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Background: Deuteron-induced one-neutron transfer reactions have been used to extract single-particle
properties of nuclei, and the adiabatic (AD) approximation is often used to simply treat the deuteron breakup
states.
Purpose: The primary goal is to examine the validity of the AD approximation for the (d,p) reaction
systematically. We clarify also the role of the closed channels often ignored in the description of breakup
reactions.
Methods: We calculate the (d,p) cross sections with the continuum-discretized coupled-channels method
(CDCC) for 128 reaction systems and compare the results with those obtained by the CDCC calculation with the
AD approximation. Effect of the closed channels are investigated by ignoring them in CDCC.
Results: The AD approximation affects in general the (d,p) cross section by less than 20%, but some exceptional
(nonadiabatic) cases for which the AD approximation breaks down are found. The closed channels turn out to
have significant effects on the cross section at deuteron energies less than about 10 MeV.
Conclusions: The use of the AD approximation in the description of the (d,p) reaction can be justified in many
cases, with the uncertainty of less than about 20%. The existence of some nonadiabatic cases nevertheless should
be realized. The neglect of the closed channels without confirming the convergence of the CDCC result is not
recommended.
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I. INTRODUCTION

Nucleon transfer reactions have played a substantial role in
extracting single-particle (s.p.) properties of nuclei. Deuteron-
induced transfer reactions; that is, A(d,p)B and A(d,n)C pro-
cesses, are particularly important because the s.p. information
on B or C not only in the ground state (g.s.) but also in excited
states can be studied. Furthermore, these reactions in inverse
kinematics can be applied to studies of unstable nuclei; a
number of results have been reported in, e.g., Refs. [1–5].
In these studies, the adiabatic (AD) approximation [6,7]
was employed for describing the (p + n)-A three-body wave
function with efficiently taking into account the breakup effect
of deuteron; this framework is called adiabatic distorted-wave
approximation (ADWA).

On the theoretical side, the reaction mechanism of the
(d,N ) reactions (N = p or n) has intensively been studied
with three-body reaction theories [8–12]. Nowadays the cal-
culation with the Faddeev–Alt–Grassberger–Sandhas (FAGS)
theory [13,14] is feasible [15,16] that gives the exact solution to
the (d,N ) cross section with a given three-body Hamiltonian;
very recently, the role of the core excitation in (d,p) reactions
has also been studied [17]. However, the situation of the
(d,N ) reactions is still complicated; the energy dependence
of the distorting potentials for p and n, as well as their
nonlocality, has been a matter of discussion [15,16,18–21].
In Refs. [18–21] a simple prescription for implementing these
ingredients was proposed within the framework of ADWA.
This prescription is very helpful to minimize the numerical
tasks for evaluating properly (d,N ) cross sections; its validity
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depends on, however, the validity of the AD approximation
that is adopted.

In this study we systematically examine the AD ap-
proximation applied to the three-body scattering wave func-
tion in the initial channel of the A(d,p)B process. We
employ the continuum-discretized coupled-channels method
(CDCC) [22–24] as a three-body reaction model and compare
the resulting (d,p) cross sections with those calculated by
CDCC with the AD approximation. For simplicity we neglect
the intrinsic spin of each nucleon in the CDCC calculation; the
zero-range approximation with the finite-range correction [12]
is adopted in the calculation of the (d,p) transition matrix.
Furthermore, we fix the energy used in evaluating p-A and n-A
optical potentials at half of the incident deuteron energy; the
effect of nonlocality of the potentials are not taken into account.
We thus concentrate on the effect of the AD approximation
of the d-A scattering wave on the (d,p) cross sections. It
should be noted that, in Refs. [25–27], a numerical test for
ADWA has been done for some reaction systems. In this
study, we consider four target nuclei, four incident energies,
four transferred angular momenta, and two possibilities of
the neutron separation energy of the residual nucleus B;
in total we consider 128 reaction systems. In addition to
that, we investigate the effect of the closed channels (see
Sec. III C) on the (d,p) cross sections. The closed channels
are sometimes neglected in CDCC calculations [26] and can
significantly affect reaction observables at low energies in
particular [28].

The construction of this paper is as follows: In Sec. II we
briefly describe the reaction model adopted. In Sec. III we first
explain the numerical inputs and discuss the systematics of
the validity of the AD approximation. The role of the closed
channels is also clarified. Finally we give a summary in Sec IV.
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FIG. 1. Illustration of the three-body system.

II. THEORETICAL FRAMEWORK

We adopt the three-body system consisting of p, n, and the
target nucleus A, shown in Fig. 1. The residual nucleus B in the
final channel is assumed to be a bound state of the n-A system.
The post-form of the transition matrix for the A(d,p)B process
is given by

Tβα = 〈�(−)
β |Vpn|�(+)

α 〉, (1)

where Vpn is the interaction between p and n, and �(+)
α is the

exact three-body scattering wave function in the initial channel
satisfying the Schrödinger equation

[Hα − E]�(+)
α (Rα,rα) = 0 (2)

with the outgoing boundary condition. The three-body Hamil-
tonian Hα in Eq. (2) is written as

Hα = TRα
+ Up(r) + Un(rβ) + hpn, (3)

where TRα
is the kinetic-energy operator regarding the

coordinate Rα , Up and Un are the proton and neutron
distorting potentials by A, respectively, and hpn is the internal
Hamiltonian of the p-n system. The definition of �

(−)
β is given

below.
We adopt CDCC to obtain �(+)

α

�(+)
α =

imax∑
i=0

φi(rα)χ (+)
i (Rα), (4)

where φ0 is the deuteron bound-state wave function and φi for
i �= 0 denote discretized continuum states. The φi satisfy

hpnφi(rα) = εiφi(rα), (5)

with εi being the eigenenergy of the p-n system. Equation (4)
means that the total wave function is expanded in terms of
the set of the eigenstates of hpn, which is assumed to form a
complete set in the space relevant to the physics observables
of interest. The expansion “coefficients” are denoted by χ

(+)
i

which physically represent the scattering waves between A
and the p-n system in the ith state. Although CDCC is
not an exact theory for three-body scattering processes, its
theoretical foundation is given in Refs. [29,30] in connection
with the distorted-wave Faddeev formalism [31], and thus it
can be regarded as a very good approximation to the FAGS
theory [13,14]. It should be noted that the striking difference

between the results of CDCC and FAGS for low-energy
deuteron breakup cross sections found in Ref. [26] was
shown to be mainly because of the lack of the CDCC model
space [28]. In Ref. [26], it was reported also that (d,p) cross
sections obtained by CDCC somewhat deviate from those by
FAGS at incident deuteron energies higher than about 40 MeV,
which we do not discuss in this study. For further details of
CDCC, readers are referred to Refs. [22–24]. To examine
the AD approximation, we do not adopt the usual ADWA
framework but make all εi for i �= 0 equal to ε0 in solving the
CDCC equations to minimize the model uncertainty. We call
this calculation CDCC-AD in the following.

The three-body wave function �
(−)
β in the final channel

having the incoming boundary condition is a solution of

[Hβ − E]�(−)
β (Rβ,rβ) = 0, (6)

Hβ = TRβ
+ U ∗

p(r) + hnA, (7)

where TRβ
is the kinetic-energy operator associated with Rβ

and hnA is the internal Hamiltonian of the n-A bound system.
In the present study the three-body wave function of the

final channel is approximated by

�
(−)
β ≈ ϕn(rβ)ψ (−)

p (Rβ), (8)

where ϕn is the neutron bound-state wave function and ψ (−)
p

is the distorted wave for the outgoing proton. Because the
purpose of the present study is to investigate the validity of the
AD approximation to �(+)

α , we restrict ourselves not to discuss
the breakup effect in the final channel.

The transfer reaction is described by a one-step process
with the zero-range approximation to Vpn φi ; the finite-range
correction following Ref. [12] is made. In some figures shown
in Sec. III B, we decompose the transition matrix of Eq. (1)
into the elastic transfer (ET) part T ET

βα and the breakup transfer
(BT) part T BT

βα as

Tβα = T ET
βα + T BT

βα , (9)

T ET
βα ≡ 〈�(−)

β |Vpn|φ0(rα)χ (+)
0 (Rα)〉, (10)

T BT
βα ≡

〈
�

(−)
β

∣∣∣∣∣∣Vpn

∣∣∣∣∣∣
imax∑
i �=0

φi(rα)χ (+)
i (Rα)

〉
. (11)

The cross section calculated with replacing Tβα with T ET
βα (T BT

βα )
is designated as the ET (BT) cross section.

III. RESULTS AND DISCUSSION

A. Numerical inputs

We consider four target nuclei having an atomic number
Z and mass number A of (Z,A) = (10,20), (20,40), (40,100),
and (80,200), which we call in the following 20Ne, 40Ca, 100Zr,
and 200Hg, respectively. These nuclei are assumed to have a
fictitious s.p. structure so that a neutron is transferred to a s.p.
orbit having �f = 0, 1, 2, or 3 in the residual nucleus B, where
�f is the orbital angular momentum of the transferred neutron.
The principal quantum number of the neutron starting from
0 is determined with the assumption that the target nucleus
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TABLE I. Single-particle orbit for the transferred neutron.

Target �f

0 1 2 3

20Ne 1s1/2 1p3/2 0d5/2 0f7/2
40Ca 2s1/2 1p3/2 1d5/2 0f7/2
100Zr 2s1/2 2p3/2 1d5/2 1f7/2
200Hg 3s1/2 3p3/2 2d5/2 1f5/2

A has a naïve shell structure; in Table I we list the s.p. orbit
for the neutron transferred to nucleus A. Furthermore, the
neutron separation energy Sn of B is supposed to be 0.1 MeV
or 8.0 MeV. The Bohr–Mottelson s.p. potential [32] is used to
calculate the neutron bound-state wave function.

The deuteron incident energy Ed is taken to be 5, 10, 20, and
40 MeV. We adopt the Koning–Delaroche (KD) [33] nucleon
optical potential as Up and Un, and the one-range Gaussian
interaction [34] is employed as Vpn. The p-n discretized
continuum states of the s and d waves, with kmax = 2.0 fm−1

and �k = 0.04 fm−1, are included in CDCC, where kmax is
the maximum p-n linear momentum (in units of h̄) and �k

is the size of the momentum bin. The CDCC equations are
integrated up to Rα = 20 fm with the increment of 0.1 fm; the
Coulomb breakup is ignored in this study.

The distorted wave ψ (−)
p for the outgoing proton is calcu-

lated with the KD potential. The integration of the transition
matrix is taken up to 150 and 40 fm for Sn = 0.1 and 8 MeV,
respectively.

B. Validity of adiabatic approximation

In Table II we show the adiabatic factor SAD determined so
as to minimize

χ2(SAD) ≡
∫ [(

dσ

d�
− SAD

dσAD

d�

)/(
dσ

d�

)]2

×�

(
dσ

d�
− 1

2

dσ max

d�

)
dθcm, (12)

where dσ/d� and dσAD/d� are the (d,p) differential cross
sections calculated with CDCC and CDCC-AD, respectively,
� is the step function, and dσ max/d� is the maximum value of
dσ/d�. It should be noted that, in the integration in Eq. (12),
we ignore the weighting factor sin θ , where θ is the scattering
angle of the outgoing proton in the center-of-mass (c.m.)
frame, as in the standard χ2-fitting procedure for the angular
distribution.

One sees from Table II that SAD does not largely deviate
from unity in general; the AD approximation affects the (d,p)
cross section by less than 20% and by about 35% at most.
In some exceptional cases, however, SAD has a very large
value, meaning the clear breakdown of the AD approximation.
Furthermore, there are some cases in which SAD is quite close
to unity but the angular distribution of the transfer cross section
is severely affected by the AD approximation. The angular
distribution of the (d,p) cross sections for the 128 systems

TABLE II. Adiabatic factor SAD. The superscripts ∗1, ∗2, and ∗3
indicate the cases in which the AD approximation does not work. See
the text for details.

�f = 0

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40

20Ne 0.71∗3 0.89 1.32 1.25 0.90 0.93 0.88 0.74
40Ca 1.08∗3 1.21 2.01∗2 1.44∗2 0.78 0.77 0.78 0.87
100Zr 0.96 1.11 1.83∗2 1.67∗2 0.87∗1 0.87 0.68 1.10
200Hg 1.00 0.94 1.21 1.29 1.06∗1 0.88 0.66 1.24

�f = 1

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 0.94 1.00 0.99 0.92 0.84 0.83 0.83 0.91
40Ca 0.94 0.80 0.87 1.15 0.81∗1 0.80 0.93 0.85
100Zr 0.96 0.90 0.74 2.00∗2 0.96 0.80 0.85 1.02
200Hg 1.00 0.93 1.06 1.56∗2 0.94∗1 0.75∗1 0.74 0.92

�f = 2

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 0.92 0.82 0.88 0.98 0.95 0.94 0.92 0.90
40Ca 0.93 0.83 0.92 0.92 0.66∗1 0.77∗1 0.84 0.90
100Zr 0.97 0.85 0.84 0.92 0.83∗1 0.80∗1 0.77 0.86
200Hg 1.00 0.93 0.86 0.97 1.04∗1 0.76 0.82 0.88

�f = 3

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 0.89 0.92 0.92 0.85 0.74 0.78 0.85 0.88
40Ca 0.90 0.83 0.83 0.89 0.87∗1 0.86∗1 0.92 0.98
100Zr 0.98 0.86 0.82 0.86 0.84∗1 0.72∗1 0.81 0.93
200Hg 1.00 0.93 0.82 0.83 0.99 0.75∗1 0.74 0.74

calculated with CDCC and CDCC-AD can be found in the
addendum provided as supplemental material [35].

Before discussing the nonadiabatic cases one by one, let us
first see typical cases in which the AD approximation works
well. Figure 2(a) shows the result for 100Zr(d,p)101Zr(2s1/2) at
Ed = 5 MeV with Sn = 0.1 MeV. The solid and dashed lines
show the results of CDCC and CDCC-AD, respectively. When
Ed is much smaller than the Coulomb barrier height, as is well
known, the angular distribution is dictated by the property
of the Coulomb trajectory [36] and has a backward-peak
structure; this is called Coulomb-dominated transfer angular
distributions. In the case shown in Fig. 2(a), SAD is 0.96
and the reaction can be regarded as adiabatic. At first look,
it seems to be strange that the AD approximation works at
such low incident energy. The reason for this is given below
in comparison with the result for the Sn = 8 MeV case.

In Fig. 2(b) we show the result for 40Ca(d,p)41Ca(2s1/2)
at 40 MeV and Sn = 8 MeV. The incident energy is well
above the Coulomb barrier and the angular distribution shows
the diffraction pattern. The AD factor in this case is 0.87,
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FIG. 2. Angular distributions of the (d,p) cross sections calcu-
lated with CDCC (solid lines) and CDCC-AD (dashed lines) for (a)
100Zr(d,p)101Zr(2s1/2) at Ed = 5 MeV with Sn = 0.1 MeV and (b)
40Ca(d,p)41Ca(2s1/2) at Ed = 40 MeV with Sn = 8 MeV.

which shows the success of the AD approximation with about
10% error. This is quite natural because as Ed increases the
deuteron internal motion becomes slow relative to the motion
of the c.m. of the deuteron, resulting in the validity of the AD
approximation. In general, this is the case for Ed � 20 MeV
with Sn = 8 MeV. One should keep it in mind, however, that
there exists a not so large but finite difference coming from the
use of the AD approximation.

At lower energy, the validity of the AD approximation
becomes questionable. Although SAD does not deviate from
unity very much, the (d,p) angular distribution seriously
suffers from the AD approximation for Ed � 10 MeV and
Sn = 8 MeV; we put *1 in Table II to specify the systems for
which this is the case. As a typical example, the (d,p) cross
section for 100Zr(d,p)101Zr(2s1/2) at Ed = 5 MeV with Sn =
8 MeV is shown in Fig. 3(a). Clearly, the AD approximation
fails to reproduce the result of CDCC. In Figs. 3(b) and 3(c),
we show the cross sections of the ET and BT, respectively.
Despite the interference between the ET and BT amplitude
not being negligible, one may see that the difference between

FIG. 3. (a) Same as in Fig. 2 but for Sn = 8 MeV; (b) ET cross
section and (c) BT cross section.

the two lines in Fig. 3(a) mainly comes from that in the ET
process. This suggests that the AD approximation cannot treat
the coupling of the breakup channels to the elastic channel;
that is, the so-called back-coupling. The difference between
the two lines is very large also in the BT cross section.
Nevertheless, the BT process itself is not so important because
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FIG. 4. (a) TMDs for the ET part of the cross section at 40◦ for
100Zr(d,p)101Zr(2s1/2) at Ed = 5 MeV. The solid (dashed) and dotted
(dash-dotted) lines show the results with CDCC (CDCC-AD) for
Sn = 8 and 0.1 MeV, respectively. (b) Enlarged view of panel (a) for
r � 10 fm; the dotted and dash-dotted lines are multiplied by 100.

of its small contribution for the reaction systems indicated by
*1 in Table II.

We discuss here the effect of Sn, which is the only difference
in the reaction systems shown in Figs. 2(a) and 3(a), on the
validity of the AD approximation. To see the role of Sn in more
detail, we show in Fig. 4 the transition matrix density (TMD)
originally proposed in Ref. [37] as a weighting function for
evaluating the mean density of the (p,2p) knockout reactions.
The TMD can be interpreted as a spatial distribution of the
cross section; see Refs. [37,38] for details. The solid (dotted)
and dashed (dash-dotted) lines in Fig. 4(a) show the TMDs
for the ET cross section at θ = 40◦ calculated with CDCC and
CDCC-AD, respectively, for Sn = 8 MeV (0.1 MeV). One
sees that the TMD for Sn = 0.1 MeV distributes from about
15 fm to 80 fm. In this region the partial waves of �(+)

α for
lower angular momenta between A and the c.m. of the p-n
system, which are distorted by Up and Un, have only a small
contribution to �(+)

α . In other words, the incident-wave part
of �(+)

α is dominant there. The use of the AD approximation

therefore makes no difference in the ET amplitude. In fact,
the breakup effect itself is found to be negligibly small, which
trivially results in the tiny contribution of the BT process.
This is why CDCC-AD successfully reproduces the result of
CDCC for the reaction shown in Fig. 2(a). On the other hand,
the TMD distributes below about 15 fm when Sn = 8 MeV. In
that region, the nuclear distortion including the back-coupling
effect is significant. As mentioned, because of the low incident
energy, the breakup effect cannot be treated accurately by the
AD approximation.

As mentioned above, there is no difference in �(+)
α for

Figs. 2(a) and 3(a). What classifies the validity of the AD
approximation is therefore the region where the reaction takes
place. If the nuclear interior and surface regions are important,
the AD approximation fails at low incident energies. If only the
tail (asymptotic) region is important, the AD approximation
works well even at low incident energies. In Fig. 4(b) the
results for r � 10 fm are shown; those for Sn = 0.1 MeV are
multiplied by 100. One may see the difference coming from
the AD approximation indeed exists also for Sn = 0.1 MeV. As
mentioned, however, this region does not have a meaningful
contribution to the cross section, resulting in the success of
CDCC-AD.

Next we discuss the cases for which SAD is significantly
large; we put *2 in Table II for them. Figure 5(a) shows the
result for 40Ca(d,p)41Ca(2s1/2) at 40 MeV with Sn = 0.1 MeV,
and Figs. 5(b) and 5(c) show the corresponding ET and BT
cross sections, respectively. In this case, the result of CDCC-
AD undershoots that of CDCC for the BT part, whereas the
two calculations give almost the same result for the ET cross
section except at very backward angles. Thus, in some cases
for Sn = 0.1 MeV and at relatively high incident energies,
the AD approximation fails to describe the breakup property
of deuteron in the (d,p) process. In consequence of this, the
absolute value of the cross section calculated with CDCC-AD
is significantly smaller than that of CDCC.

It is well known that the AD approximation tends to
overshoot the breakup cross section of the projectile, since
the AD approximation makes all the p-n continuum states
degenerate to the g.s. of the deuteron, and thus makes the
coupling between the deuteron g.s. and its breakup states
effectively stronger. In fact, the deuteron elastic breakup cross
section σEB calculated with CDCC-AD is 107 mb and that with
CDCC is 73 mb. On the other hand, the result of CDCC-AD
is smaller than that of CDCC for the BT cross section, as
mentioned above. To see this in more detail, we show in Fig. 6
the TMD for the BT cross section corresponding to θ = 0◦.
In the tail region, the amplitude of the CDCC-AD is larger
than that of CDCC, reflecting mainly the amplitudes of the
deuteron scattering wave function in the breakup channels.
This is consistent with the aforementioned results of σEB. On
the other hand, in the surface region around 7 fm, the result of
CDCC (the solid line) has a larger positive value than that of
CDCC-AD (the dashed line). Since the integrated value of the
TMD is proportional to the cross section, the larger BT cross
section of CDCC shown in Fig. 5(c) is due to the behavior of
the solid line in Fig. 6 around 7 fm. It is, however, difficult to
pin down the reason for this internal behavior, mainly because
of the complicated coupled-channel effects.
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FIG. 5. Same as in Fig. 3 but for 40Ca(d,p)41Ca(2s1/2) at Ed =
40 MeV with Sn = 0.1 MeV.

Finally, we discuss the cases in which Sn = 0.1 MeV
and the result of CDCC-AD deviates from that of CDCC,
even though SAD ∼ 1; we put *3 for them in Table II. The
(d,p) cross sections of 40Ca(d,p)41Ca(2s1/2) at 5 MeV with
Sn = 0.1 MeV are shown in Fig. 7, as in Fig. 3. The shape
of the cross section of CDCC-AD is somewhat different
from that of CDCC, which is attributed to the difference in

FIG. 6. TMD for the BT cross section in Fig. 5(c) at 0◦.

the BT cross sections. One of the important characteristics
of this reaction system is the relation between Ed and the
Coulomb barrier height VCB. When Ed 
 VCB, the Coulomb-
dominated transfer angular distributions are observed, whereas
the diffraction pattern develops when Ed > VCB [36]. There
is a window for Ed between these two conditions; that is,
Ed ∼ VCB. In this region, the shape of the cross section
starts changing from the Coulomb-dominated distribution to
the diffraction pattern. The balance between Ed and VCB is
thus crucially important there. In CDCC, when the incident
deuteron breaks up, the energy of the c.m. motion of the
p-n system decreases following the energy conservation of
the three-body system. When Ed ∼ VCB, the p-n c.m. energy
in the breakup channels goes below VCB, and the BT hardly
contributes to the (d,p) cross section because of the Coulomb
barrier. On the contrary, the AD approximation ignores the
energy conservation and the penetrability of the scattering
wave in breakup channels is the same as in the incident
channel. As a result, the BT cross section is significantly
overestimated by the CDCC-AD calculation. This is the case
when Ed ∼ VCB and Sn = 0.1 MeV; in fact, a similar result
is obtained for 200Hg(d,p)201Hg(3s1/2) around 15 MeV with
Sn = 0.1 MeV. When Sn is large, say, 8 MeV, the contribution
of the BT becomes less important and the validity of the AD
approximation mainly relies on the accurate description of the
ET process as mentioned above.

Thus far we have discussed the validity of the AD
approximation with respect to Ed , Sn, and target nuclei. As
for the trend in �f , one can conclude from Table II that when
Sn = 8 MeV the selectivity of �f is weak and Ed dictates
the accuracy of the AD approximation. On the other hand,
for Sn = 0.1 MeV almost all the nonadiabatic cases are found
when �f = 0; this may be related to the halo structure of the
n-A system.

C. Effect of closed channel

In our CDCC calculation, as mentioned, the maximum p-n
linear momentum kmax is taken to be 2.0 fm−1. In some studies,
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FIG. 7. Same as in Fig. 3 but for 40Ca(d,p)41Ca(2s1/2) at Ed =
5 MeV with Sn = 0.1 MeV.

however, kmax is determined by

h̄2k2
max

2μpn

= E0, (13)

where μpn is the reduced mass of the p-n system and E0 is the
deuteron incident energy in the c.m. system. In other words, the

TABLE III. Values of SOP. The superscript † represents the cases
in which SOP does not deviate much from unity but the angular
distribution is severely affected by the neglect of the closed channels.

�f = 0

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40

20Ne 1.00 1.09 1.16 1.00 0.85 1.04 1.10 0.91
40Ca 1.27 1.39 1.25 0.95 0.58 0.92 1.04 0.92
100Zr 1.00 1.18† 1.13 0.94 0.89† 1.02 0.84 0.93
200Hg 1.00 0.99 0.94† 0.94 1.08† 0.84† 0.89 0.96

�f = 1

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 1.13 1.07 1.02 0.97 0.90 1.04 1.00 0.96
40Ca 1.19† 0.99 0.95 0.99 0.62 0.88 0.97 0.97
100Zr 1.00 1.02† 0.91 0.95 0.69 0.88 0.89 0.98
200Hg 1.00 0.99 0.98 0.95 0.94 0.72 0.89 0.98

�f = 2

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 1.04 1.02 0.95 1.00 0.79 0.91 0.93 1.00
40Ca 1.06† 0.96 0.96 0.97 0.79 0.91 0.94 0.98
100Zr 1.01 0.96 0.98 0.95 0.92† 0.94 0.90 1.00
200Hg 1.00 0.99 0.95 0.96 1.05 0.89† 0.90 1.00

�f = 3

Target Energy (Sn = 0.1 MeV) Energy (Sn = 8 MeV)

5 10 20 40 5 10 20 40
20Ne 0.93† 0.96 0.98 0.99 1.13† 1.01 1.02 1.00
40Ca 1.07† 0.92 0.96 0.98 0.69 0.77 0.92 1.00
100Zr 1.01 0.97 0.94 0.98 0.80† 0.71 0.89 0.99
200Hg 1.00 0.99 0.96 1.00 1.00 0.98† 0.90 1.00

so-called closed channels are sometimes neglected. Recently,
it was found that the inclusion of the closed channels in CDCC
is crucial for accurately describing the deuteron breakup cross
sections at low incident energies [28].

To see the importance of the closed channels for the (d,p)
processes, we show in Table III the factor SOP defined in the
same way as for SAD but with dσAD/d� in Eq. (12) replaced
with dσOP/d�; dσOP/d� is the result of CDCC with kmax

determined by Eq. (13). As expected, for Ed � 20 MeV the
closed channels have no significant effect, resulting in SOP ∼
1. However, in some cases the neglect of the closed channels
affects the result by more than 10% even in that energy region.
At lower energy, the effect of the closed channels can be
very large; for Sn = 8 MeV in particular. Furthermore, for
the reaction systems indicated by † in Table III, neglect of the
closed channels significantly changes the angular distribution,
even though SOP does not differ much from unity. Figure 8
shows a typical example for those cases.

By taking a closer look at Table III, one may find that the
tendency of SOP is quite nontrivial. For instance, when �f = 0,
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FIG. 8. Angular distributions of the (d,p) cross sections for
20Ne(d,p)21Ne(0f7/2) at Ed = 5 MeV with Sn = 8 MeV. The solid
and dashed lines show the results of CDCC with and without the
closed channels, respectively.

Sn = 0.1 MeV, and Ed = 5 MeV, SOP significantly deviates
from unity only for 40Ca. In Fig. 9 we show the results of
comparison for 20Ne, 40Ca, and 100Zr.

One sees that a strikingly large effect of the closed channels
appears when Ed ∼ VCB, as in the *3 cases mentioned in
Sec. III B. For �f �= 0, however, this seems not to be the case.
Thus, we conclude that it is difficult to see a priori the role of
the closed channels. We thus conclude that the use of Eq. (13)
is not recommended; kmax must be determined so as to make
the physics observables calculated with CDCC converged.
Comparison for all the reaction systems as in Fig. 8 can be
found in the addendum provided as supplemental material [35].

IV. SUMMARY

We have examined the validity of the adiabatic (AD)
approximation to the deuteron-target three-body wave function
in the calculation of the cross section of the (d,p) process
for 128 reaction systems. For this purpose, results of CDCC
that explicitly treat the breakup channels are compared with
those of CDCC with the AD approximation (CDCC-AD). The
typical error due to the AD approximation is found to be less
than 20% and around 35% at most. However, there are three
exceptional cases in which the AD approximation does not
work.

First, when the deuteron incident energy Ed is less than
10 MeV and the neutron separation energy Sn in the residual
nucleus is 8 MeV, the AD approximation cannot describe
the (d,p) angular distribution calculated by CDCC, mainly
because of the failure in describing the elastic transfer process.
This will be natural because the assumption of the AD
approximation; that is, the assumption that the internal motion
of deuteron is much slower than that of the c.m. of deuteron
does not hold. In this case, however, if an appropriate optical
potential that can describe the deuteron elastic channel is
provided, the (d,p) process does not suffer from the deuteron
breakup effect.

FIG. 9. Same as in Fig. 8 but for (a) 20Ne(d,p)21Ne(0f7/2), (b)
40Ca(d,p)41Ca(2s1/2), and (c) 100Zr(d,p)101Zr(2s1/2) at Ed = 5 MeV
with Sn = 0.1 MeV.

Second, for some reaction systems in which Ed � 20 MeV
and Sn = 0.1 MeV, the result of CDCC-AD is significantly
smaller than that of CDCC. We found that this is due to the
undershooting of the breakup transfer contribution by the AD
approximation. It should be noted that the AD approximation
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overshoots the deuteron breakup cross section because it
enhances the breakup probability of deuteron in general. The
effect due to the AD approximation on the breakup transfer
(BT) process is opposite to it and will be a consequence of
complicated coupled-channel effects.

Third, when Ed is close to the Coulomb barrier energy
and Sn = 0.1 MeV, the behavior of the BT process cannot
be properly described by the AD approximation because it
violates the energy conservation of the three-body system; the
energy of the c.m. of the p-n system does not change even
after breakup and can penetrate the Coulomb barrier as in the
elastic channel.

We have investigated also the effect of the closed channels.
For Ed � 20 MeV, the neglect of the closed channels can
seriously affect the result, for Sn = 8 MeV in particular.
However, there seems no clear threshold above which the
closed channels can be neglected. It will be recommended
that the convergence of the CDCC model space with respect to
kmax should always be confirmed, as for other quantities such
as lmax and �k .

In this study the energy dependence and nonlocality of the
distorting potential as well as the finite-range effect in the
(d,p) process are not discussed. Moreover, the breakup effect
in the final channel is not taken into account. The findings
summarized above therefore will need further investigation in
view of these additional aspects. A more complete analysis
will be very important.
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