. For scattering from light
nuclei, fully antisymmetrized and translationally invariant
resonating-group ab initio calculations have been successfully
developed; see Refs. [1,2] and references therein. For heavier
targets, a recent report by Idini et al. [3] references several
approaches. They also report their own calculations of nucleon
optical potentials based on a self-consistent Green’s function
formalism (SCGF), which is claimed to be well suited for
calculating optical potentials for medium-mass targets.

Work on the fundamental definition of the optical model
potential goes back to the pioneering work of Feshbach [4].
This work and subsequent work by Bell and Squires [5]
and Capuzzi and Mahaux [6], as well as the more recent
work reported in Refs. [3,7], all seek a function of one
spatial coordinate and a set of single nucleon spin and
isospin coordinates that can be identified as an optical model
wave function. This is usually defined as the projection of
the exact antisymmetrized many-body nucleon-A scattering
wave function, |�E+〉, onto the exact antisymmetrized target
ground state, |�0〉. It is standard to interpret this definition in
second-quantization notation through the formula

ξE+(r) = 〈�0|ψ(r)|�E+〉. (1)

For a translationally invariant many-nucleon Hamiltonian, the
(A + 1)-nucleon scattering state |�E+〉 can be assumed to
have a definite total momentum and in the c.m. system this
momentum will be zero. Similarly, it can be assumed that the
A-nucleon target ground |�0〉 also has total momentum of
zero. Under these assumptions, it will be shown that ξE+(r)
as defined in Eq. (1) is independent of the space coordinate
element of r and hence cannot possibly be an acceptable
definition of the optical model wave function. It is the purpose
of this paper to justify this statement and present a modified
definition that corresponds more faithfully to the properties
expected for the microscopic optical model. No new numerical
calculations using the new definition are presented.
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A. The case of single-determinant states

For medium and heavy targets, all approaches have in
common the use of a single-particle mean-field basis in
which nucleon antisymmetry is fully taken into account using
second-quantization techniques but introduces a violation of
translation invariance very early in the development. To see
how problems arise with this approach, the mean-field limit is
considered. In this limit, the target ground state |�0〉 is a single
determinant of A bound single-particle states in some potential
well and |�E+〉 is a determinant of the same A states but with
the extra nucleon in a continuum scattering state, uk(r) in the
same potential well.

In this special case, the formula (1), 〈�0|ψ(r)|�E+〉, gives
precisely the scattering state uk(r), so identifying the optical
potential with the mean field, as expected. This result gives a
false sense of security for the validity of formula (1) because it
fails to recognize the properties of this expression when exact,
rather than model many-nucleon wave functions are used.

Formally, this misleading result arises because determi-
nants are not eigenstates of definite total momentum, and hence
the result outlined in the previous section and proved in Sec. II
does not apply. If one tried to improve the determinants for their
violation of translation invariance by, e.g., projecting them on
to their zero total momentum components and then using the
formula (1), the result would be a function independent of r
and certainly not acceptable.

II. WHY THE DEFINITION OF THE OPTICAL MODEL
WAVE FUNCTION THROUGH EQ. (1) MUST BE REJECTED

(i) The quantity ξE+(r) from Eq. (1) can be evaluated using
the wave functions defining �0 and �E+ in configuration
space:

ξE+(r) = 〈�0|ψ(r)|�E+〉
=

√
(A + 1)

∫
d r1 . . . d rA�∗

0 (r1, . . . , rA)

×�E+ (r1, . . . , rA,r (A+1) = r)

=
√

(A + 1)
∫

d r1 . . . d rAd r (A+1)�
∗
0 (r1, . . . , rA)

× δ(r (A+1) − r)�E+(r1, . . . , rA,r (A+1)). (2)
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This integral is independent of r . This can be seen by first
translating the first A variables of integration by r to r ′

i =
r i − r, i = 1, . . . ,A, and using the fact that �0 and �E+ are
zero-momentum states so that

�0(r1 + r, . . . , rA + r) = �0(r1, . . . , rA),

�E+ (r ′
1 + r, . . . , r ′

A + r,r (A+1)) = �E+(r1, . . . ,

rA,r (A+1) − r). (3)

Hence,

ξE+(r) =
√

(A + 1)
∫

d r ′
1 . . . d r ′

Ad r (A+1)

×�∗
0 (r ′

1 + r, . . . , r ′
A + r)

×δ(r (A+1) − r)�E+(r ′
1 + r, . . . , r ′

A + r,r (A+1))

=
√

(A + 1)
∫

d r ′
1 . . . d r ′

Ad r (A+1)�
∗
0 (r ′

1, . . . , r ′
A)

×δ(r (A+1) − r)�E+(r ′
1, . . . , r ′

A,r (A+1) − r)

=
√

(A + 1)
∫

d r ′
1 . . . d r ′

A�∗
0 (r ′

1, . . . , r ′
A)

×�E+(r ′
1, . . . , r ′

A,r (A+1) = 0), (4)

which is independent of r .
(ii) The same r-independent result is obtained when the

right-hand side of Eq. (1) is evaluated using Fock-space
formalism techniques. For simplicity, explicit reference to spin
and isospin coordinates is omitted. The notation | . . . 〉〉 is used
for vectors in Fock space.

The states |�E+〉〉 and |�0〉〉 are both eigenstates of the total
momentum operator P̂ with eigenvalue zero, where

P̂ =
∫

dk k a
†
kak, (5)

and a
†
k(ak) creates (destroys) a nucleon in a single-particle

state with momentum k.
In terms of state vectors and operators in Fock space,

P̂ |�0〉〉 = 0,

P̂ |�E+〉〉 = 0. (6)

It follows from from Eq. (5) that

[ P̂,ψ(r)]− = ı[∇rψ(r)], (7)

and hence

ı[∇rξE+(r)] = 〈〈�0|[ P̂,ψ(r)]−|�E+〉〉
= 〈〈�0|( P̂ψ(r) − ψ(r) P̂)|�E+〉〉
= 0. (8)

Hence, ξE+(r) is independent of r and cannot be the required
optical model wave function.

More generally, if |�1〉〉 and |�2〉〉 have momenta K 1 and
K 2, respectively, then

〈〈�1|ψ(r)|�2〉〉 = exp (ı(K 2 − K 1)r)〈〈�1|ψ(0)|�2〉〉.
(9)

One comes to the same conclusion working in momentum
space:

ξE+(r) = 〈�0|ψ(r)|�E+〉

=
∫

dk
exp(ık · r)

(2π )3/2
〈�0|ak|�E+〉

=
∫

dk
exp(ık · r)

(2π )3/2
〈�0|ak=0|�E+〉δ(k)

= 1

(2π )3/2
〈�0|ak=0|�E+〉. (10)

Again, it seen that ξE+(r) as defined by Eq. (1) is independent
of r . The result (9) follows in a similar fashion.

III. DEFINITION OF THE OPTICAL MODEL WAVE
FUNCTION

The standard way of defining the type of A-nucleon,
(A + 1)-nucleon overlap, of which the optical model wave
function is an example, is to use a set of A − 1 translationally
invariant variables χ1, . . . ,χ (A−1) (e.g., Jacobi coordinates)
that together with the A-nucleon c.m., RA, form a set of
variables equivalent to the vectors r1, . . . ,rA describing the
position of the nucleons relative to an arbitrary origin and
having a transformation Jacobian equal to +1. The variables
χ1, . . . ,χ (A−1),χA, together with the A + 1-nucleon c.m.
R(A+1), perform the same role for A + 1 nucleons, where χA

is defined by

χA = r (A+1) − RA, RA =
(

i=A∑
i=1

r i

)/
A. (11)

In terms of these coordinates, the relevant overlap is

ξE+(r) =
√

(A + 1)
∫

dχ1 . . . dχ (A−1)�
∗
0 (χ1, . . . ,χ (A−1))

×�E+(χ1, . . . ,χ (A−1),χA = r). (12)

The zero-momentum functions �E+ and �0 are independent
of, respectively, R(A+1) and RA.

The function defined in Eq. (12) is certainly not generally
independent of r . From the definition of χA, it is clear that the
meaning of r is the vector distance of the extra nucleon from
the c.m. of the target.

Similar overlap functions are familiar from the study of the
overlaps between bound states of the A- and (A + 1)-nucleon
systems in the theory of (d,p) and (p,d) reactions. They have
been shown to satisfy an inhomogeneous differential equation
(the “source equation”) in which the kinetic energy operator
appears with the correct reduced mass and whose solutions
have been extensively studied; see Refs. [8,9].

The Jacobi coordinates do not lend themselves well to
treating antisymmetrized functions. The second-quantization
formalism is more attractive from this point of view. In the next
section, a new formula is derived for the optical model wave
function, and in fact for a general A-nucleon, (A + 1)-nucleon
overlap, in terms of operators and states in Fock space by
working directly from Eq. (12).
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IV. THE OPTICAL MODEL WAVE FUNCTION AS
A MATRIX ELEMENT IN FOCK SPACE

It is straightforward to convert the expression (12) to a
relation between state vectors and creation and destruction
operators acting in nucleon Fock space. Some key relevant
formulas are gathered for convenience in Appendix A.

In general, the argument, ψ(r), of creation and destruction
operators refers to the position of a nucleon relative to the
origin of coordinates. It is therefore convenient to first change
the integration in Eq. (12) to one over 3A independent variables
by introducing an extra integration over RA in the form

ξE+(r)

=
√

(A + 1)
∫

dχ1 . . . dχ (A−1)d RAδ(RA)

×�∗
0 (χ1, . . . ,χ (A−1))

×�E+ (χ1, . . . ,χ (A−1),χA = r)

=
√

(A + 1)
∫

d r1 . . . d r (A−1)d rAδ(RA)�∗
0 (r1, . . . , rA)

×�E+ (r1, . . . , rA,r (A+1) = r). (13)

In the second equality, the variables of integration have been
changed to r1, . . . , rA using the relation between these and
the Jacobi coordinates for nucleons of the same mass:

χ i = r (i+1) − Ri , i = 1, . . . ,A, (14)

where Ri is the c.m. coordinate of nucleons 1, . . . ,i. The
inverse of these relations gives the set r1, . . . , rA as linear
functions of the set χ1, . . . ,χ (A−1),RA. The coordinate r (A+1)
is given by χA + RA = r under the integral sign. (In under-
standing these steps, it may be helpful to consider the A = 2
case explicitly, with χ1 = (r2 − r1),χ2 = (r3 − R2), R2 =
(r2 + r1)/2, and the inverse relations r3 = R3 + 2χ2/3,r2 =
R3 − χ2/3 + χ1/2,r1 = R3 − χ2/3 − χ1/2.)

Note that strict notational conventions require the use of
a different symbol for, e.g., �0, considered as a function of
r1, . . . , rA in the last line in Eq. (13). This step is avoided here
by using the convention

�0(r1, . . . , rA)=�0(χ1(r1, . . . , rA), . . . ,χ (A−1)(r1, . . . , rA)),

(15)
where χ i(r1, . . . , rA), i = 1, . . . ,(A − 1) refers to the linear
equations of the transformation between the two sets of
variables.

The relation given in Eq. (A6) of the appendix enables the
definition (13) to be written

ξE+(r) = 〈〈�(0,x = 0)|ψ(r)|�E+〉〉. (16)

where, for arbitrary x,

|�(n,x)〉〉 = 1√
A!

∫
d r1 d r2 . . . d rAδ(RA − x)

×�n(r1, . . . ,rA)ψ†(rA) . . . ψ†(r1)|0〉〉 (17)

and

|�E+〉〉 = 1√
(A + 1)!

∫
d r1 d r2 . . . d r (A+1)

×�E+(r1, . . . ,r (A+1))ψ
†(r (A+1)) . . . ψ†(r1)|0〉〉.

(18)

The kets |�(n,x)〉〉 form a complete set of antisymmetric A-
nucleon states with an intrinsic state labeled by n and c.m.
located at position x relative to a arbitrary origin. The bra in
Eq. (16) has the c.m. of the A target nucleons located at the
origin, although in fact any value of x could have been chosen.

In this section, a general definition of an optical model wave
function, Eq. (16), has been obtained as the matrix element of a
nucleon destruction operator between many-nucleon states in
Fock space by starting from a standard translationally invariant
definition in terms of many-body wave functions expressed
interns of Jacobi coordinates. In the next section, it is shown
how the definition (16) can be derived from more basic physical
ideas of what is meant by the optical model wave function.

A. Physical basis for the optical model wave function

The precise definition of the A + 1-nucleon scattering state
|�E+〉〉 will be discussed in Sec. VI. Leaving this aside for the
present, a natural definition of the optical model wave function
is the amplitude for finding in |�E+〉〉, A nucleons in the ground
state, ψ0(r1, . . . ,rA), of the A-nucleon Hamiltonian with a
total momentum K ′, and a single nucleon at a distance r
from the c.m. of the other A nucleons. This antisymmetric
(A + 1)-nucleon state is written as �r,0,K ′ . Note that this
definition means that r is not the eigenvalue of a single-nucleon
position operator because the positions of all A + 1 nucleons
are involved in its definition.

In configuration space, the state φr,0,K ′ is described by the
wave function

φr, 0,K ′(r1, . . . ,rA,r (A+1))

= 1√
(A + 1)

⎛
⎝1 −

A∑
j=1

P((A+1),j )

⎞
⎠δ(r (A+1) − RA − r)

× 1

(2π )3/2
exp(ı RA · K ′)ψ0(r1, . . . ,rA), (19)

where P(i,j ) interchanges the all the coordinates of nucleons i
and j , and

RA =
(

i=A∑
i=1

r i

)/
A. (20)

It is assumed that the many-nucleon Hamiltonian is transla-
tionally invariant and that the A-nucleon ground state ψ0 has
total momentum of zero and is antisymmetrized in all nucleon
coordinates. The factor 1/

√
(A + 1) has been chosen for later

convenience.
For the wave function given in (19), the relation (A5) of the

appendix gives the Fock space equivalent

|�(r, 0,K ′)〉〉
= 1√

A!

∫
d r1 . . . d rA

1

(2π )3/2
exp(ı RA · K ′)

×ψ0(r1, . . . ,rA)ψ†(r + RA)ψ†(rA) . . . ψ†(r1)|0〉〉.
(21)

This state can be written in various ways.
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Using

exp(+ı RA · P̂)ψ†(r i) exp(−ı RA · P̂) = ψ†(r i − RA), (22)

and P̂ |0〉〉 = 0, Eq. (21) can be written as

|�(r, 0,K ′)〉〉
= 1√

A!

∫
d r1 . . . d rAψ0(r1, . . . ,rA)

× 1

(2π )3/2
exp (ı RA · (K ′ − P̂))

×ψ†(r)ψ†(rA − RA) . . . ψ†(r1 − RA)|0〉〉. (23)

To exploit the fact that the ground state ψ0(r1, . . . ,rA)
has zero momentum, the integration variables in Eq. (23)
are changed to the set of A − 1 translationally invariant
variables χ1, . . . ,χ (A−1) introduced following Eq. (12) above.
Together with RA, they form a set of variables equivalent to
r1, . . . ,rA and have a transformation Jacobian of +1. Under a
translation of the coordinate system by x, the χ1, . . . ,χ (A−1)
are unchanged and RA → RA + x.

The integral in Eq. (23) becomes

|�(r, 0,K ′)〉〉
= 1√

A!

∫
dχ1 . . . dχ (A−1)d RAψ0(r1, . . . ,rA)

× 1

(2π )3/2
exp (ı RA · (K ′ − P̂))ψ†(r)ψ†

× (rA − RA) . . . ψ†(r1 − RA)|0〉〉. (24)

Note that in Eq. (24) the functional convention introduced in
Eq. (15) is used.

The combinations r i − R that appear as arguments of the
creation operators in Eq. (24) are all translationally invariant,
as is ψ0(r1, . . . ,rA). Therefore, they can be expressed entirely
in terms of the variables χ1, . . . ,χ (A−1) and are independent
of RA. The integral over RA can therefore be carried out to
give

|�(r, 0,K ′)〉〉
= (2π )3/2δ(K ′ − P̂)ψ†(r)

×
[

1√
A!

∫
dχ1 . . . dχ (A−1)ψ0(r1, . . . ,

× rA)ψ†(rA − RA) . . . ψ†(r1 − RA)|0〉〉
]
, (25)

where the translationally invariant combinations r i − RA, i =
1 . . . A, and the arguments of ψ0 are functions of the (A − 1)
coordinates χ i only.

The quantity in square brackets in Eq. (25) can be rewritten
in terms of an integral over the A coordinates r1, . . . ,rA by
introducing an extra integration over RA with a factor δ(RA) in
the integrand as in the discussion around Eq. (17). The quantity
in square brackets in Eq. (25) can now be written as

|�(0,x =0)〉〉= 1√
A!

∫
dχ1 . . . dχ (A−1)ψ0(r1, . . . rA)

×ψ†(rA(χ )) . . . ψ†(r1(χ ))|0〉〉

= 1√
A!

∫
d r1 . . . d rAδ(RA)

×ψ0(r1, . . . rA)ψ†(rA) . . . ψ†(r1)|0〉〉, (26)

In the first line, r i(χ ) means r i − RA expressed as a function
of the (A − 1) coordinates χ i .

By comparing with Eq. (A5), it can be seen that this is just
the formula for the Fock space equivalent to the A-nucleon
wave function δ(RA)ψ0(r1, . . . , rA), with an internal state
characterized by the index 0 and zero momentum and with
its c.m. located with certainty at the origin of coordinates.

The final expression for the state |�(r, 0,K ′)〉〉 needed to
define the optical model wave function is therefore

|�(r, 0,K ′)〉〉 = (2π )3/2δ(K ′ − P̂)ψ†(r)|�(0,x = 0)〉〉.
(27)

When these definitions are used, the result for the overlap
of this state with an (A + 1) nucleon state |�1,K 〉〉 with
momentum K is

〈〈�(r, 0,K ′)|�1,K 〉〉 = (2π )3/2δ(K ′ − K )〈〈�(0,x = 0)|
×ψ(r)|�1,K 〉〉, (28)

where |�(0,x = 0)〉〉 is defined in Eq. (26).
The expression 〈〈�(0,x = 0)|ψ(r)|�1,K 〉〉 that appears on

the right-hand side of Eq. (28) is a more general example
of the overlap introduced earlier in Eq. (16). Note that
|�(0),x = 0)〉〉 does not have definite momentum. In fact, the
δ(RA) factor in Eq. (26) means that in this state all values of the
total momentum of the A nucleons are equally probable. On
the other hand, the operator δ(K ′ − P̂) in the ket |�(r, 0,K ′)
given in Eq. (25) projects out a component of momentum
K ′ from any state it acts on and hence gives rise to the
momentum-conserving δ function δ(K ′ − K̂ ) in the complete
overlap 〈〈�r, 0,K ′ |�1,K 〉〉 given in Eq. (28). This δ function
would be integrated over a narrow wave packet in momentum
space in any complete scattering theory. The other factors on
the right-hand side of Eq. (28) are the main focus of interest.

For translationally invariant Hamiltonians, it can be as-
sumed that |�1,K 〉 has the form

〈r1, . . . ,r (A+1)|�1,K 〉 = 1

(2π )3/2
exp(ı R(A+1) · K )

×�1(r1, . . . ,r (A+1)), (29)

where �1 is an intrinsic state of zero momentum.
Scattering theories are usually expressed in terms of overall

c.m. system quantities. In the following, therefore, K = K ′ =
0 is assumed and any reference to these quantities is omitted
in the notation. The quantity defined by

ξ0,1(r) = 〈〈�(0,x = 0)|ψ(r)|�1〉〉 (30)

coincides with that introduced in Sec. IV, Eq. (16).
It can be checked that if the overlap 〈�(r, 0,K ′)|�1,K 〉

is calculated directly using the configuration space wave
functions (19) and (29) one obtains the result corresponding to
(12) after a momentum-conserving δ function is removed and
K and K ′ are set equal to zero.
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In the next section, it will be shown that when �0 and �1 are
associated with the same Hamiltonian operator in Fock space,
ξ0,1 satisfies an inhomogeneous differential equation (source
equation) with a kinetic energy term that carries the correct
reduced mass for motion of one nucleon relative to the c.m. of
the other A nucleons.

V. SOURCE EQUATION FOR ξ0,1(r).

It is assumed that ψ0(r1, . . . ,rA) is an eigenstate of
the A-nucleon intrinsic Hamiltonian H − (P)2/(2Am) with
eigenvalue E0, where P is the A-nucleon total momentum
operator. By construction, the intrinsic Hamiltonian operator
commutes with the c.m. coordinate RA and hence

[Ĥ − ( P̂)2/(2Am)]|�(0,x = 0)〉〉 = E0|�(0,x = 0)〉〉 (31)

is a valid Fock-space equation where Ĥ and P̂ are Fock-space
operators and |�(0,x = 0)〉〉 is the state defined in Eq. (26).

If �1 is an (A + 1), zero-momentum, eigenstate of H with
eigenvalue E1 it is also an eigenstate of the Fock-space operator
[Ĥ − ( P̂)2/(2Am)] because P̂ |�1〉〉 = 0:

[Ĥ − ( P̂)2/(2Am)]|�1〉〉 = E1|�1〉〉. (32)

It follows that

(E0−E1)ξ0,1(r)

= 〈〈�(0,x = 0) | (Ĥ − ( P̂)2/(2Am))ψ(r) | �1〉〉
−〈〈�(0,x = 0) | ψ(r)(Ĥ − ( P̂)2/(2Am)) | �1〉〉

= 〈〈�(0,x = 0) | [(Ĥ − ( P̂)2/(2Am)),ψ(r)]− | �1〉〉. (33)

It is assumed that Ĥ can be written as the sum of a kinetic
energy term T̂ and a potential energy term V̂ :

Ĥ = T̂ + V̂ , (34)

where

T̂ = − h̄2

2m

∫
d r ′ψ†(r ′)

(∇2
r ′ψ(r ′)

)
, (35)

and hence

[T̂ ,ψ†(r)]− = − h̄2

2m

(∇2
r ψ

†(r)
)

(36)

and

[T̂ ,ψ(r)]− = + h̄2

2m

(∇2
r ψ(r)

)
. (37)

Using these commutators and the results (7) in Eq. (33) gives

(E0 − E1)ξ0,1(r)

= 〈〈�(0,x = 0)|[T̂ ,ψ(r)]−|�1〉〉
+〈〈�(0,x = 0)|[V̂ ,ψ(r)]−|�1〉〉
−〈〈�(0,x = 0)|[( P̂)2/(2Am),ψ(r)]−|�1〉〉

= 〈〈�(0,x = 0)| h̄2

2m

(∇2
r ψ(r)

)|�1〉〉

+〈〈�(0,x = 0)|[V̂ ,ψ(r)]−|�1〉〉

−〈〈�(0,x = 0)| −h̄2

2mA

(∇2
r ψ(r)

)|�1〉〉

=
(

1 + 1

A

)(
h̄2

2m

)
∇2

r ξ0,1(r)

+〈〈�(0,x = 0)|[V̂ ,ψ(r)]−|�1〉〉. (38)

Hence, [
− h̄2

2μmA

∇2
r − (E1 − E0)

]
ξ0,1(r)

= 〈〈�(0,x = 0)|[ψ(r),V ]−|�1〉〉, (39)

where

μmA = A

(A + 1)
m (40)

is the nucleon-A reduced mass.
In the case that �1 describes a scattering state in the overall

c.m. system corresponding to elastic scattering of a nucleon
by an A-nucleon in its ground state �0, the eigenvalue E1 is

E1 = E0 + h̄2k2
1

2μmA

, (41)

where k1 is the incident nucleon momentum in the c.m. system.
Equation (39) can now be written(

− h̄2

2μmA

∇2
r − h̄2k2

1

2μmA

)
ξ0,1(r)

= 〈〈�(0,x = 0)|[ψ(r),V ]−|�1〉〉. (42)

Many techniques have been developed to deal with the source
term [ψ(r),V ]−, including work dedicated to expressing the
source term as an operator in single nucleon degrees of freedom
acting on ξ0,1(r) and hence providing a microscopic basis for
the optical model. The aim of much of this work is to link up
with standard many-body theories of nuclear structure which
exploit a basis of determinants of single-nucleon states in a
potential fixed relative to the origin of coordinates and hence
introduce a violation of translation invariance very early in the
development. For example, this is true of the work of Bell and
Squires [5] and Capuzzi and Mahaux [6], as well as the more
recent work [7] cited in the introduction. Like Refs. [5] and
[6] the authors of Ref. [7] use a definition of the optical model
wave function based Eq. (1) instead of Eq. (30). This is at least
formally unacceptable. Further work is needed to assess any
quantitative consequences.

As a first step to carrying forward an approach based on
Eq. (42), the next section shows how the modified definition
of the optical model wave function given in Eqs. (16) and
(30) can be expressed in terms of a time-dependent one-body
Green’s function. It was mentioned in the introduction that
time-dependent Green’s function methods are believed to be
the way forward for medium and heavy targets.

VI. THE OPTICAL MODEL WAVE FUNCTION IN TERMS
OF A TIME-DEPENDENT GREEN’S FUNCTION

�1 describes a scattering state with a plane wave nucleon
incident on an A-nucleon ground state ψ0 as the incident
channel and outgoing waves in all other channels. In the overall
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c.m. system this state is the limit as ε → 0+ of the state∣∣�ε
1

〉〉= ıε

E1 − H + ıε
(2π )3/2a

†
k1

| − k1,ψ0〉〉, (43)

where (2π )3/2a
†
k1

| − k1,ψ0〉〉 describes the incident channel
in which the incident nucleon has momentum k1 and the
target has a total momentum −k1. In configuration space, this
incident channel state is the antisymmetrized version of

exp(ık1 · χA)ψ0(χ1, . . . ,χ (A−1))

= exp(ık1 · r (A+1)) exp(−ık1 · RA)ψ0(r1, . . . ,rA).

(44)

The expression (43) is the generalization to include c.m.
degrees of freedom explicitly of the formulation of collision
theory described in Ref. [6], their Eq. (4.19), and Ref. [10].

In order to make a connection with time-dependent Green’s
functions, a time variable is introduced via the identity (h̄ = 1)

ıε

(E1 + ıε − H )
= ε

∫ 0

−∞
dt exp ( − ı(E1 + ıε − H )t).

(45)

The scattering state defined in Eq. (43) can now be written

∣∣�ε
1

〉〉 = ε

∫ 0

−∞
dt exp ( − ı(E1 + ıε − H )t)

× (2π )3/2a
†
k1

| − k1,ψ0〉〉, (46)

and from Eq. (30) the optical model overlap is

ξ ε
0,1(r)

= 〈〈�(0,x = 0)|ψ(r)ε
∫ 0

−∞
dt

× exp ( − ı(E1 + ıε − H )t)(2π )3/2a
†
k1

| − k1,ψ0〉〉.
(47)

This expression can be written in terms of the Heisenberg
operators

�(r,t) = exp(ıH t)ψ(r) exp(−ıH t),

�†(r,t) = exp(ıH t)ψ†(r) exp(−ıH t),

A
†
k1

(t) = exp(ıH t)a†
k1

exp(−ıH t). (48)

In terms of these, Eq. (47) becomes

ξ ε
0,1(r) = 〈〈�(0,x = 0)|ε

∫ 0

−∞
dt exp(−ı(E1 + ıε)t)

×(2π )3/2 exp(ıH t)a†
k1

exp(−ıH t)

× exp(+ıH t)| − k1,ψ0〉〉

= 〈〈�(0,x = 0)|ε
∫ 0

−∞
dt �(r,t = 0)

× exp ( − ı(E1 + ıε)t)

× (2π )3/2A
†
k1

(t) exp (ı(E0 + E1A) t)| − k1,ψ0〉〉

= 〈〈�(0,x = 0)|ε
∫ 0

−∞
dt �(r,t = 0)

× exp
( − ı

(
εk1 + ıε

)
t
)

× (2π )3/2A
†
k1

(t)| − k1,ψ0〉〉. (49)

The derivation of the last line of Eq. (49) has used

H | − k1,ψ0〉〉 = (E0 + E1A)| − k1,ψ0〉〉, (50)

where E0 is the ground-state energy of the target and E1A is
the incident target c.m. kinetic energy

E1A = h̄2k2
1

2Am
. (51)

E1 − E0 − E1A is therefore the incident nucleon kinetic
energy

εk1 = h̄2k2
1

2m
. (52)

The expression (49) for the optical model wave function can
be written in terms of a Green’s function by using

a
†
k =

∫
d r ′ exp(ık · r ′)

(2π )3/2
ψ†(r ′). (53)

It follows from this that

a
†
k1

=
∫

dk′δ(k1 − k′)a†
k′

=
∫

dk′
[∫

d r ′ exp (ı(k1 − k′) · r ′)
(2π )3

]
a
†
k′

=
∫

d r ′ exp(ık1 · r ′)
(2π )3/2

∫
dk′ exp(−ık′) · r ′

(2π )3/2
a
†
k′

=
∫

d r ′ exp(ık1 · r ′)
(2π )3/2

ψ†(r ′), (54)

and hence

A
†
k1

(t) = exp(ıH t)a†
k1

exp(−ıH t)

=
∫

d r ′ exp(ık1 · r ′)
(2π )3/2

�†(r ′,t). (55)

It follows from Eqs. (49) and (55) that

ξ ε
0,1(r) = 〈〈�(0,x = 0)|ε

∫ 0

−∞
dt �(r,t = 0)

× exp
( − ı

(
εk1 + ıε

)
t
)
(2π )3/2A

†
k1

(t)| − k1,ψ0〉〉,

= ε

∫ 0

−∞
dt

∫
d r ′ exp

( − ı
(
εk1 + ıε

)
t
)

× exp(ık1 · r ′)〈〈�(0,x = 0)|
× T {�(r,0) �†(r ′,t)}| − k1,ψ0〉〉. (56)

The time-ordering operator T can be introduced without error
because all values of t in the integral satisfy t < 0.

Equation (56) can be written

ξ ε
0,k1

(r) = ε

∫ 0

−∞
dt

∫
d r ′ exp(ı

(
k1 · r ′ − (

εk1 + ıε
)
t
)
)

×G(r,t = 0; r ′,t), (57)
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where the Green’s function is given by

G(r,t ; r ′,t ′) = 〈�(0,x = 0)| T {�(r,t)

×�†(r ′,t ′)}| − k1,ψ0〉. (58)

This differs from the usual ground-state–ground-state one-
nucleon Green’s function in that in the bra the ground state has
a c.m. localized at the origin and in the ket the ground state has
the total momentum −k1, i.e., opposite to the incident nucleon
momentum in the overall c.m. system. It would be interesting to
explore how far this differences leads to significant quantitative
effects on the calculation of microscopic optical potentials.

Equation (57) differs from the expression for the optical
model wave function given by Bell and Squires [5]. These
differences appear to come from the way boundary conditions
are handled. Bell and Squires introduce an unusual asymptotic
condition which specifies a point source of particles at a large
distance. They then project out a state with definite energy by
integrating over all times. The scattering state (43) is based on
a physically transparent and well-understood limiting process.
The state |�(ε)

k 〉 defined in Eq. (43) is the state at time t = 0
that evolves from a state in the remote past with energy E
with a spread of ε (see Gellman and Goldberger [11]). It is not
clear at this time how these two different ways of handling the
time affect the resulting theoretical optical potentials. They
clearly involve two different time orderings in the Green’s
function (58) and this may alter the diagrams appearing in the
perturbation expansion of the Green’s function.

Extensive quantitative comparisons of translational
invariant and noninvariant calculations of overlap functions
of bound-state wave functions (“center-of-mass corrections”)
have been published in Ref. [8] and references therein. These
calculations evaluate the source term in Eq. (42) within
the fully antisymmetrized translationally invariant oscillator
shell model and use a formulation of the overlap function in
terms of Jacobi coordinates as defined in Eq. (12) of Sec. III.
Therefore, they do not suffer from the definition difficulties
set out in Sec. II.

Of particular relevance are the results obtained in Ref. [8]
for asymptotic normalization coefficients (ANCs), which
determine the amplitude of the overlap function in the region
outside the A-nucleon nucleus and which one might expect are
influenced by similar considerations as the optical model scat-
tering amplitude in the case of an optical model overlap. Ref-
erence [8], Table I, quotes c.m. corrections to squared ANCs
of 15.5% even for the 40Ca-41Ca overlap with A as large as 40.
According to Ref. [8], these corrections are much larger than
one would expect simply from the use of the correct reduced
mass in the kinetic energy term in the source equation and scal-
ing corrections deduced from the harmonic oscillator model.
This suggests that similar quantitative effects may arise from
c.m. corrections incorporated in the new formalism developed
in Secs. V and VI for the case of nucleon-nucleus scattering.

VII. CONCLUSIONS

A new, fully antisymmetrized, translationally invariant
definition of the nucleon-nucleus optical model wave function
in terms of many-nucleon scattering wave function has been
introduced. It has been shown that this wave function satisfies a

differential equation in which the kinematically correct kinetic
energy operator appears. It has also been shown how this
wave function can be related to a modified definition of a
one-nucleon time-dependent Green’s function.
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APPENDIX: BRIEF NOTES ON SECOND QUANTIZATION

Many-body theory can be formulated in a new space (Fock
space) in which states exist that have components in different
orthogonal subspaces, each of which corresponds to a different
number of particles (nucleons in the present case), including
one component with zero particles, the vacuum. The Fock
space concept allows the introduction of operators, such as
creation and destruction operators that act in Fock space and
connect subspaces with different numbers of particles. The
nuclear states dealt with here usually have a definite number
of particles and hence only one component in Fock space, and
Hamiltonians that do not connect states with different numbers
of particles, but in handling antisymmetry requirements Fock
space ideas frequently simplify calculations considerably. In
BCS pairing theory, one actually does deal with states that
do not have a definite number of nucleons and therefore have
nonzero components in orthogonal parts of Fock space.

A general state vector, |A〉〉, in Fock space has the form

|A〉〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0

|A1〉(1)

|A2〉(1)(2)

.

.
|An〉(1)(2)...(n)

.

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A1)

where the number A0 is the amplitude for finding the system
in a state with zero nucleons. The state with zero nucleons
is called the vacuum and has a zero in every row except the
first, i.e.,

|0〉〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
0
0
.
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A2)

In Eq. (A1) the quantity |A1〉(1) is a state vector in the
single nucleon subspace of nucleon labeled ”1,” |A2〉(1)(2)

is an antisymmetrized state in the 2-nucleon subspace of
nucleons 1 and 2, and, in the row labeled n, |An〉(1)(2)...(n) is an
antisymmetrized state in the n-nucleon subspace of nucleons
1 to n.

Note that the rows of |A〉〉 are labeled with the integers
0,1,2, . . . , starting with row 0 which contains the vacuum
amplitude A0.
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In general, a double right-angle bracket, | . . . 〉〉, is used
to denote state vectors in Fock space and the usual single

right-hand bracket, | . . . 〉, is used to denote a state with a
definite number of nucleons.

1. Definition of creation and destruction operators

The complete definition of the creation and destruction operators acting on a general ket |A〉〉 in Fock space is (x signifies a
set of commuting nucleonic dynamic variables for space, spin, and isospin)

ψ†(x0)|A〉〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
A0|x0〉(1)

1√
2
A1(2)[|x0〉(1)|A1〉(2)]

.

.
1√
n
A1(2...n)[|x0〉(1)|An−1〉(2)...(n)]

.

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

ψ(x0)|A〉〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈x0|A1〉√
2
∫

dx2|x2〉(1)〈x0,x2|A2〉
.
.√

(n + 1)
∫

dx2 . . . dxn+1|x2, . . . ,xn+1〉(1)...(n)〈x0,x2, . . . ,xn+1|An+1〉
.
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (A3)

Here, A1(2...n) acts on the labels of nucleons 1,2, . . . ,n, and is defined by

A1(2...n) = 1 −
j=n∑
j=2

P(1,j ), (A4)

where P(1,j ) interchanges the labels of nucleons 1 and j .

2. Connection between a state in Fock space with a definite number of nucleons and a many-body wave function

An A-nucleon state with wave function φS(x1,x2 . . . xA) is described in Fock space by a vector |�S〉〉 given by

|�S〉〉 = 1√
A!

∫
dx1 dx2 . . . dxAφS(x1, . . . ,xA)ψ†(xA) . . . ψ†(x1)|0〉〉. (A5)

The notation used is x1 = r1,sz,τ3, etc., and the integral signs include a summation over sz = ±1/2,τ3 = ±1/2.
The inverse of (A5) is

φS(x1, . . . ,xA) = 1√
A!

〈〈0|ψ(x1) . . . ψ(xA)|�S〉〉. (A6)

The operator ψ†(x0) creates a particle at x0. Its adjoint ψ(x0) destroys a particle at point x0. A formal definition of what these
statements mean in terms of the action of these operators on an arbitrary Fock state is given in Eqs. (A3) above; however, these
definitions are rarely needed in practice and all one invariably has to use is the anticommutation relations that can be derived
from the definitions:

ψ†(x0)ψ†(x ′
0) + ψ†(x ′

0)ψ†(x0) = 0, ψ†(x0)ψ†(x0) = 0,

ψ(x0)ψ(x ′
0) + ψ(x ′

0)ψ(x0) = 0, ψ(x0)ψ(x0) = 0,

ψ(x0)ψ†(x ′
0) + ψ†(x ′

0)ψ(x0) = δ(x0 − x ′
0). (A7)
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